# STORMWATER MANAGEMENT REPORT

*Geoffrey Park* Off Indian Ridge Road South Holliston, Massachusetts

> May 14, 2020 Revised: July 10, 2020 Sept. 16, 2020

> > Prepared for:

Indian Ridge Realty Trust 223 Courtland Street Holliston, Massachusetts

Prepared by:

GLM Engineering Consultants, Inc. 19 Exchange Street Holliston, Massachusetts 01746 (508) 429 - 1100

Paul E. Truax, PE Registered Professional Engineer **Robert S. Truax** *Design Engineer* 

#### CONTENTS

| DESCRIPTION                         | PAGE |
|-------------------------------------|------|
| Introduction, Description & Summary | 1-5  |
| U.S.G.S. Map                        | 6    |
| NRCS Soils Map and Information      | 7-8  |
| Checklist for Stormwater Report     | 9-15 |

| Appendix – A | Hydrological Calculations for Pre- & Post-Development (Standard 2) |
|--------------|--------------------------------------------------------------------|
|              | Routing Diagram                                                    |

- 2-year storm
- 10-year storm
- 25-year storm
- 100-year storm
- Appendix B Hydraulic Calculations and Design (Manning's Equation) Time of Flow, Average CN values
- Appendix C Stormwater Recharge Calcs, Water Quality Volumes, TSS Removal & Infiltration BMP Drain Times (Standard's 3 & 4), Riprap Sizing Groundwater Mounding Calculations
- Appendix D Stormwater Operation & Maintenance Plan and Long Term Pollution Prevention Plan(Standard 9)
- Appendix E Illicit Discharge Statement (Standard 10)
- Appendix F Culvert Crossing Sizing

#### Appendix – G Supplemental Plans

- Pre-Development Subcatchment Areas
- Post-Development Subcatchment Areas
- Hydraulic Subcatchment Areas

## **Project Introduction:**

The applicant, Indian Ridge Realty Trust, is proposing to develop a 24 Unit Residential development, located off Indian Ridge Road South, in Holliston Massachusetts. The proposed project was filed with Massachusetts Housing pursuant to Massachusetts General Laws Chapter 40B. The 24 Units will be single family and duplex style dwellings. The existing property is undeveloped wooded area and consists of 12.67 acres. The proposal is to construct a roadway from the end of Indian Ridge Road South to provide access and egress. The Project will be serviced by Town water, available public utilities and a common onsite sewage disposal system. The stormwater generated from the Project will be captured, conveyed, treated and mitigated on-site utilizing Best Management Practices.

The purpose of these calculations is to demonstrate design compliance of the Project's stormwater management system for water quality and quantity, specifically post-development peak discharge rates per the DEP's Stormwater Management Policy, the Town of Holliston Land Subdivision Regulations. As designed, the system will mitigate peak rates of runoff for storms up to and including the 100-year event under post-construction conditions.

## Methodology/Sources of Data:

The overall storm water management plan for the project is designed to maintain the peak rate of storm water runoff and runoff volumes from the site after development. The Soil Conservation Service Modified Soil Cover Complex Method, the computer program "HydroCAD" by Applied Microcomputer Systems, and the procedures specified in Urban Hydrology for storm Small Watersheds were used to determine pre-and post-developed peak flow rates of runoff from the site. The storm events have been compiled from the Soil Conservation Services Technical Report No. 55 and the U.S. Department of Commerce Technical Paper (TP 40). The 2-year, 10-year, 25-year and 100-year storm events have been utilized for hydrology calculations. The rainfall data for the Type III, 24-hour storm events follow:

| 24-Hour Storm | Rainfall (inches) |
|---------------|-------------------|
| 2             | 3.20              |
| 10            | 4.80              |
| 25            | 5.50              |
| 100           | 7.0               |

The storm water runoff will be controlled through the use of "Best Management Practices" and in conformance with the MADEP Stormwater Management Policy. The proposed Project will result in an improvement over the existing conditions, by constructing a storm water management system that will provide treatment, groundwater recharge and reduce the peak rates of runoff and offsite runoff volumes.

The piped drainage system has been designed utilizing the Rational Method for the 25 year storm event to size street drains.

## Soils:

The Natural Resources Conservation Service (NRCS), Hydrologic Soils Group Map for Middlesex county, Massachusetts indicates that the on-site soils consist of Charlton Hollis Rock-103D, and Canton Fine sandy loam-424C. Soil testing was conducted onsite to confirm soil conditions. The results where consistent with sandy-loam and percolation rates of 15.0 minutes per inch. The test concluded large boulders in the test holes and surface boulders throughout the site. Based on the soil testing it is opinion that the soil throughout the site area is consistent with a "B" type hydrologic Rating. Therefore the design for pre- and post-development was performed using a "B" soil type.

## **Existing Conditions Overview:**

The Project is located at the end of Indian Ridge Road South and identified as Assessor Map 14, Block 3, Lot 1 containing approximately 12.6 +/- acres. The site is currently undeveloped wooded land. There is a bordering vegetated wetland area located along the southerly and easterly boundaries. The site slopes from the northwest portion to the southeast.

The existing site is divided into five (5) existing watershed subcatchment areas. Three subcatchment areas converge at the southeast portion of the property. See the attached Pre-Development Subcatchment Area Plan for delineations. Subcatchment E1 flows overland towards the southern wetland to an intermittent stream. E2 is centrally located and flows to the south and E3 flows toward the westerly wetland. The three subcatchments flow via. overland and brooks to the southeast portion of the site and are combined with Link DP1.

Subcatchment E4 flows via overland northerly to a low lying area along the northerly boundary. Subcatchment E5 flows to the northwest abutting property where it flows via overland to the existing drainage basin at the end of Indian Ridge Road.

## Proposed Conditions Overview:

The proposal is to contruct 24 Residential homes, both single family and duplex style. The proposed roadway is an extension of Indian Ridge Road South. The extension is a total length of 1,640 feet of roadway that loops around on itself within the site. The proposed stormwater drainage system is designed to capture the runoff utilizing catch basins, manholes and culverts to convey the stormwater to a drainage basin located at the beginning of the proposed roadway.

The proposed runoff areas have been divided into five (5) subcatchments. Subcatchment P1 discharges via overland flow towards southern wetland, Subcatchment P2 is centrally located and discharges to the drainage basin and Subcatchment P3 flows via overland to the westerly wetlands. The overall stormwater discharge from the site is combine in link DP2.

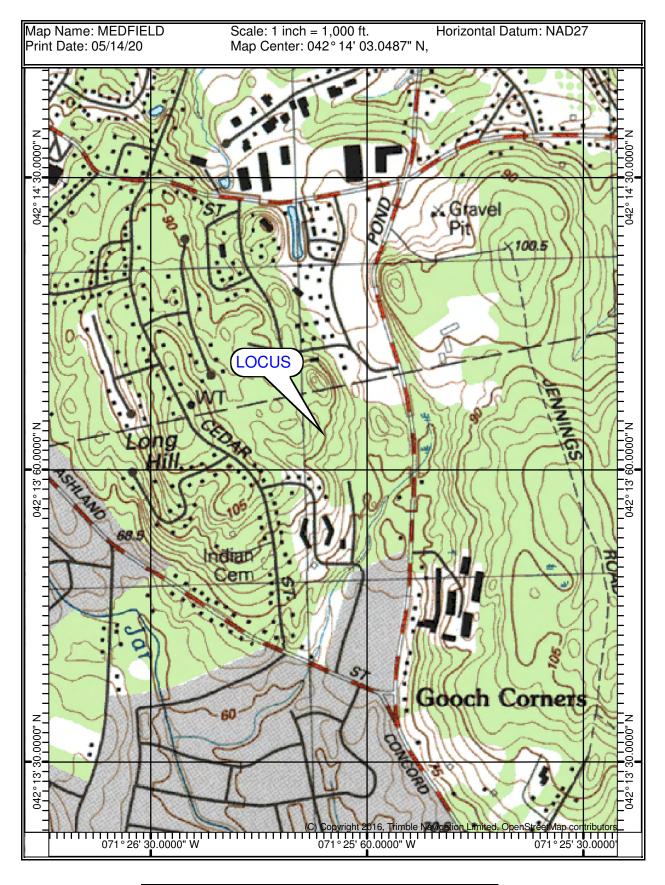
Subcatchment P4 flows via overland northerly to a low lying area along the northerly boundary. Subcatchment P5 flows to the northwest abutting property where it flows via overland to the existing drainage basin at the end of Indian Ridge Road.

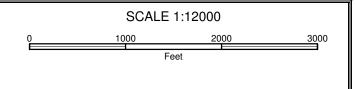
The proposed systems will reduce all post-development flow rates of runoff up to and including the 100-year event to existing levels at all abutting areas. Existing uncaptured off-site runoff not associated with the Project will continue to flow overland without change.

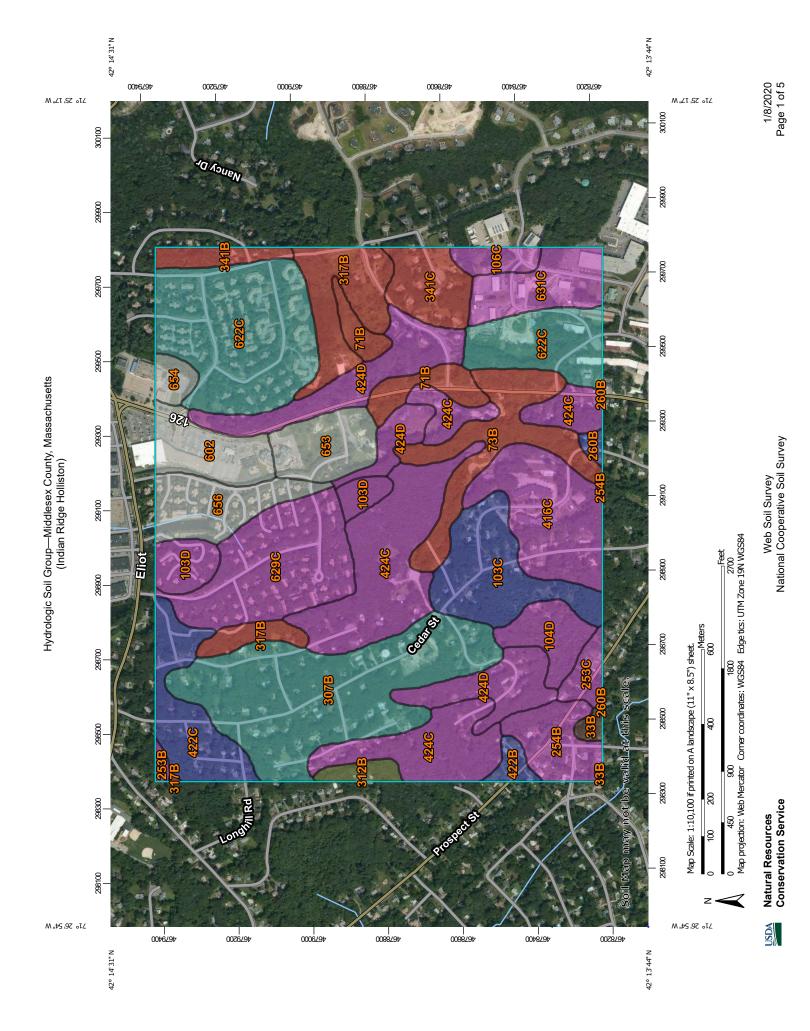
The following is summary comparison of Pre- and Post-Developed Rates and Volumes of Runoff:

| Summary of Peak Stormwater Runoff Rates: |                 |                 |                 |                 |                 |                 |                 |                 |
|------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <u>Design</u>                            | 2-Yr Peak Flow  |                 | <u>10-Yr Pe</u> | <u>eak Flow</u> | <u>25-Yr P</u>  | eak Flow        | <u>100-Yr P</u> | eak Flow        |
| <u>Point</u>                             | <u>(cfs)</u>    |                 | <u>(cfs)</u>    |                 | <u>(cfs)</u>    |                 | <u>(cfs)</u>    |                 |
|                                          | <u>Existing</u> | <u>Proposed</u> | <u>Existing</u> | <b>Proposed</b> | <u>Existing</u> | <b>Proposed</b> | <u>Existing</u> | <u>Proposed</u> |
| DP1/                                     | 1.10            | 1.05            | 6.76            | 6.65            | 8.23            | 7.73            | 19.30           | 19.30           |
| DP2                                      |                 |                 |                 |                 |                 |                 |                 |                 |
| E4/P4                                    | 0.07            | 0.12            | 0.48            | 0.45            | 0.59            | 0.52            | 1.41            | 1.03            |
| E5/P5                                    | 0.04            | 0.01            | 0.25            | 0.07            | 0.31            | 0.09            | 0.73            | 0.20            |

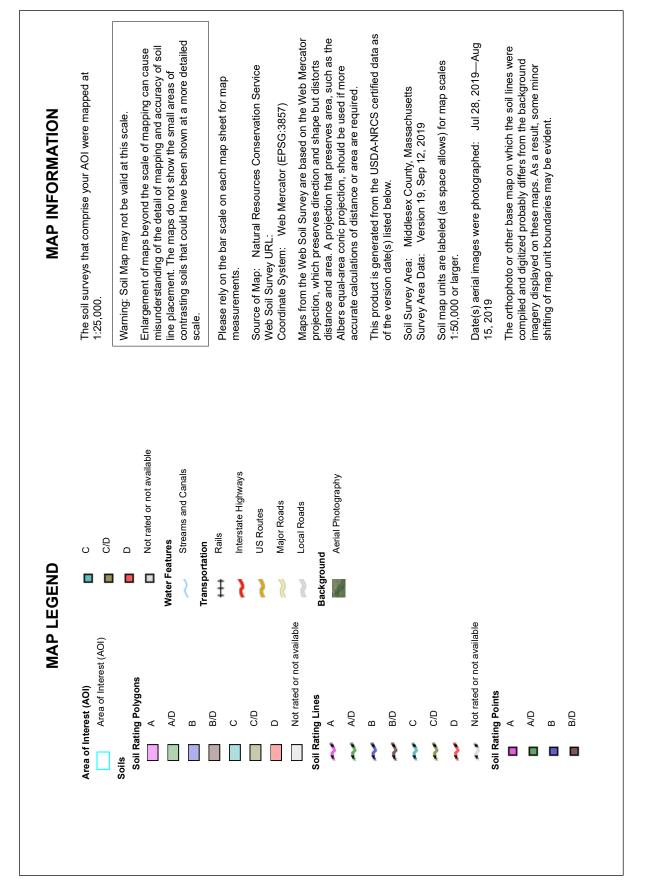
The following is a summary of the Retention Basin:


| Summary of Retention Basin |                 |              |                     |              |                                         |                |                      |                |
|----------------------------|-----------------|--------------|---------------------|--------------|-----------------------------------------|----------------|----------------------|----------------|
| <b>Design Point</b>        | <u>2-Yr V</u>   | /olume       | <u>10-Yr Volume</u> |              | <u>10-Yr Volume</u> <u>25-Yr Volume</u> |                | <u>100-Yr Volume</u> |                |
|                            | (cu             | ı.ft.)       | (ac-ft)             |              | (ac-ft)                                 |                | (ac-ft)              |                |
|                            | <u>Peak</u>     | Outflow      | <u>Peak</u>         | Outflow      | Peak                                    | <u>Outflow</u> | Peak                 | <u>Outflow</u> |
|                            | <u>Elev.Ft.</u> | <u>(cfs)</u> | <u>Elev. Ft.</u>    | <u>(cfs)</u> | Elev.Ft.                                | <u>(cfs)</u>   | <u>Elev.Ft.</u>      | <u>(cfs)</u>   |
| 1P                         | 269.45          | 0.51         | 270.83              | 3.16         | 271.12                                  | 3.60           | 272.50               | 10.23          |


#### Summary:


The calculations indicate a small increase in peak runoff along the northerly boundary. The runoff to the north is contained in a isolate low lying area primarly within the project boundaries.

The calculations performed for all design storm events indicate that the total peak rates and volumes of runoff for the Project as proposed will not exceed those of existing conditions with the implementation of the stormwater management system.


With the implementation of the stormwater management system as designed, along with the Operation and Maintenance plan contained herein, all of the objectives of the DEP's Stormwater Management Regulations are satisfied.







Hydrologic Soil Group—Middlesex County, Massachusetts (Indian Ridge Holliston)





# Hydrologic Soil Group

| Map unit symbol | Map unit name                                                               | Rating | Acres in AOI | Percent of AOI |
|-----------------|-----------------------------------------------------------------------------|--------|--------------|----------------|
| 33B             | Raypol silt loam, 0 to 5 percent slopes                                     | B/D    | 1.4          | 0.3%           |
| 71B             | Ridgebury fine sandy<br>loam, 3 to 8 percent<br>slopes, extremely<br>stony  | D      | 9.0          | 2.1%           |
| 73B             | Whitman fine sandy<br>loam, 0 to 3 percent<br>slopes, extremely<br>stony    | D      | 19.7         | 4.6%           |
| 103C            | Charlton-Hollis-Rock<br>outcrop complex, 8 to<br>15 percent slopes          | В      | 19.8         | 4.7%           |
| 103D            | Charlton-Hollis-Rock<br>outcrop complex, 15<br>to 25 percent slopes         | A      | 8.3          | 1.9%           |
| 104D            | Hollis-Rock outcrop-<br>Charlton complex, 15<br>to 25 percent slopes        | A      | 8.0          | 1.9%           |
| 106C            | Narragansett-Hollis-<br>Rock outcrop<br>complex, 3 to 15<br>percent slopes  | A      | 3.9          | 0.9%           |
| 253B            | Hinckley loamy sand, 3<br>to 8 percent slopes                               | A      | 0.8          | 0.2%           |
| 253C            | Hinckley loamy sand, 8<br>to 15 percent slopes                              | A      | 3.7          | 0.9%           |
| 254B            | Merrimac fine sandy<br>loam, 3 to 8 percent<br>slopes                       | A      | 10.2         | 2.4%           |
| 260B            | Sudbury fine sandy<br>loam, 3 to 8 percent<br>slopes                        | В      | 1.2          | 0.3%           |
| 307B            | Paxton fine sandy loam,<br>0 to 8 percent slopes,<br>extremely stony        | С      | 50.1         | 11.8%          |
| 312B            | Woodbridge fine sandy<br>loam, 0 to 8 percent<br>slopes, extremely<br>stony | C/D    | 2.8          | 0.7%           |
| 317B            | Scituate fine sandy<br>loam, 3 to 8 percent<br>slopes, extremely<br>stony   | D      | 18.7         | 4.4%           |



| Map unit symbol          | Map unit name                                                                | Rating | Acres in AOI | Percent of AOI |
|--------------------------|------------------------------------------------------------------------------|--------|--------------|----------------|
| 341B                     | Broadbrook very fine<br>sandy loam, 3 to 8<br>percent slopes, very<br>stony  | D      | 4.3          | 1.0%           |
| 341C                     | Broadbrook very fine<br>sandy loam, 8 to 15<br>percent slopes, very<br>stony | D      | 10.0         | 2.4%           |
| 416C                     | Narragansett silt loam, 8<br>to 15 percent slopes,<br>very stony             | A      | 22.0         | 5.2%           |
| 422B                     | Canton fine sandy loam,<br>0 to 8 percent slopes,<br>extremely stony         | В      | 2.4          | 0.6%           |
| 422C                     | Canton fine sandy loam,<br>8 to 15 percent<br>slopes, extremely<br>stony     | В      | 15.1         | 3.6%           |
| 424C                     | Canton fine sandy loam,<br>8 to 15 percent<br>slopes, extremely<br>bouldery  | A      | 51.9         | 12.2%          |
| 424D                     | Canton fine sandy loam,<br>15 to 25 percent<br>slopes, extremely<br>bouldery | A      | 31.1         | 7.3%           |
| 602                      | Urban land                                                                   |        | 11.5         | 2.7%           |
| 622C                     | Paxton-Urban land<br>complex, 3 to 15<br>percent slopes                      | с      | 51.9         | 12.2%          |
| 629C                     | Canton-Charlton-Urban<br>land complex, 3 to 15<br>percent slopes             | A      | 28.1         | 6.6%           |
| 631C                     | Charlton-Urban land-<br>Hollis complex, 3 to<br>15 percent slopes,<br>rocky  | A      | 12.2         | 2.9%           |
| 653                      | Udorthents, sandy                                                            |        | 11.2         | 2.6%           |
| 654                      | Udorthents, loamy                                                            |        | 3.1          | 0.7%           |
| 656                      | Udorthents-Urban land complex                                                |        | 13.0         | 3.0%           |
| Totals for Area of Inter | rest                                                                         |        | 425.6        | 100.0%         |

# Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



# Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

# A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.



A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.<sup>1</sup> This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8<sup>2</sup>
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

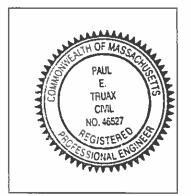
<sup>&</sup>lt;sup>1</sup> The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

<sup>&</sup>lt;sup>2</sup> For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.



# B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

# **Registered Professional Engineer's Certification**

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



7-15.2020 1~ Signature and Date

## Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment



**LID Measures:** Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

|             | No disturbance to any Wetland Resource Areas                                  |
|-------------|-------------------------------------------------------------------------------|
| $\boxtimes$ | Site Design Practices (e.g. clustered development, reduced frontage setbacks) |
|             | Reduced Impervious Area (Redevelopment Only)                                  |
|             | Minimizing disturbance to existing trees and shrubs                           |
|             | LID Site Design Credit Requested:                                             |
|             | Credit 1                                                                      |
|             | Credit 2                                                                      |
|             | Credit 3                                                                      |
|             | Use of "country drainage" versus curb and gutter conveyance and pipe          |
|             | Bioretention Cells (includes Rain Gardens)                                    |
|             | Constructed Stormwater Wetlands (includes Gravel Wetlands designs)            |
|             | Treebox Filter                                                                |
|             | Water Quality Swale                                                           |
|             | Grass Channel                                                                 |
|             | Green Roof                                                                    |
|             | Other (describe):                                                             |
|             |                                                                               |

#### **Standard 1: No New Untreated Discharges**

No new untreated discharges

- $\boxtimes$  Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.



#### Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

#### Standard 3: Recharge

| $\boxtimes$ | Soil | Anal | ysis | provided. |
|-------------|------|------|------|-----------|
|-------------|------|------|------|-----------|

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

| Static 🗌 |  |
|----------|--|
|----------|--|

Simple Dynamic Dynamic Field<sup>1</sup>

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
  - Site is comprised solely of C and D soils and/or bedrock at the land surface
  - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
  - Solid Waste Landfill pursuant to 310 CMR 19.000
  - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- $\boxtimes$  Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

<sup>&</sup>lt;sup>1</sup> 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.



#### Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

#### Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
  - is within the Zone II or Interim Wellhead Protection Area
  - is near or to other critical areas
  - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
  - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.



# Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

|   | Standard 4: Water Quality (continued)                                                                                                                                                                                                                                                                                                                                                                                              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\boxtimes$ The BMP is sized (and calculations provided) based on:                                                                                                                                                                                                                                                                                                                                                                 |
|   | The 1/2" or 1" Water Quality Volume or                                                                                                                                                                                                                                                                                                                                                                                             |
|   | The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.                                                                                                                                                                                                                                                                     |
|   | ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs. |
|   | A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.                                                                                                                                                                                                                                                                 |
| 1 | Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)                                                                                                                                                                                                                                                                                                                                                              |
|   | The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution<br>Prevention Plan (SWPPP) has been included with the Stormwater Report.                                                                                                                                                                                                                                                                    |
|   | <ul> <li>The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i><br/>to the discharge of stormwater to the post-construction stormwater BMPs.</li> </ul>                                                                                                                                                                                                                            |
|   | The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.                                                                                                                                                                                                                                                                                                                                                          |
|   | LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.                                                                                                                                                        |
|   | All exposure has been eliminated.                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.                                                                                                                                                                                                                                                                                                                                      |
|   | The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and<br>grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil<br>grit separator, a filtering bioretention area, a sand filter or equivalent.                                                                                                                                        |
| : | Standard 6: Critical Areas                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.                                                                                                                                                                                                                                      |
|   | Critical areas and BMPs are identified in the Stormwater Report.                                                                                                                                                                                                                                                                                                                                                                   |



# Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

| Limited Project |  |
|-----------------|--|
|-----------------|--|

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project

Redevelopment portion of mix of new and redevelopment.

Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

#### Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.



# Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

#### Standard 9: Operation and Maintenance Plan

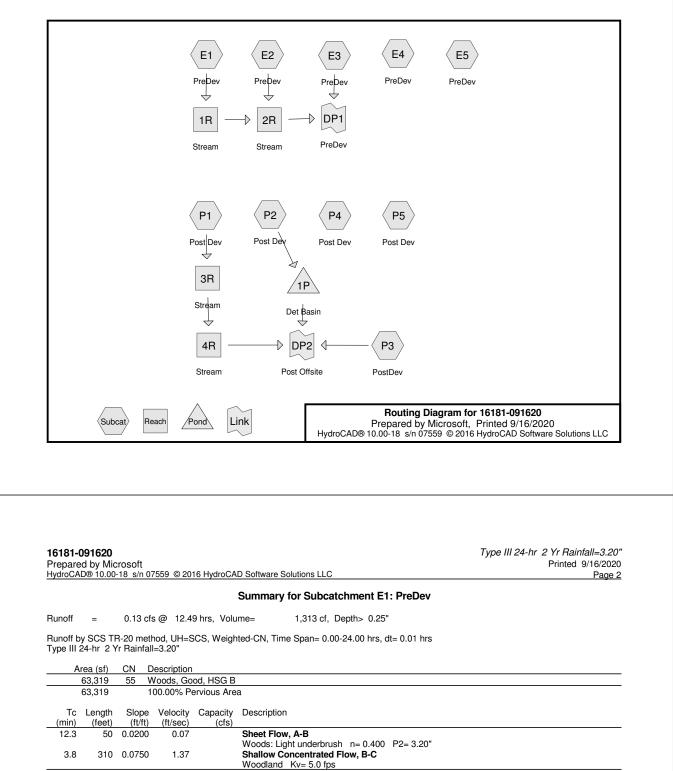
- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
  - Name of the stormwater management system owners;
  - Party responsible for operation and maintenance;
  - Schedule for implementation of routine and non-routine maintenance tasks;
  - Plan showing the location of all stormwater BMPs maintenance access areas;
  - Description and delineation of public safety features;
  - Estimated operation and maintenance budget; and
  - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
  - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
  - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

#### Standard 10: Prohibition of Illicit Discharges

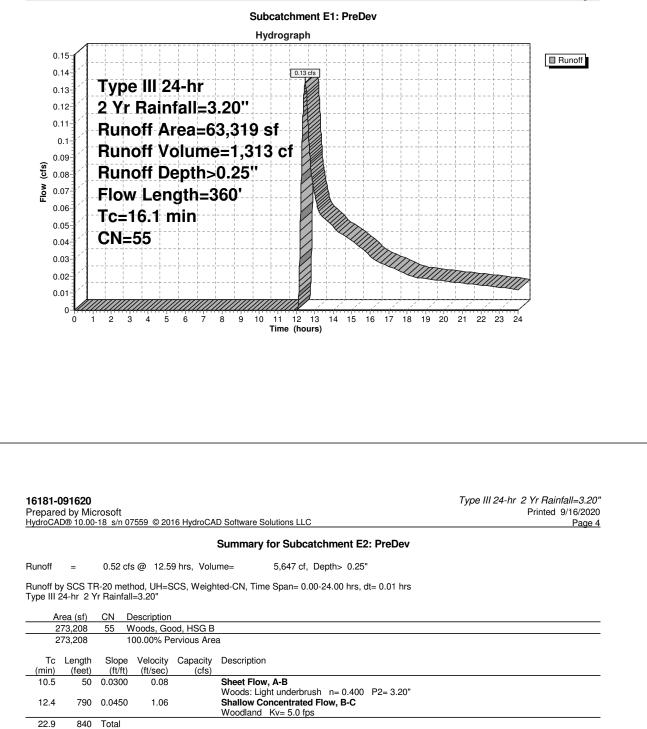
- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

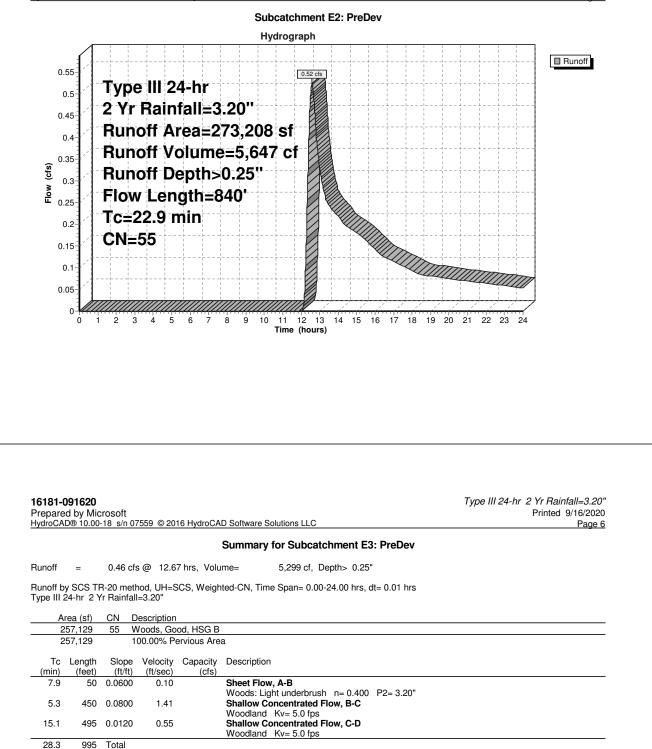
## <u>APPENDIX – A</u>

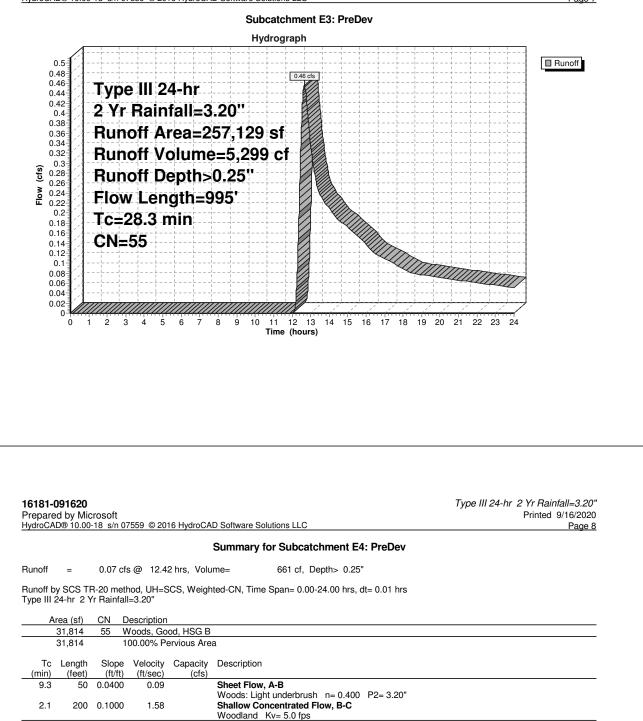
# <u>Hydrogeological Calculations for Pre & Post Development</u> <u>Hydraulic Design (Manning's Equation)</u>


<u>Standard 2</u>

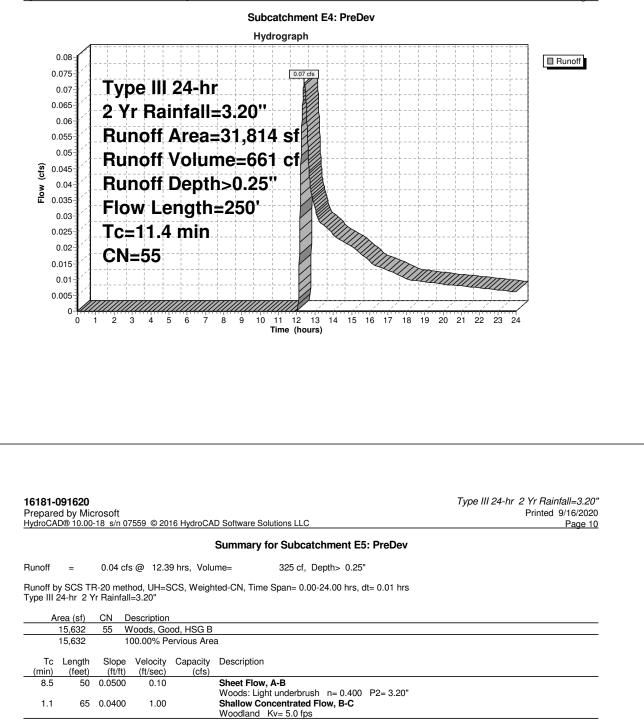
# Pre-Developed Runoff Areas:


| Subcatchment | Area         |  |  |
|--------------|--------------|--|--|
| E1           | 63,319 s.f.  |  |  |
| E2           | 273,208 s.f. |  |  |
| E3           | 256,975 s.f. |  |  |
| E4           | 31,814 s.f.  |  |  |
| E5           | 15,632 s.f.  |  |  |
| Total        | 640,948 s.f. |  |  |

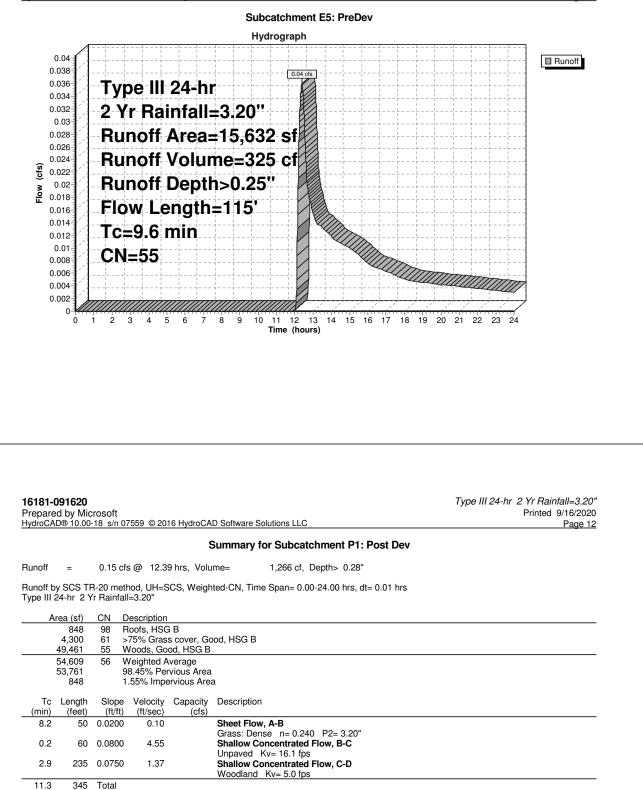

# Post-Developed Runoff Areas:

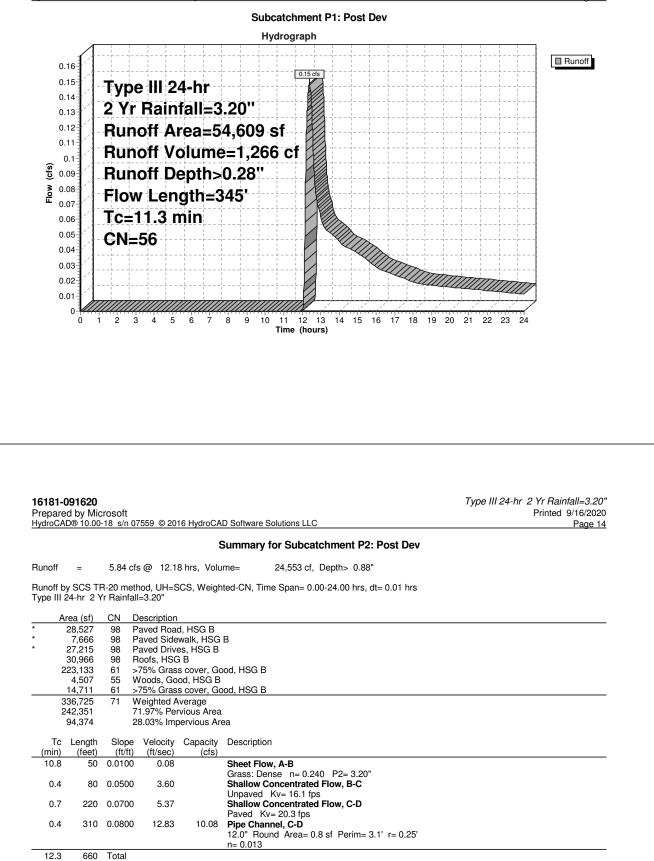

| Subcatchment | Area         |  |  |
|--------------|--------------|--|--|
| P1           | 54,609 s.f.  |  |  |
| P2           | 336,725 s.f. |  |  |
| P3           | 229,845 s.f. |  |  |
| P4           | 15,587 s.f.  |  |  |
| P5           | 4,182 s.f.   |  |  |
| Total        | 640,948 s.f. |  |  |

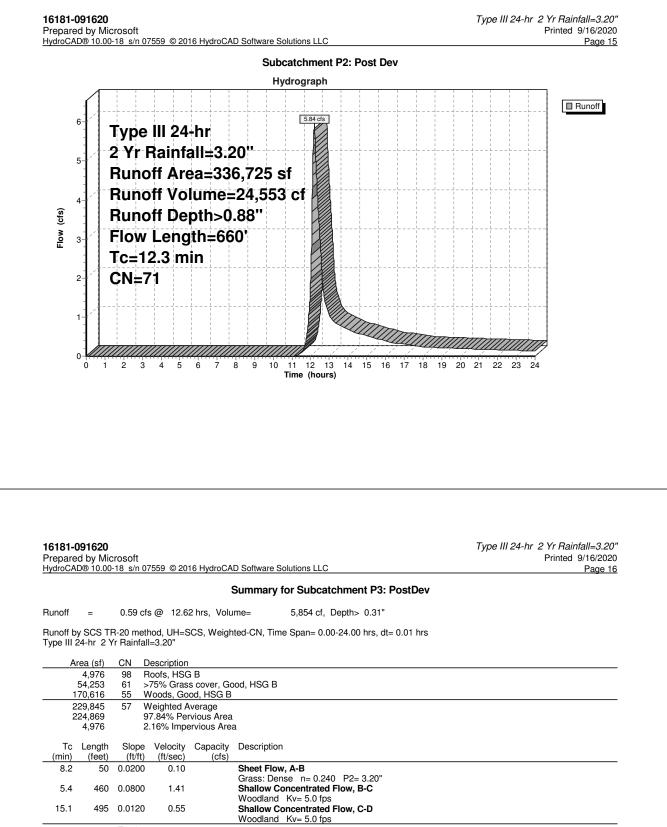



16.1 360 Total

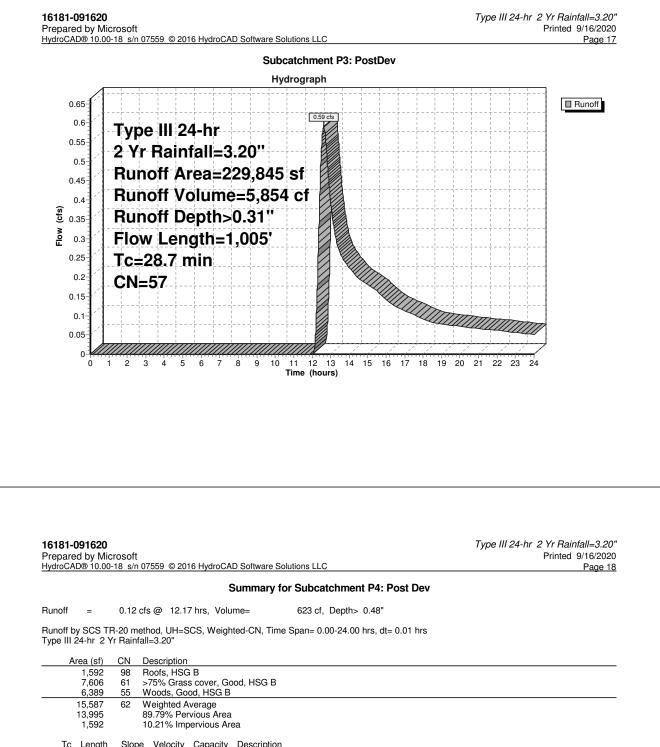




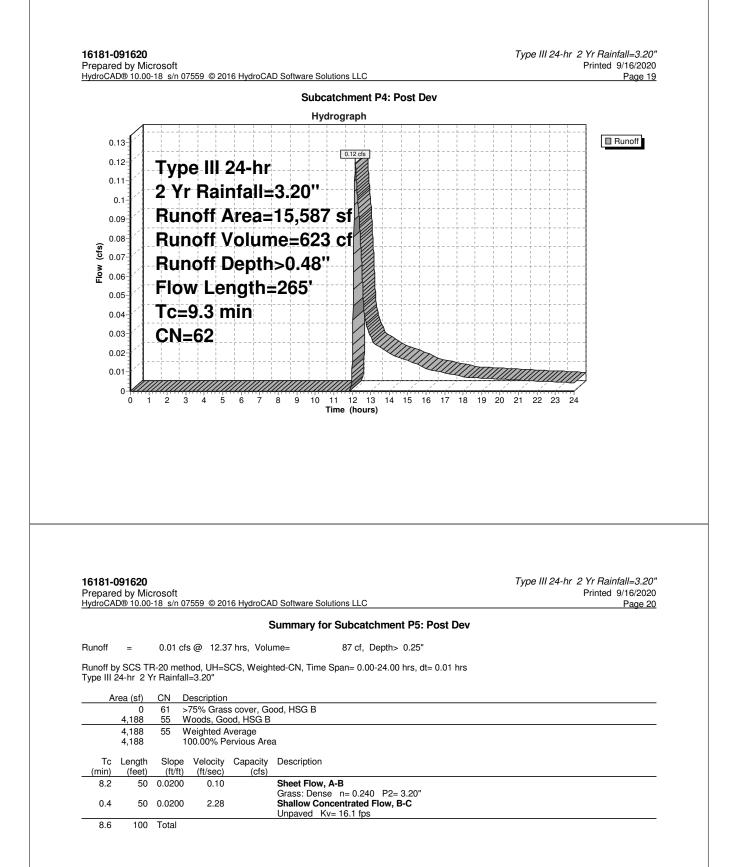


11.4 250 Total

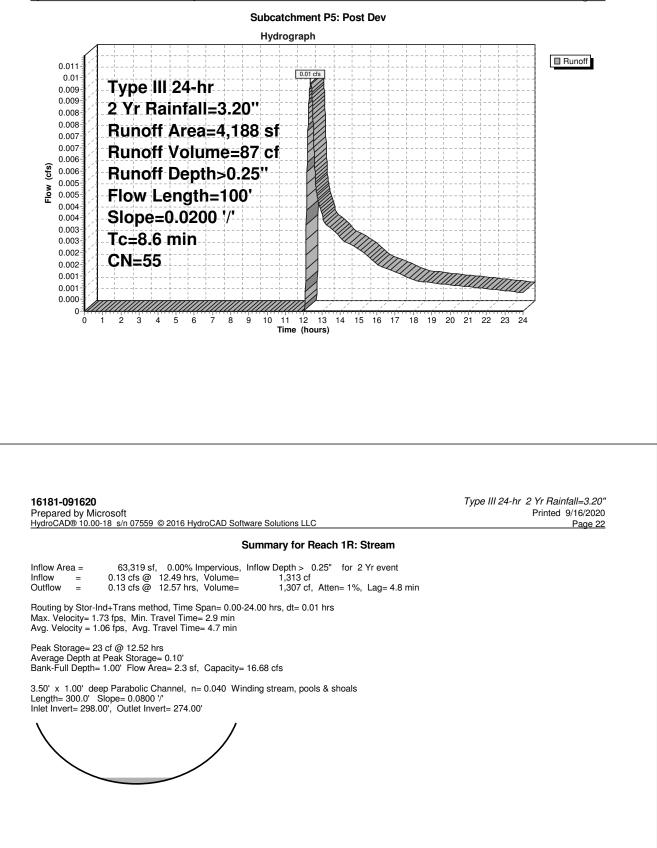


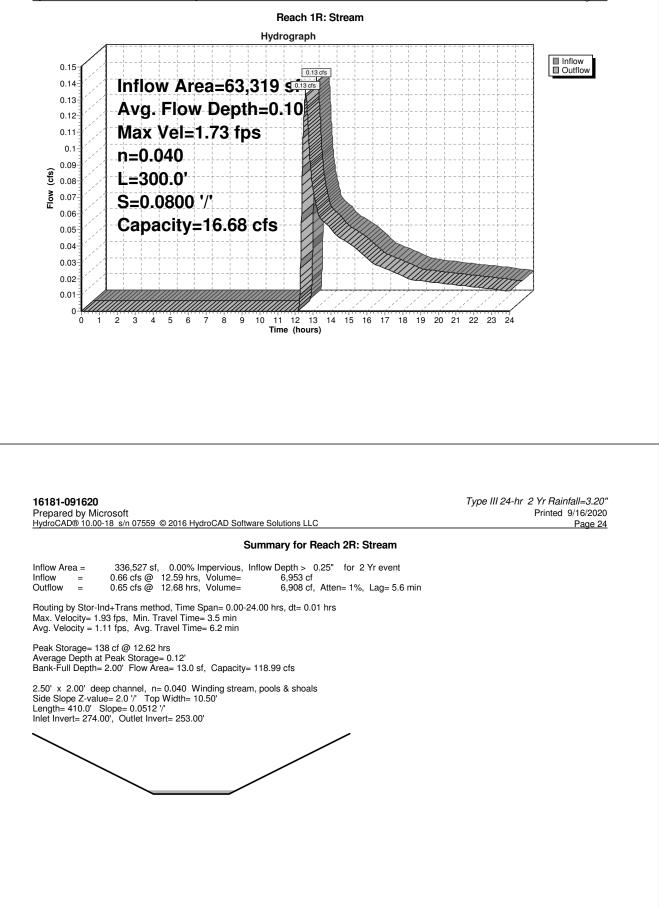

9.6 115 Total

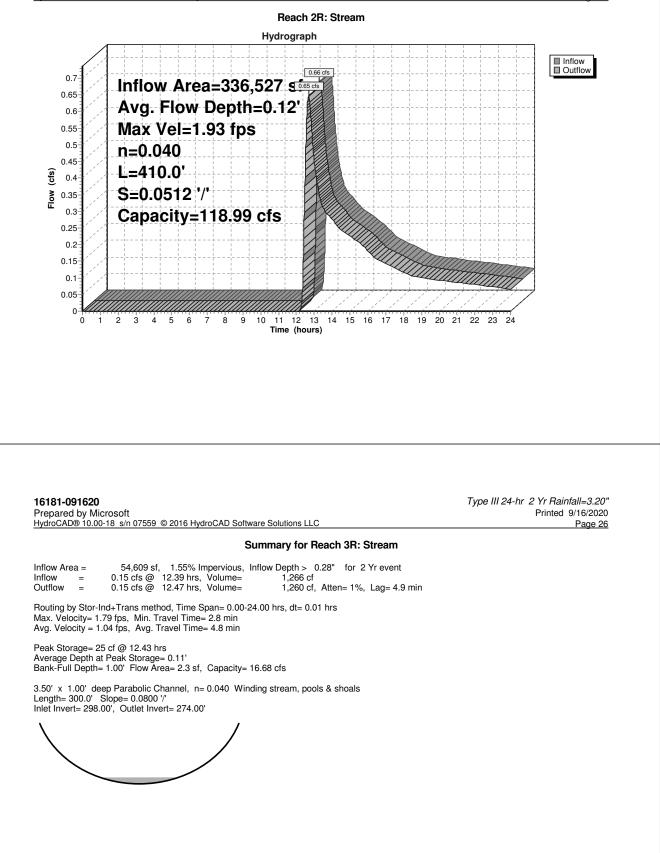


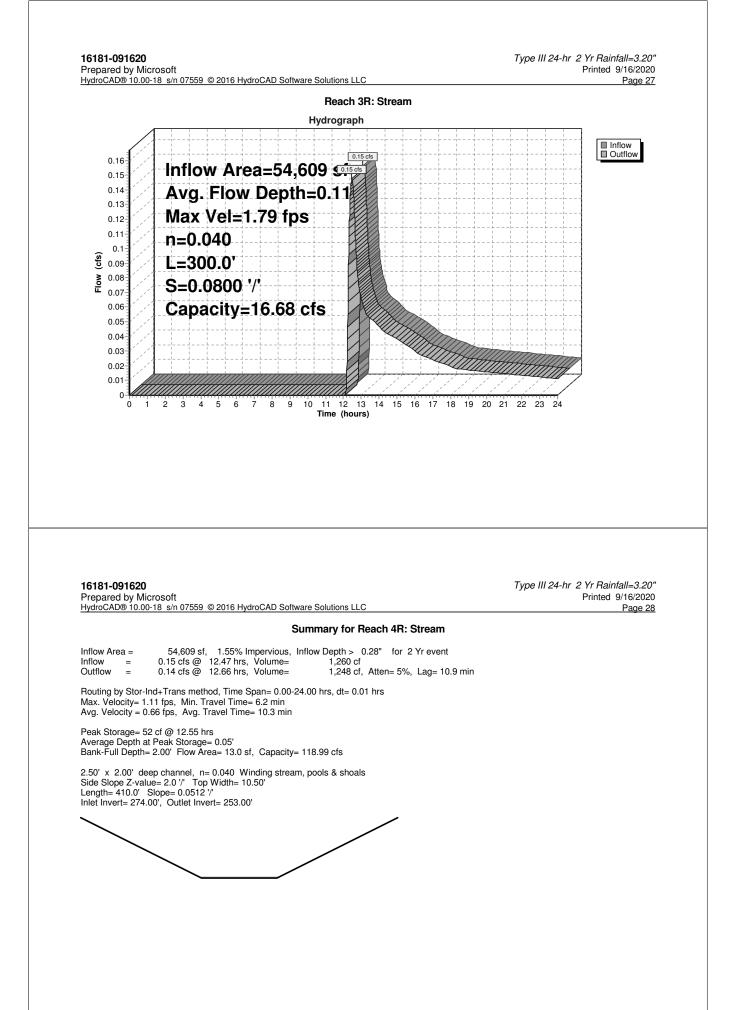


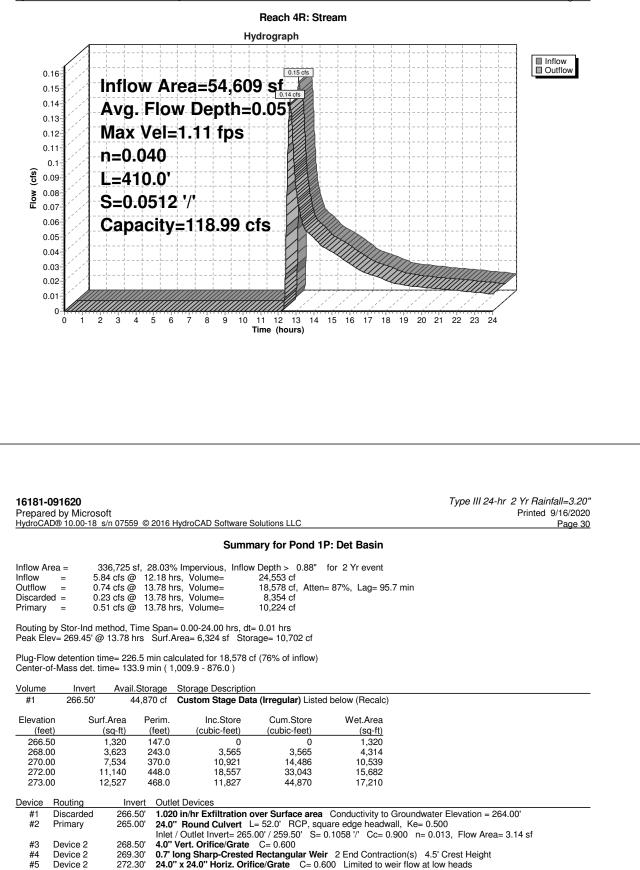




28.7 1,005 Total





| IC    | Lengin | Siope   | velocity | Capacity | Description                           |
|-------|--------|---------|----------|----------|---------------------------------------|
| (min) | (feet) | (ft/ft) | (ft/sec) | (cfs)    | · · · · · · · · · · · · · · · · · · · |
| 8.2   | 50     | 0.0200  | 0.10     |          | Sheet Flow, A-B                       |
|       |        |         |          |          | Grass: Dense n= 0.240 P2= 3.20"       |
| 0.7   | 90     | 0.0200  | 2.28     |          | Shallow Concentrated Flow, B-C        |
|       |        |         |          |          | Unpaved Kv= 16.1 fps                  |
| 0.4   | 125    | 0.1000  | 5.09     |          | Shallow Concentrated Flow, C-D        |
|       |        |         |          |          | Unpaved Kv= 16.1 fps                  |
|       |        | -       |          |          |                                       |


9.3 265 Total





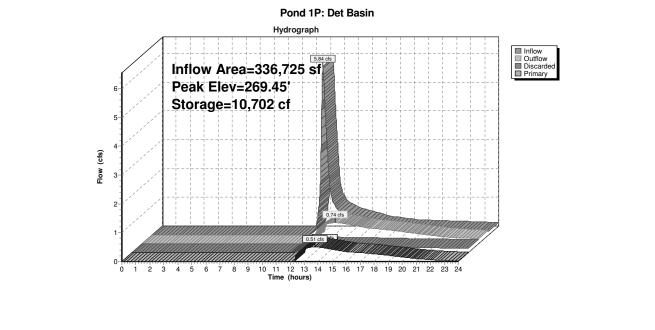











Type III 24-hr 2 Yr Rainfall=3.20"

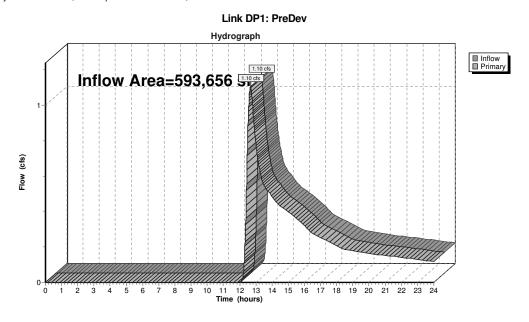
Printed 9/16/2020 Page 32

Discarded OutFlow Max=0.23 cfs @ 13.78 hrs HW=269.45' (Free Discharge) 1=Exfiltration (Controls 0.23 cfs)

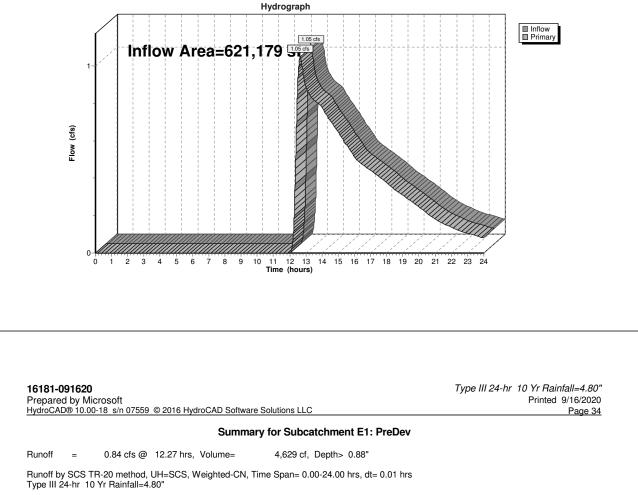
**Primary OutFlow** Max=0.50 cfs @ 13.78 hrs HW=269.45' (Free Discharge) Cultert (Passes 0.50 cfs of 28.11 cfs potential flow)
 3=Orifice/Grate (Orifice Controls 0.37 cfs @ 4.27 fps)
 4=Sharp-Crested Rectangular Weir (Weir Controls 0.13 cfs @ 1.29 fps)
 5=Orifice/Grate (Controls 0.00 cfs)



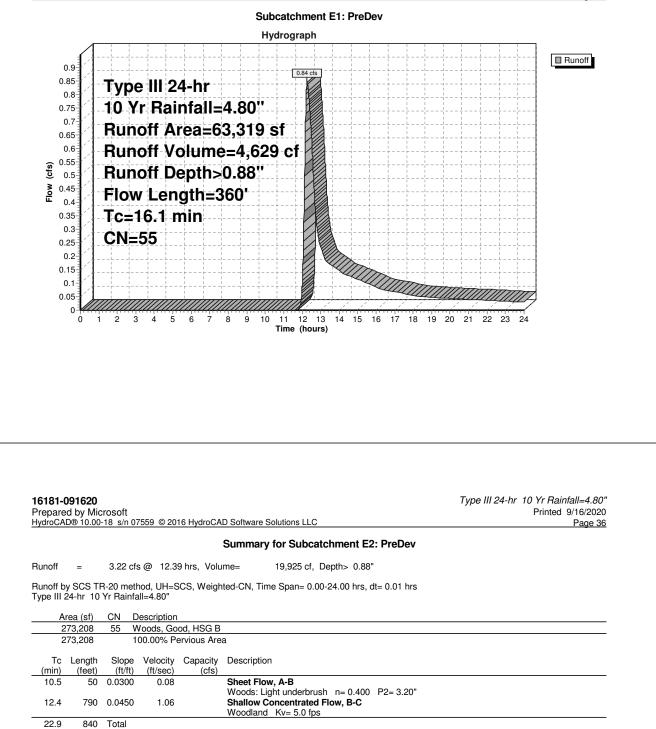


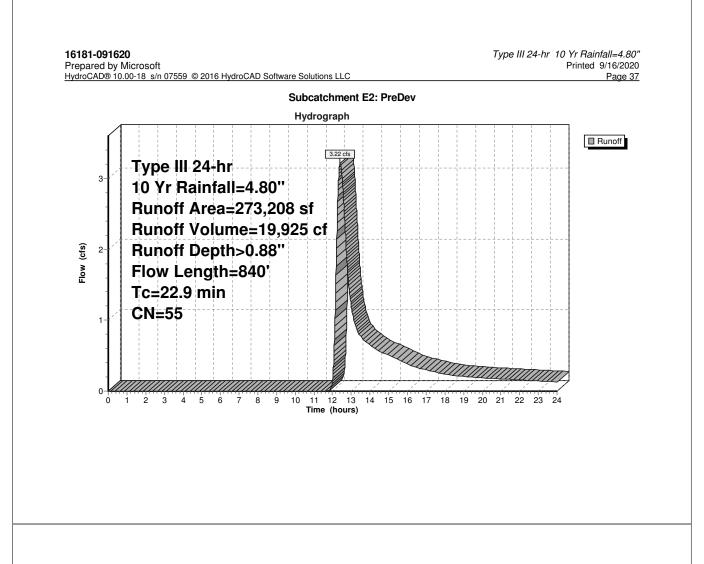

## 16181-091620

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC


Summary for Link DP1: PreDev

| Inflow Area = | 593,656 sf, | 0.00% In   | npervious, | Inflow Depth > | 0.25"    | for 2 Yr event      |
|---------------|-------------|------------|------------|----------------|----------|---------------------|
| Inflow =      | 1.10 cfs @  | 12.67 hrs, | Volume=    | 12,207 c       | f        |                     |
| Primary =     | 1.10 cfs @  | 12.67 hrs, | Volume=    | 12,207 c       | f, Atter | n= 0%, Lag= 0.0 min |


Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs




Page 33



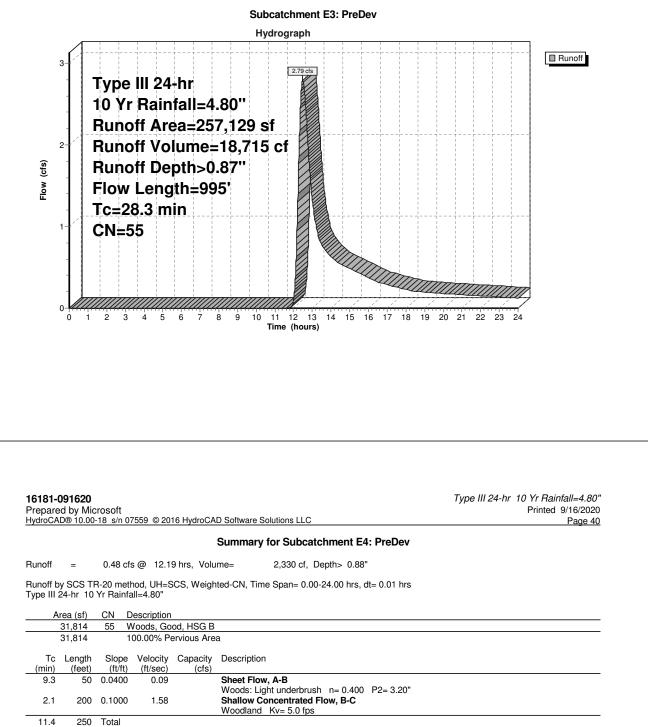
| A           | vrea (sf)        | CN D             | escription            |                   |                                                                                                                          |  |  |  |  |
|-------------|------------------|------------------|-----------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             | 63,319           | 55 V             | 55 Woods, Good, HSG B |                   |                                                                                                                          |  |  |  |  |
|             | 63,319           | 1                | 00.00% Pe             | ervious Are       | a                                                                                                                        |  |  |  |  |
| Tc<br>(min) | Length<br>(feet) | Slope<br>(ft/ft) | Velocity<br>(ft/sec)  | Capacity<br>(cfs) | Description                                                                                                              |  |  |  |  |
| 12.3        | 50               | 0.0200           | 0.07                  |                   | Sheet Flow, A-B                                                                                                          |  |  |  |  |
| 3.8         | 310              | 0.0750           | 1.37                  |                   | Woods:         Light underbrush n= 0.400 P2= 3.20"           Shallow Concentrated Flow, B-C         Woodland Kv= 5.0 fps |  |  |  |  |
| 16.1        | 360              | Total            |                       |                   |                                                                                                                          |  |  |  |  |

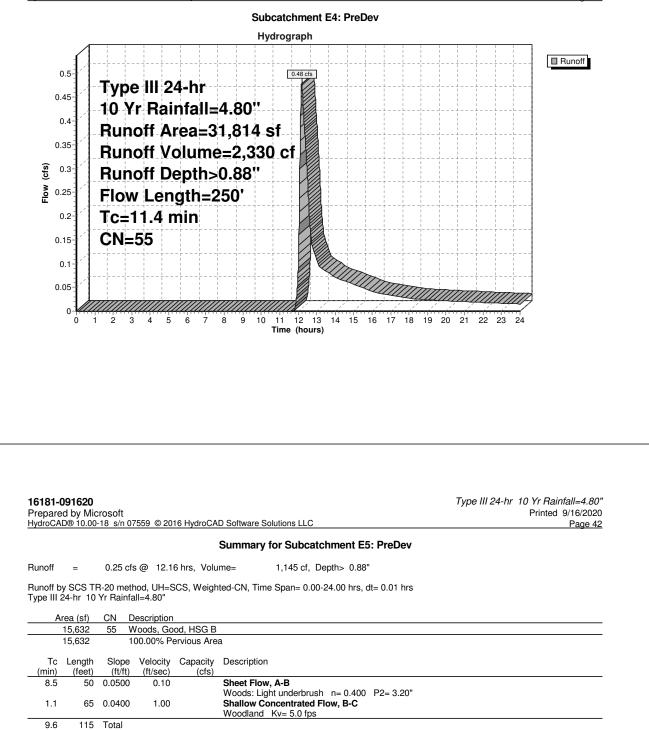


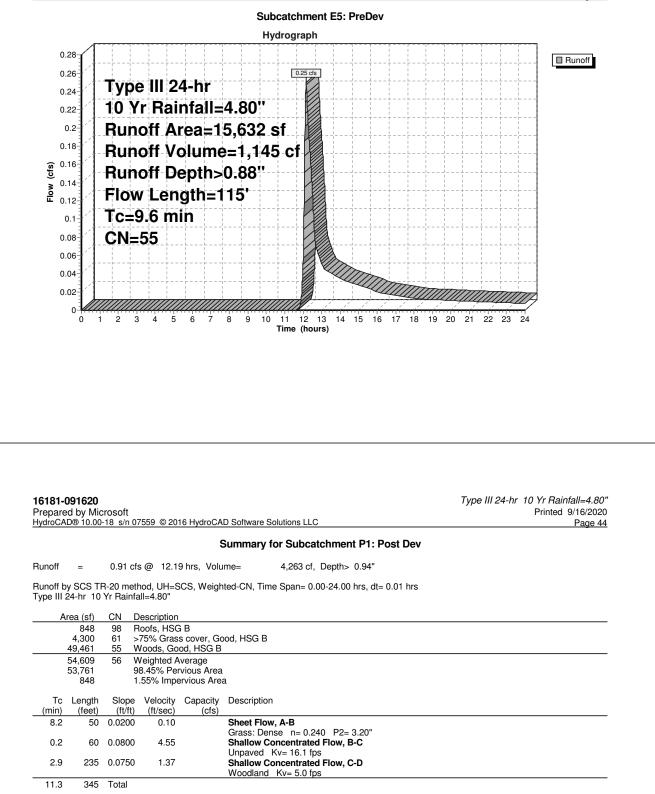


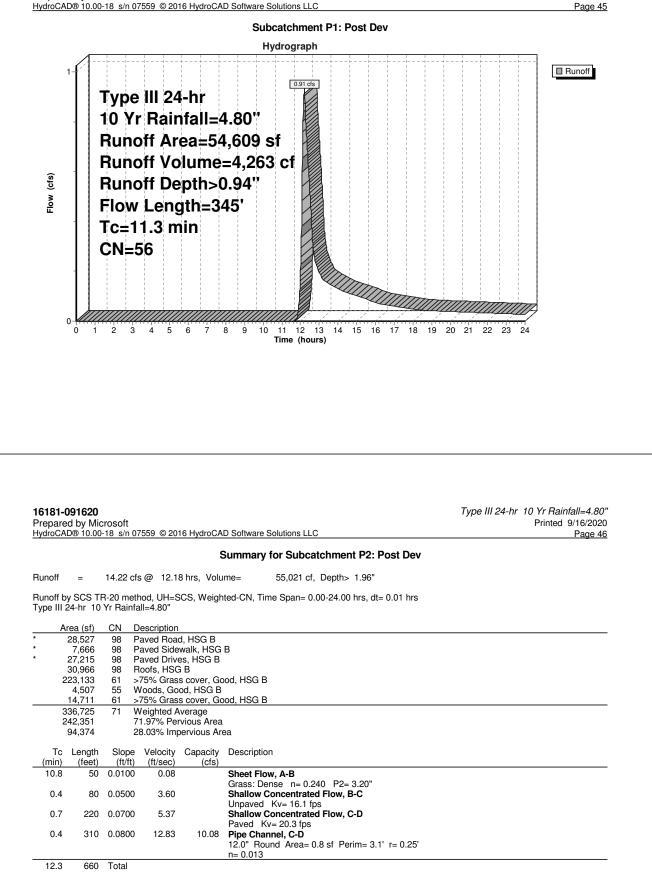
Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

#### Type III 24-hr 10 Yr Rainfall=4.80" Printed 9/16/2020 Page 38

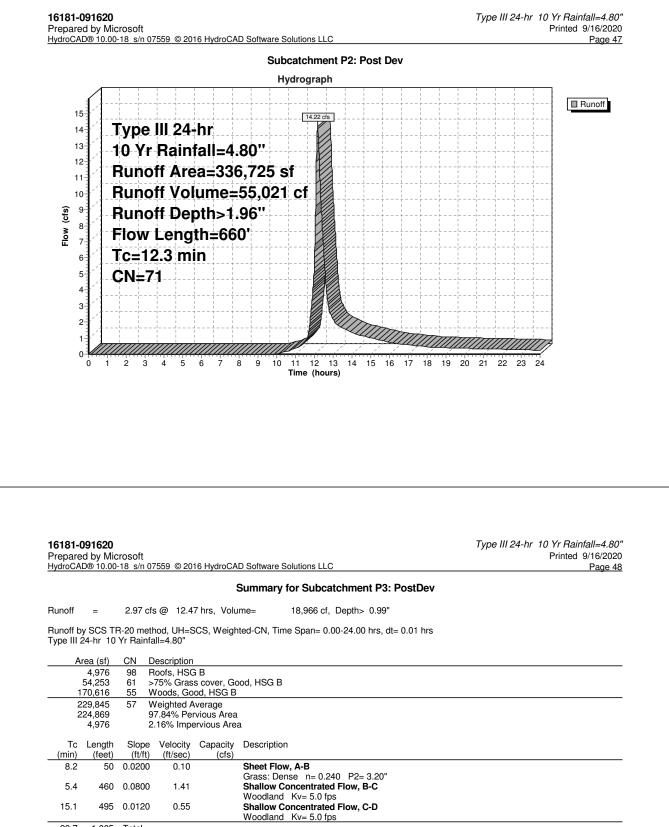

#### Summary for Subcatchment E3: PreDev


Runoff = 2.79 cfs @ 12.48 hrs, Volume=

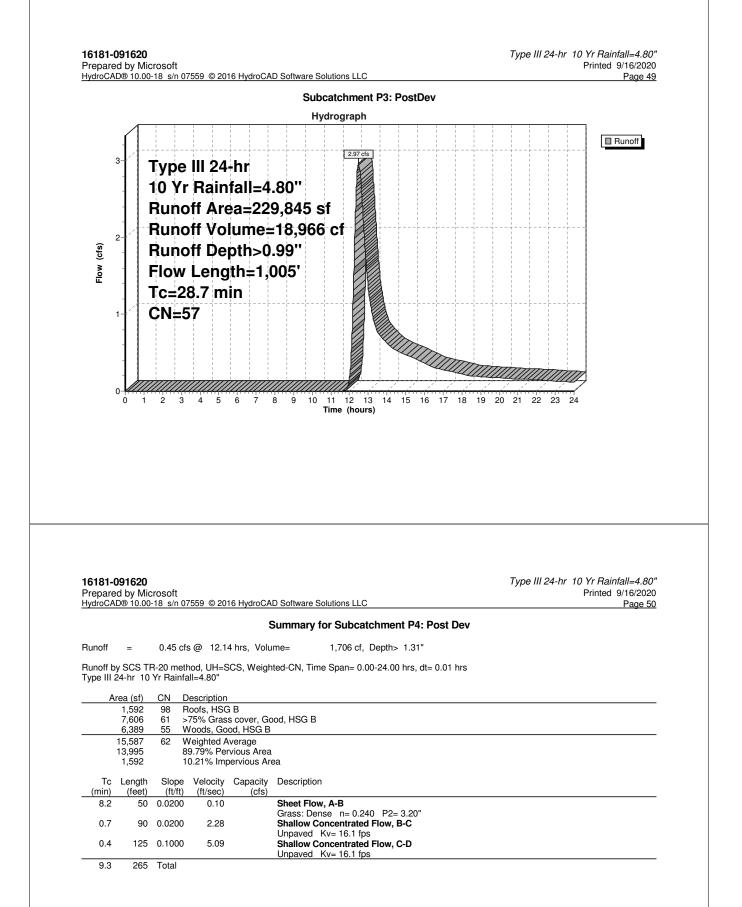

18,715 cf, Depth> 0.87"

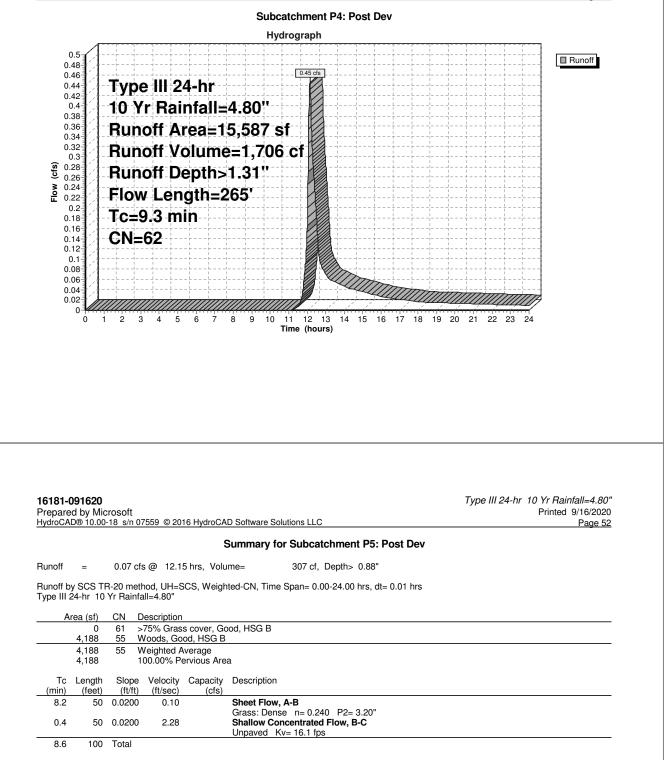

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Rainfall=4.80"

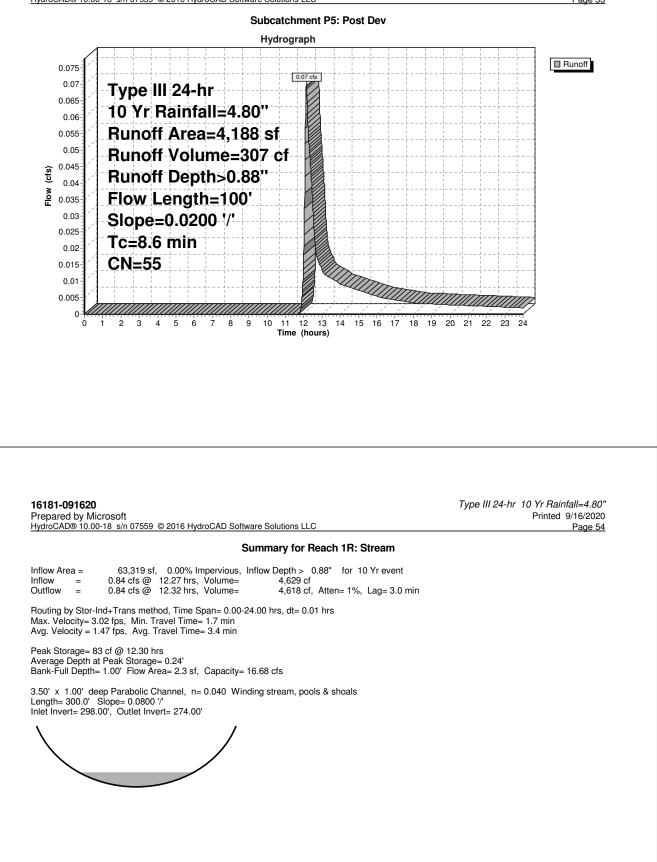
|            | Area (sf)                     | CN E             | Description          |                   |                                                                                                      |
|------------|-------------------------------|------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------|
|            | 257,129                       | 55 V             | Voods, Go            | od, HSG B         |                                                                                                      |
|            | 257,129 100.00% Pervious Area |                  |                      | ervious Are       | a                                                                                                    |
| To<br>(min |                               | Slope<br>(ft/ft) | Velocity<br>(ft/sec) | Capacity<br>(cfs) | Description                                                                                          |
| 7.9        | 9 50                          | 0.0600           | 0.10                 |                   | Sheet Flow, A-B                                                                                      |
| 5.3        | 3 450                         | 0.0800           | 1.41                 |                   | Woods: Light underbrush n= 0.400 P2= 3.20"<br>Shallow Concentrated Flow, B-C<br>Woodland Kv= 5.0 fps |
| 15.1       | 495                           | 0.0120           | 0.55                 |                   | Shallow Concentrated Flow, C-D<br>Woodland Kv= 5.0 fps                                               |
| 28.3       | 3 995                         | Total            |                      |                   |                                                                                                      |

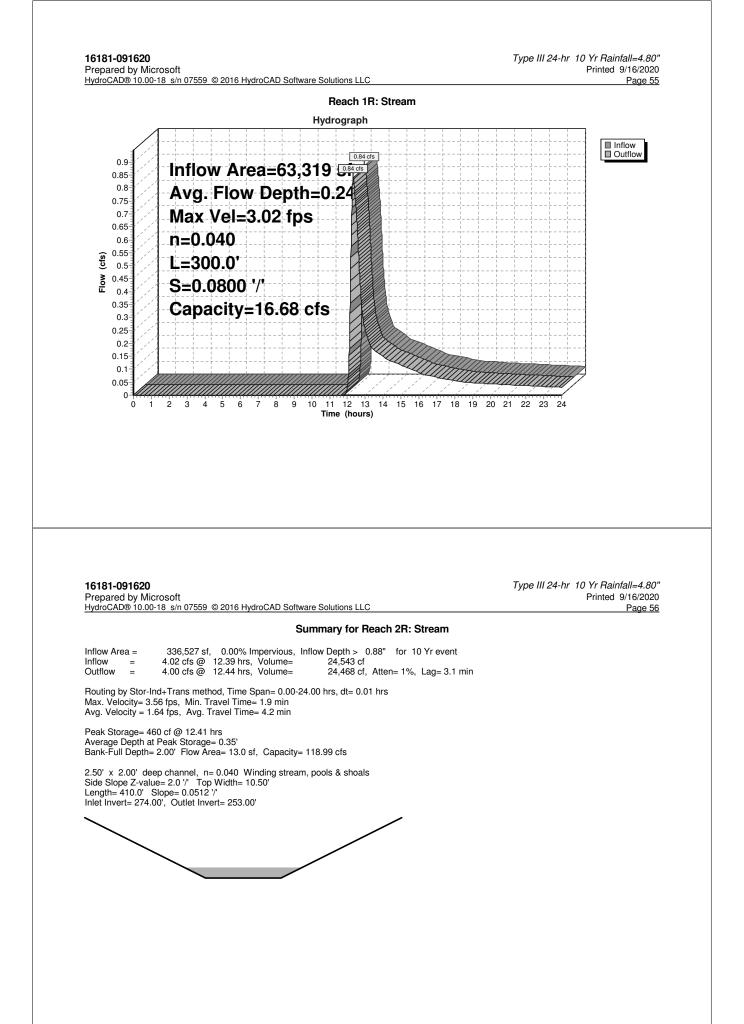


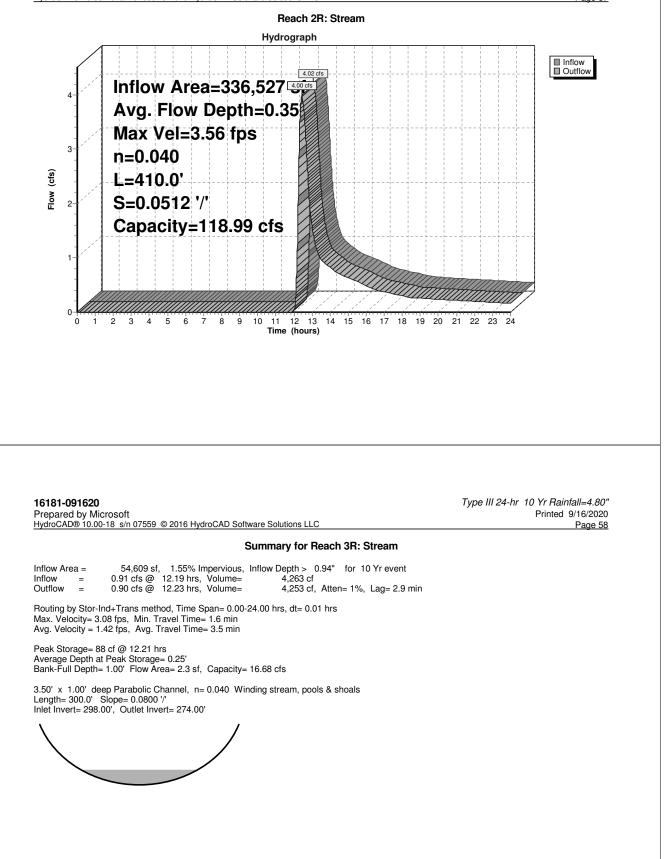


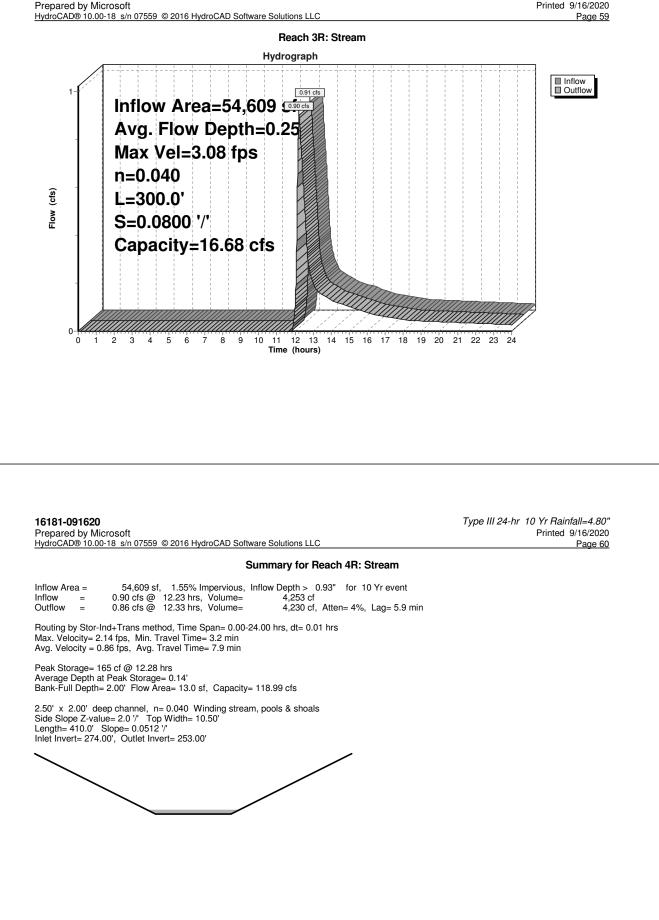



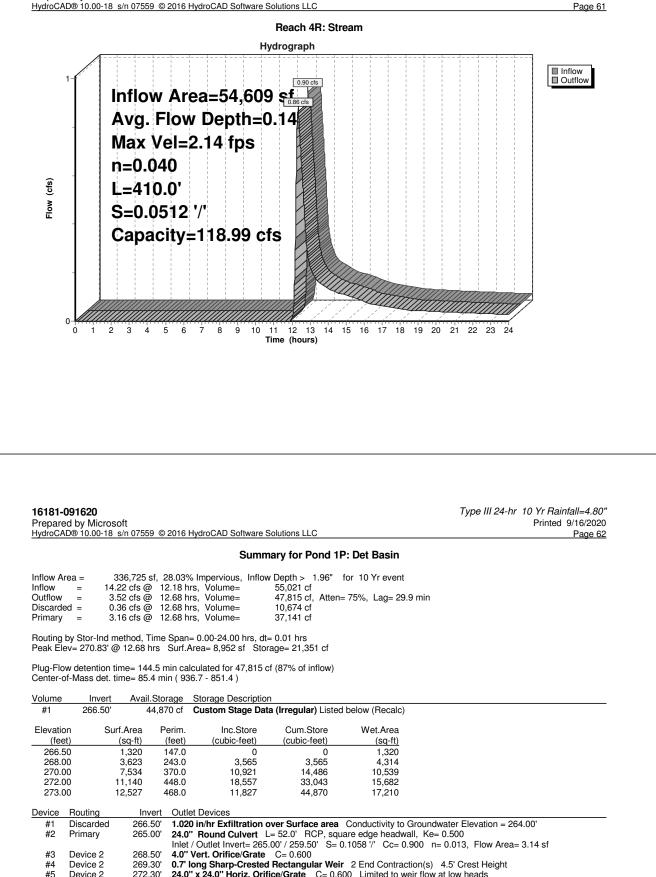





16181-091620 Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software S





28.7 1,005 Total



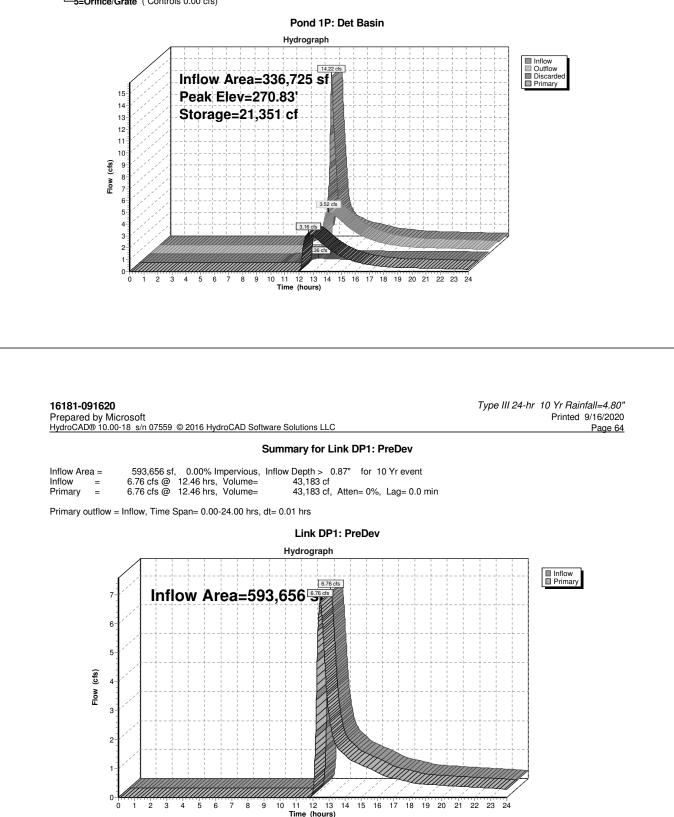









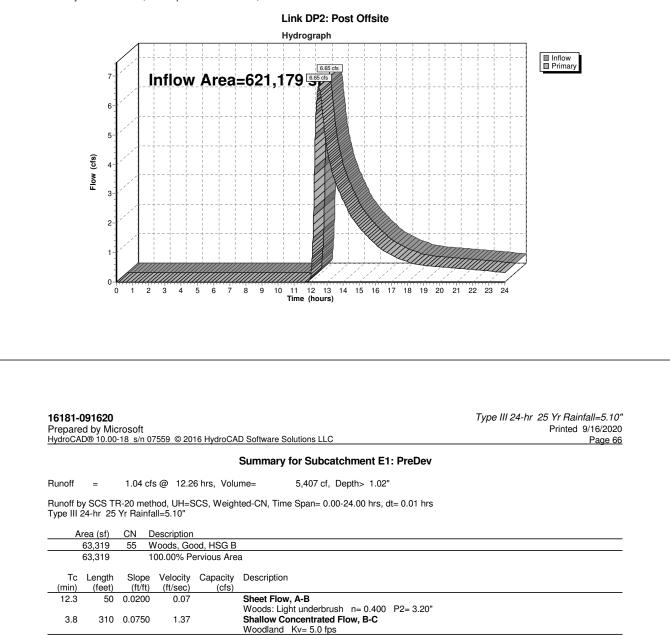


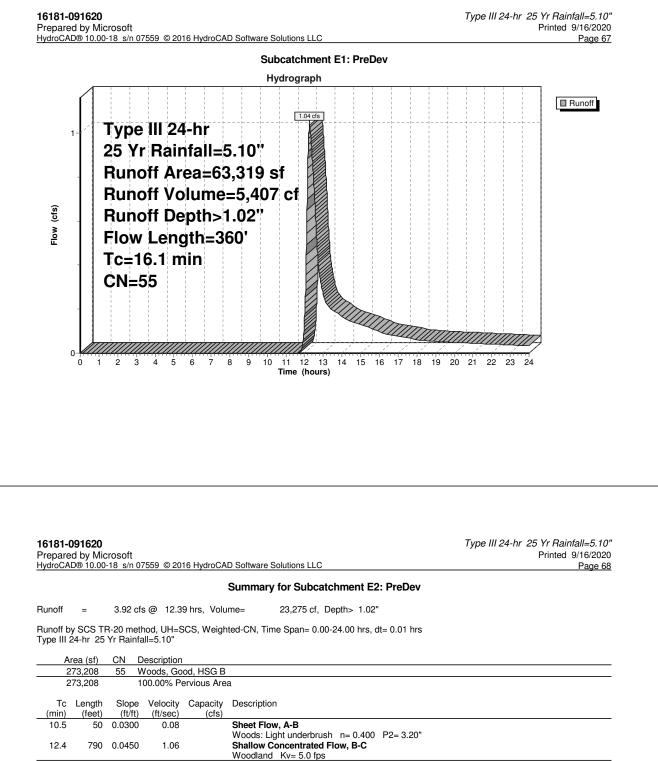

Prepared by Microsoft

24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads Device 2 272.30'

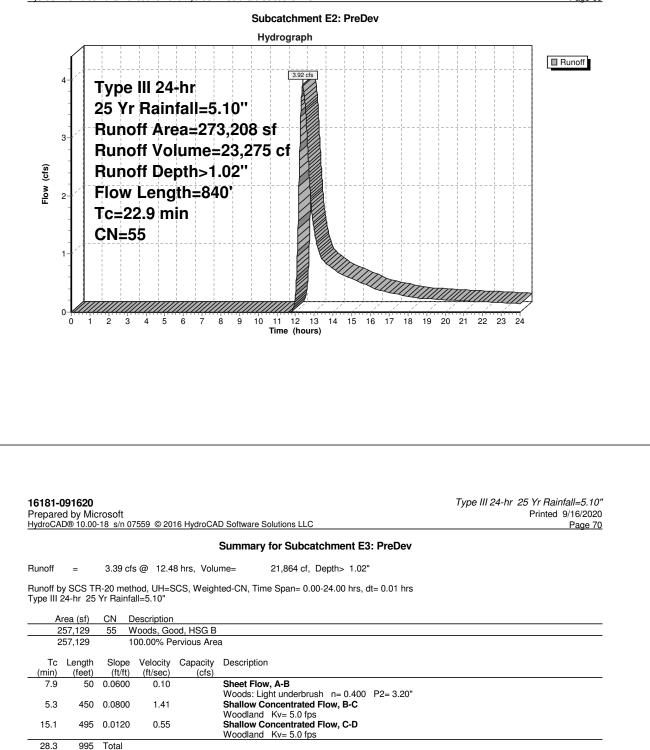
**Discarded OutFlow** Max=0.36 cfs @ 12.68 hrs HW=270.83' (Free Discharge) **1=Exfiltration** (Controls 0.36 cfs)

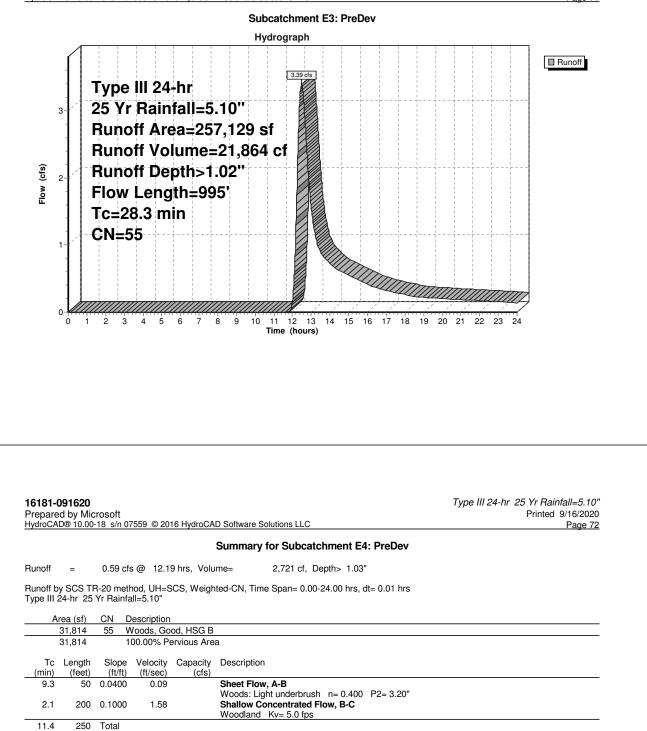

Primary OutFlow Max=3.16 cfs @ 12.68 hrs HW=270.83' (Free Discharge) 2=Culvert (Passes 3.16 cfs of 33.26 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.62 cfs @ 7.09 fps) -4=Sharp-Crested Rectangular Weir (Weir Controls 2.54 cfs @ 4.22 fps) -5=Orifice/Grate ( Controls 0.00 cfs)

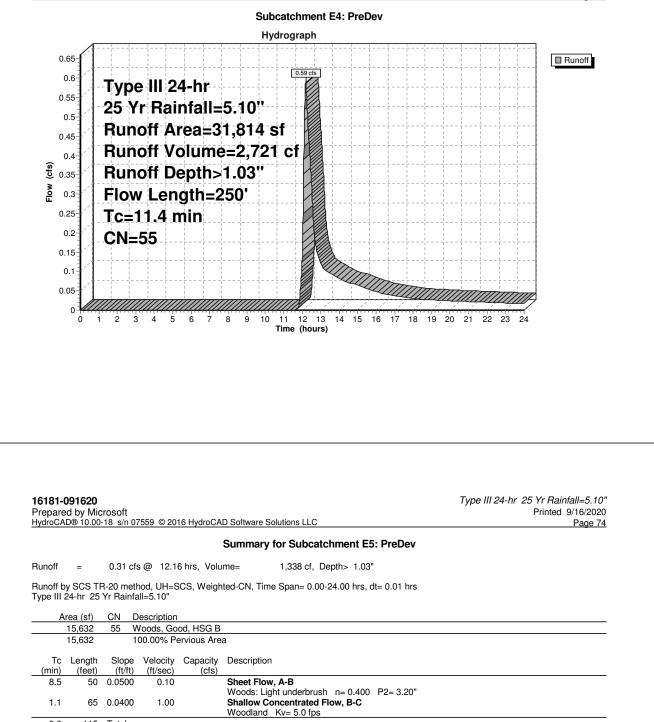



#### Summary for Link DP2: Post Offsite

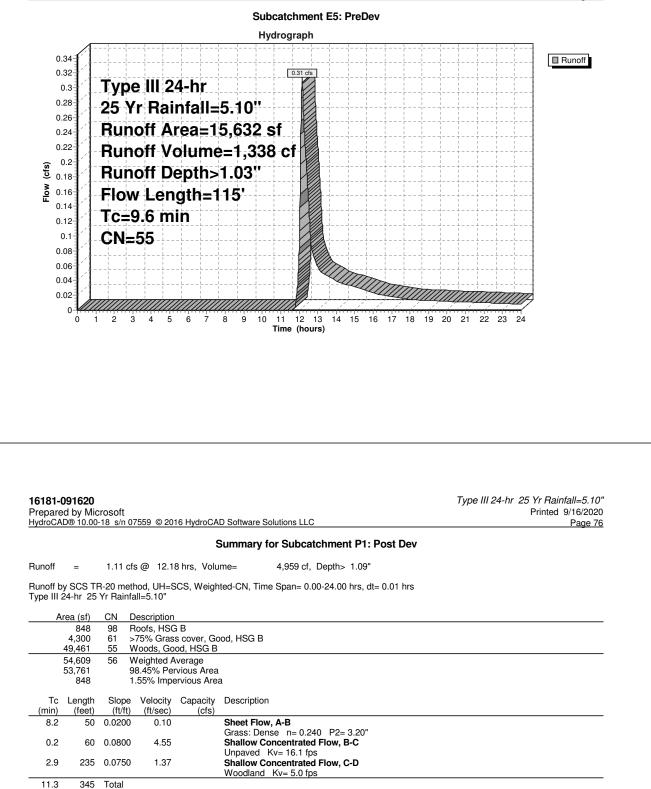
| Inflow Area = | 621,179 sf, 16.13% Impervious, | Inflow Depth > 1.17" | for 10 Yr event     |
|---------------|--------------------------------|----------------------|---------------------|
| Inflow =      | 6.65 cfs @ 12.50 hrs, Volume=  | 60,337 cf            |                     |
| Primary =     | 6.65 cfs @ 12.50 hrs, Volume=  | 60,337 cf, Atter     | n= 0%, Lag= 0.0 min |

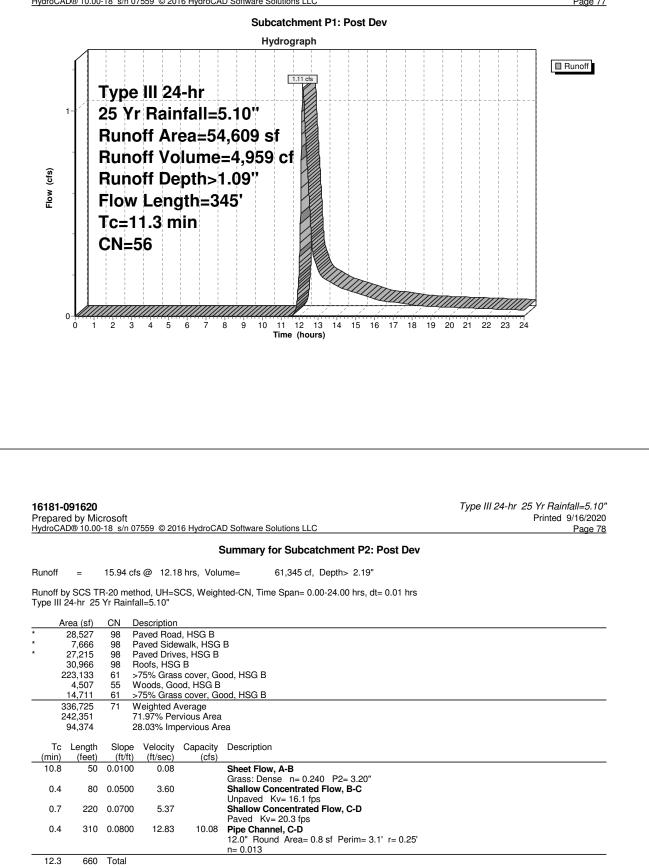

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



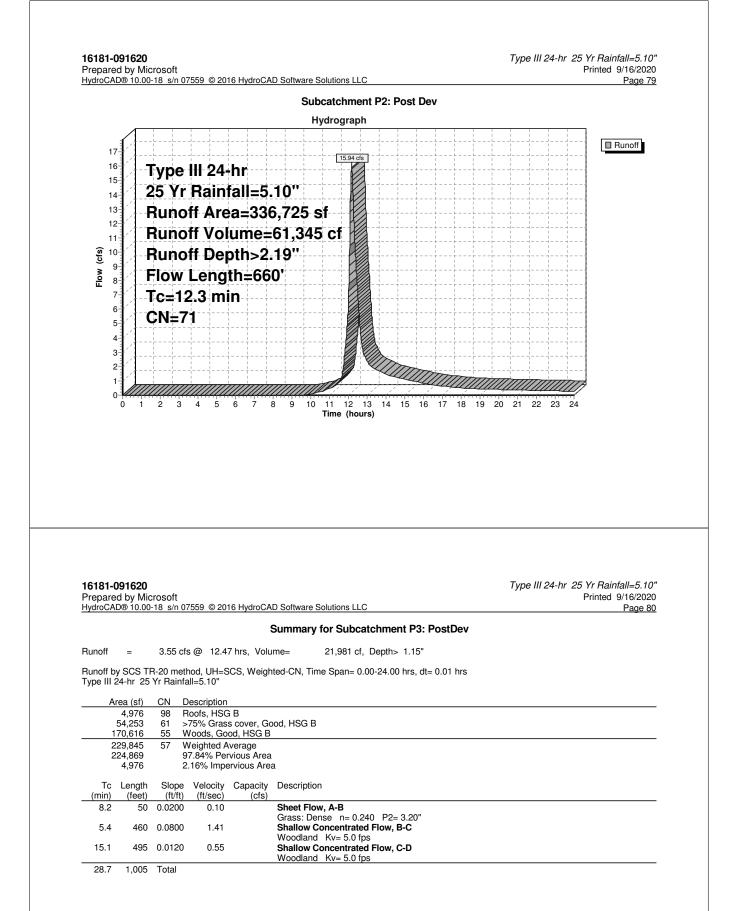


16.1 360 Total

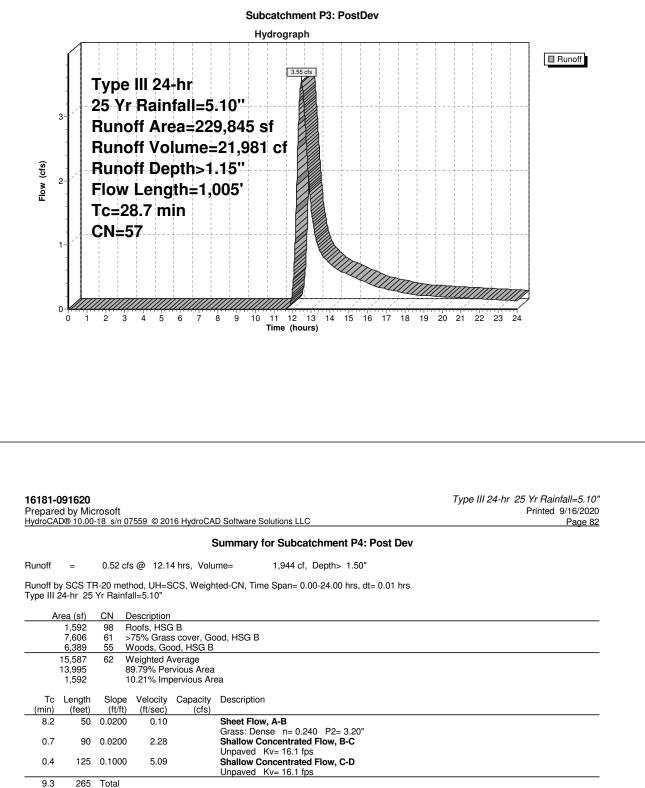


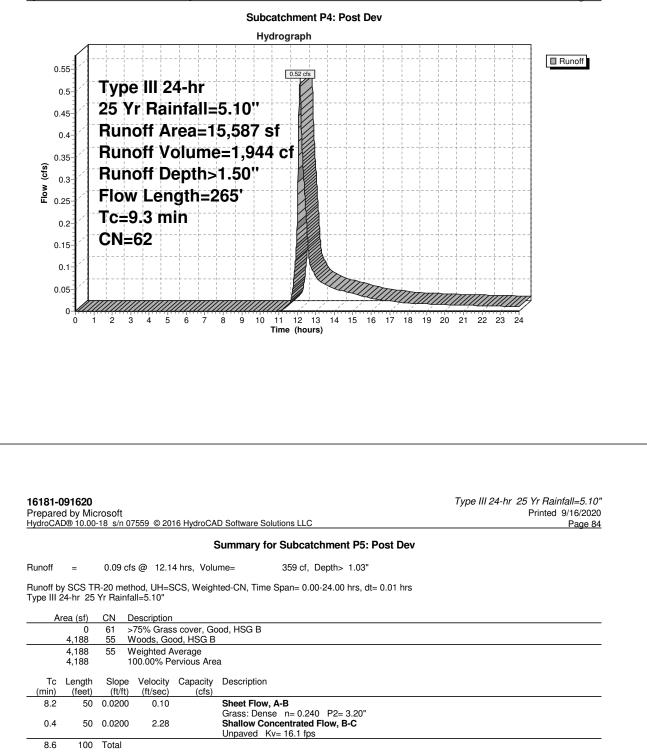

22.9 840 Total

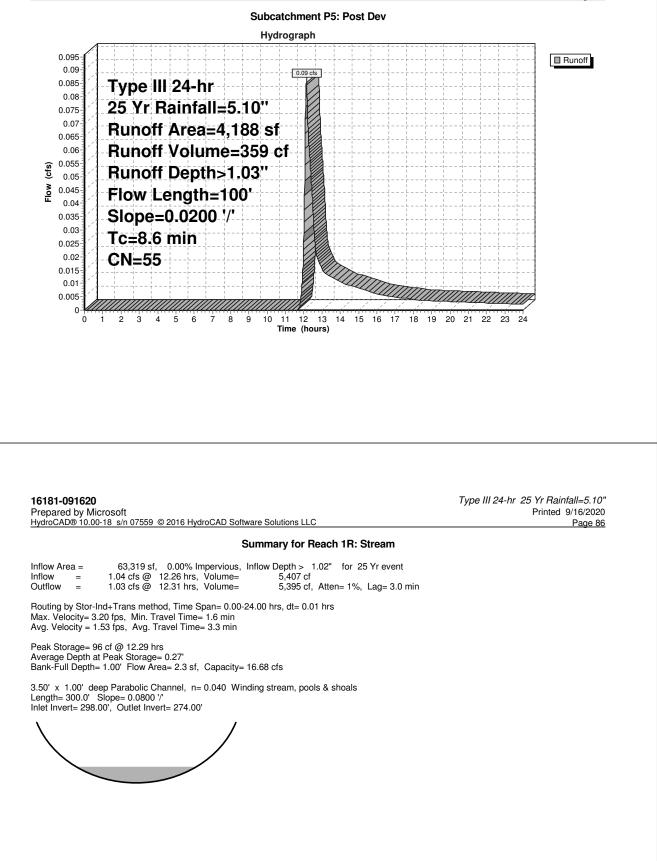


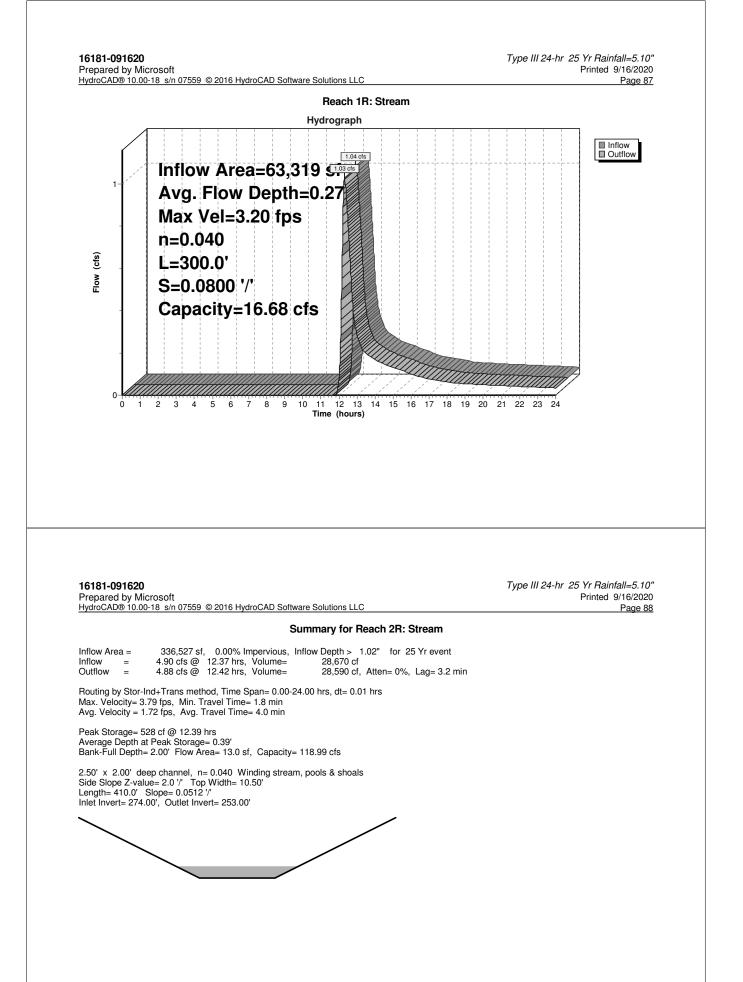


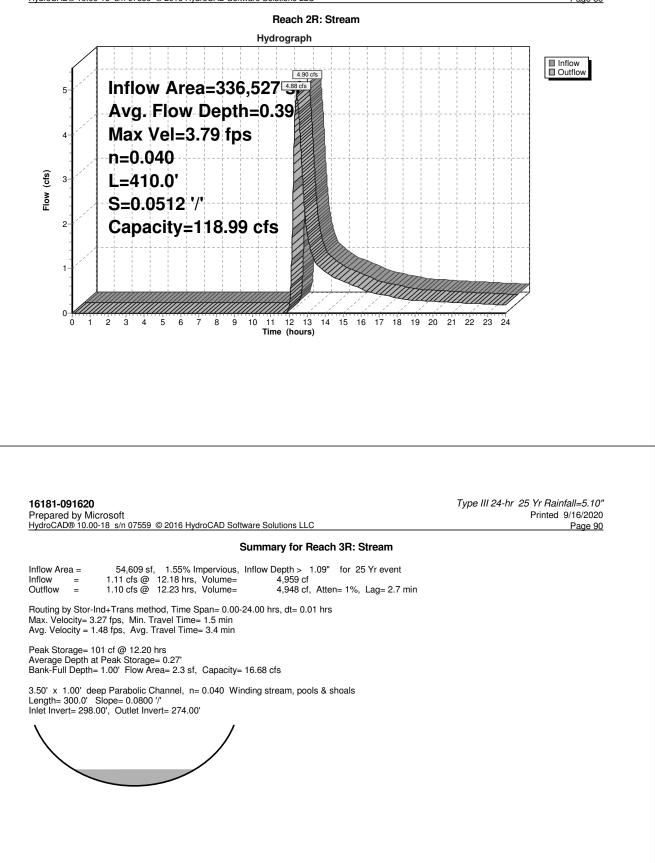



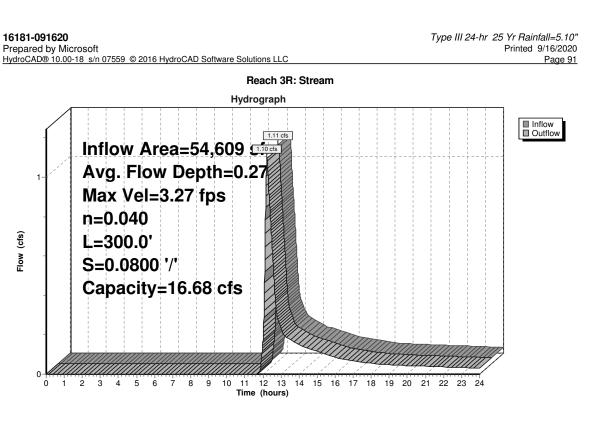


9.6 115 Total





16181-091620 Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC









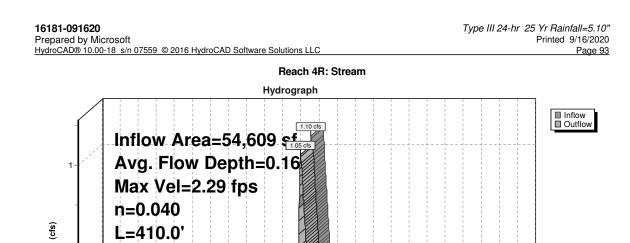





Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC Type III 24-hr 25 Yr Rainfall=5.10" Printed 9/16/2020 Page 92

#### Summary for Reach 4R: Stream

 Inflow Area =
 54,609 sf,
 1.55% Impervious,
 Inflow Depth >
 1.09"
 for 25 Yr event


 Inflow =
 1.10 cfs @
 12.23 hrs,
 Volume=
 4,948 cf

 Outflow =
 1.05 cfs @
 12.32 hrs,
 Volume=
 4,922 cf,
 Atten= 4%,
 Lag= 5.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 2.29 fps, Min. Travel Time= 3.0 min Avg. Velocity = 0.91 fps, Avg. Travel Time= 7.5 min

Peak Storage= 188 cf @ 12.27 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 2.00' Flow Area= 13.0 sf, Capacity= 118.99 cfs

 $2.50' \times 2.00'$  deep channel, n= 0.040 Winding stream, pools & shoals Side Slope Z-value= 2.0  $\prime\prime$  Top Width= 10.50' Length= 410.0' Slope= 0.0512  $\prime\prime$  Inlet Invert= 274.00', Outlet Invert= 253.00'



11

Time (hours)

# 16181-091620

V-1......

1.....

0-4

Flow

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

S=0.0512 '/'

Capacity=118.99 cfs

1 2 3 4 5 6 7 8 9 10

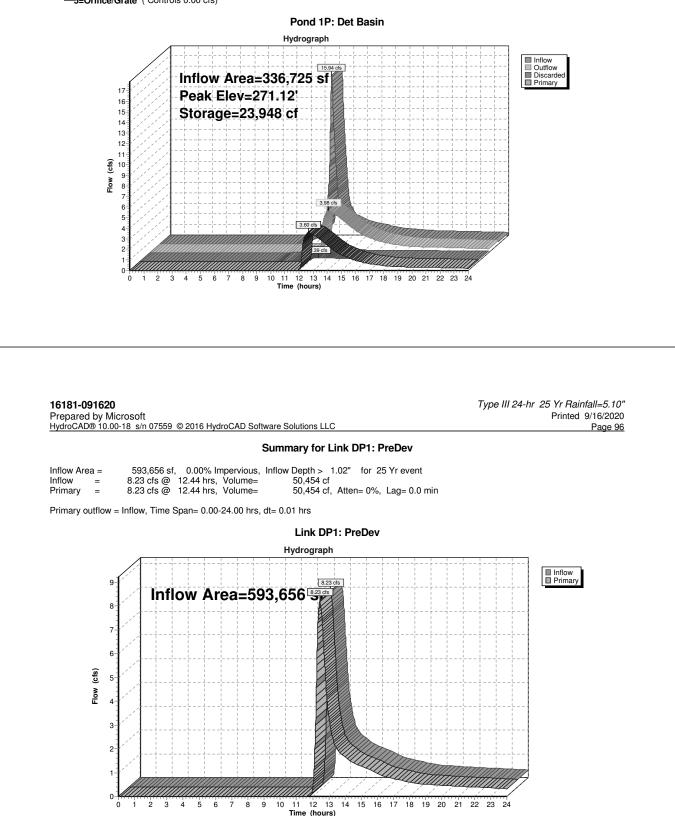
# Summary for Pond 1P: Det Basin

Type III 24-hr 25 Yr Rainfall=5.10"

Printed 9/16/2020 Page 94

12 13 14 15 16 17 18 19 20 21 22 23 24

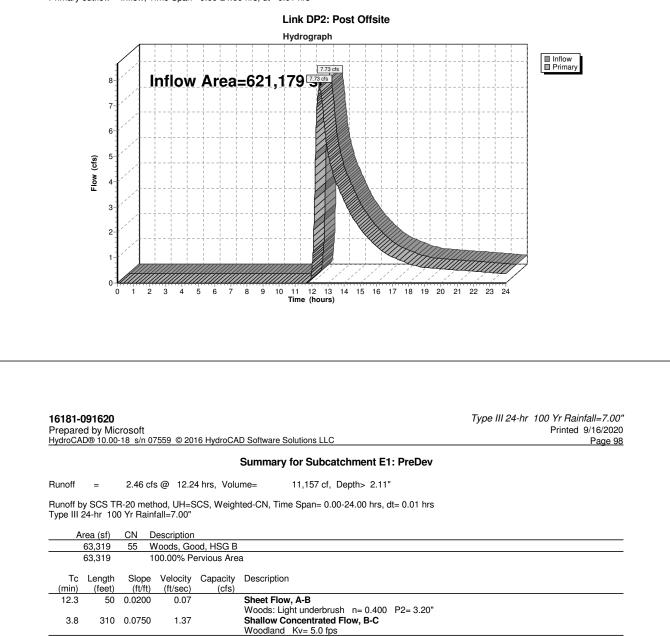
| Inflow Area = | 336,725 sf, 28.03% Impervious, | Inflow Depth > 2.19" for 25 Yr event |
|---------------|--------------------------------|--------------------------------------|
| Inflow =      | 15.94 cfs @ 12.18 hrs, Volume= | 61,345 cf                            |
| Outflow =     | 3.98 cfs @ 12.67 hrs, Volume=  | 53,839 cf, Atten= 75%, Lag= 29.5 min |
| Discarded =   | 0.39 cfs @ 12.67 hrs, Volume=  | 11,126 cf                            |
| Primary =     | 3.60 cfs @ 12.67 hrs, Volume=  | 42,713 cf                            |


Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 271.12' @ 12.67 hrs Surf.Area= 9,459 sf Storage= 23,948 cf

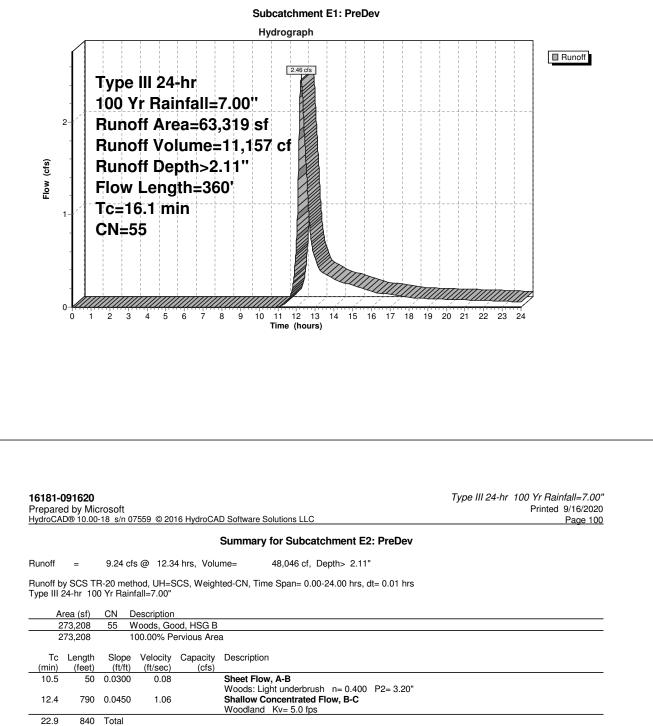
Plug-Flow detention time= 138.1 min calculated for 53,817 cf (88% of inflow) Center-of-Mass det. time= 82.1 min ( 930.2 - 848.2 )

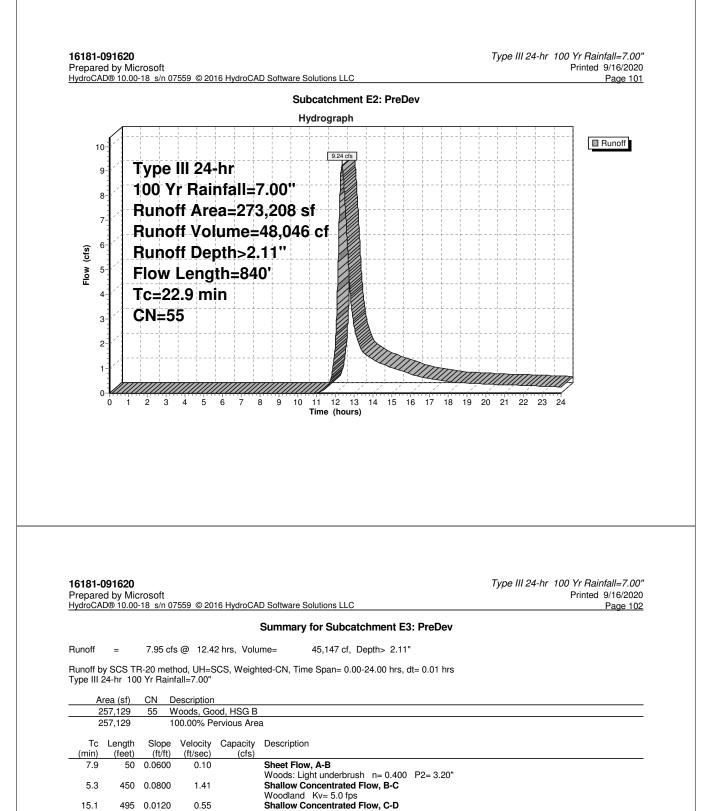
| Volume   | Invert    | t Avail.S | Storage         | Storage Description     |                    |                    |                                  |  |
|----------|-----------|-----------|-----------------|-------------------------|--------------------|--------------------|----------------------------------|--|
| #1       | 266.50    | ' 44      | ,870 cf         | Custom Stage Data       | (Irregular) Listed | d below (Recalc)   |                                  |  |
| Elevatio | n S       | urf.Area  | Perim.          | Inc.Store               | Cum.Store          | Wet.Area           |                                  |  |
| (feet    | t)        | (sq-ft)   | (feet)          | (cubic-feet)            | (cubic-feet)       | (sq-ft)            |                                  |  |
| 266.5    | 0         | 1,320     | 147.0           | 0                       | 0                  | 1,320              |                                  |  |
| 268.0    | 0         | 3,623     | 243.0           | 3,565                   | 3,565              | 4,314              |                                  |  |
| 270.0    | 0         | 7,534     | 370.0           | 10,921                  | 14,486             | 10,539             |                                  |  |
| 272.0    | 0         | 11,140    | 448.0           | 18,557                  | 33,043             | 15,682             |                                  |  |
| 273.0    | 0         | 12,527    | 468.0           | 11,827                  | 44,870             | 17,210             |                                  |  |
| Device   | Routing   | Inve      | rt Outle        | et Devices              |                    |                    |                                  |  |
| #1       | Discarded | 266.5     | 0' <b>1.02</b>  | 0 in/hr Exfiltration ov | er Surface area    | Conductivity to G  | Groundwater Elevation = 264.00'  |  |
| #2       | Primary   | 265.0     | 0' <b>24.0</b>  | " Round Culvert L=      | 52.0' RCP, squ     | uare edge headwal  | II, Ke= 0.500                    |  |
|          |           |           | Inlet           | / Outlet Invert= 265.0  | 0'/259.50' S=      | 0.1058 '/' Cc= 0.9 | 900 n= 0.013, Flow Area= 3.14 sf |  |
| #3       | Device 2  | 268.5     | 0' <b>4.0''</b> | Vert. Orifice/Grate     | C= 0.600           |                    |                                  |  |
| #4       | Device 2  | 269.3     |                 |                         |                    |                    | ion(s) 4.5' Crest Height         |  |
| #5       | Device 2  | 272.3     | 0' <b>24.0</b>  | " x 24.0" Horiz. Orific | e/Grate C= 0.6     | 500 Limited to we  | ir flow at low heads             |  |
|          |           |           |                 |                         |                    |                    |                                  |  |

Discarded OutFlow Max=0.39 cfs @ 12.67 hrs HW=271.12' (Free Discharge)


Primary OutFlow Max=3.60 cfs @ 12.67 hrs HW=271.12' (Free Discharge) 2=Culvert (Passes 3.60 cfs of 34.21 cfs potential flow) -3=Orifice/Grate (Orifice Controls 0.66 cfs @ 7.54 fps) -4=Sharp-Crested Rectangular Weir (Weir Controls 2.94 cfs @ 4.62 fps) 5=Orifice/Grate (Controls 0.00 cfs)




#### Summary for Link DP2: Post Offsite


| Inflow Area | a = | 621,179 sf, 16.13% Impervious, Inflow Depth > 1.34" for 25 Yr event |     |
|-------------|-----|---------------------------------------------------------------------|-----|
| Inflow      | =   | 7.73 cfs @ 12.47 hrs, Volume= 69,616 cf                             |     |
| Primary     | =   | 7.73 cfs @ 12.47 hrs, Volume= 69,616 cf, Atten= 0%, Lag= 0.0        | min |

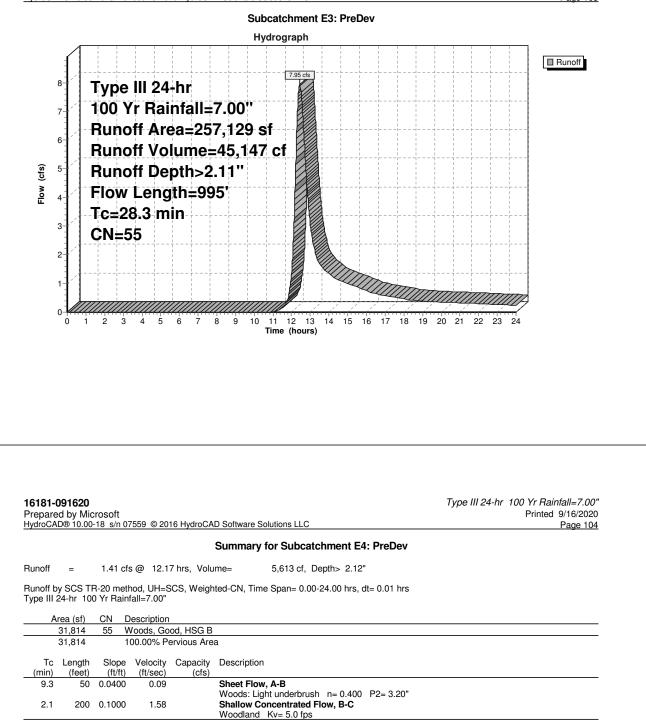
Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



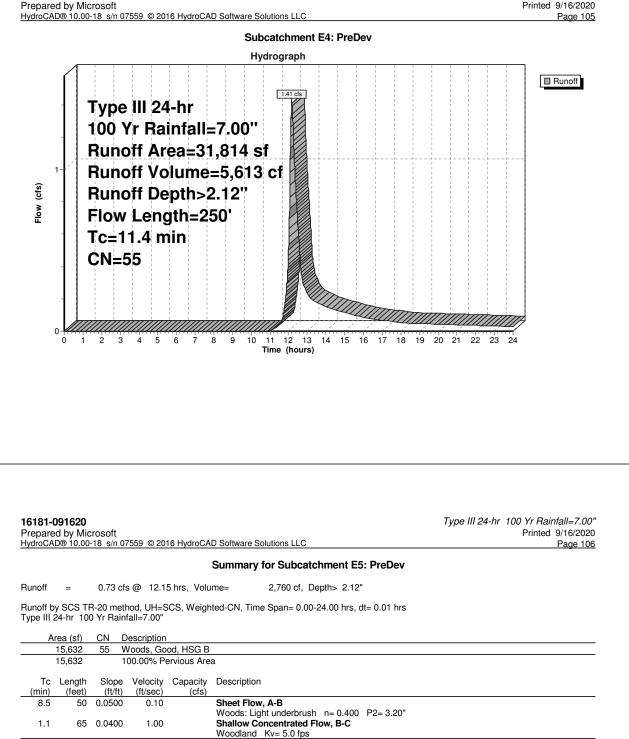
16.1 360 Total





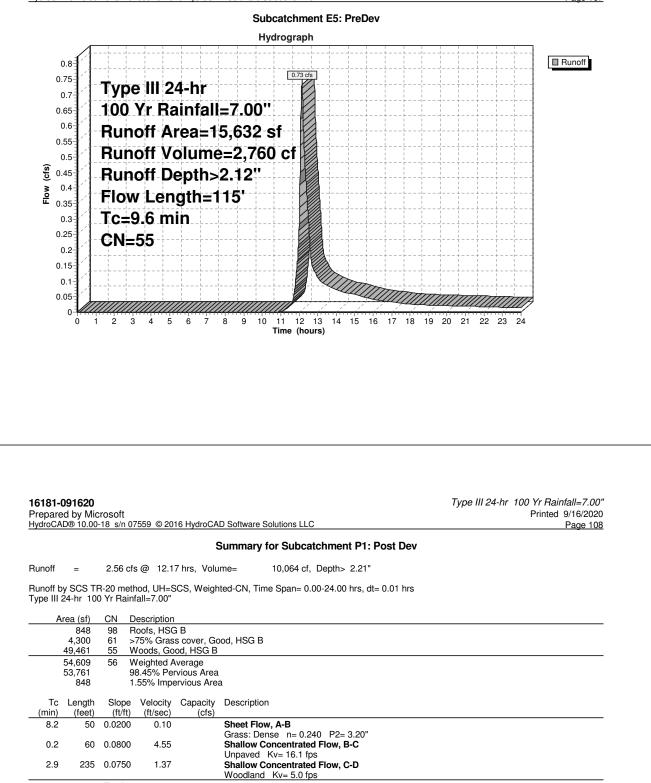

28.3 995 Total

15.1

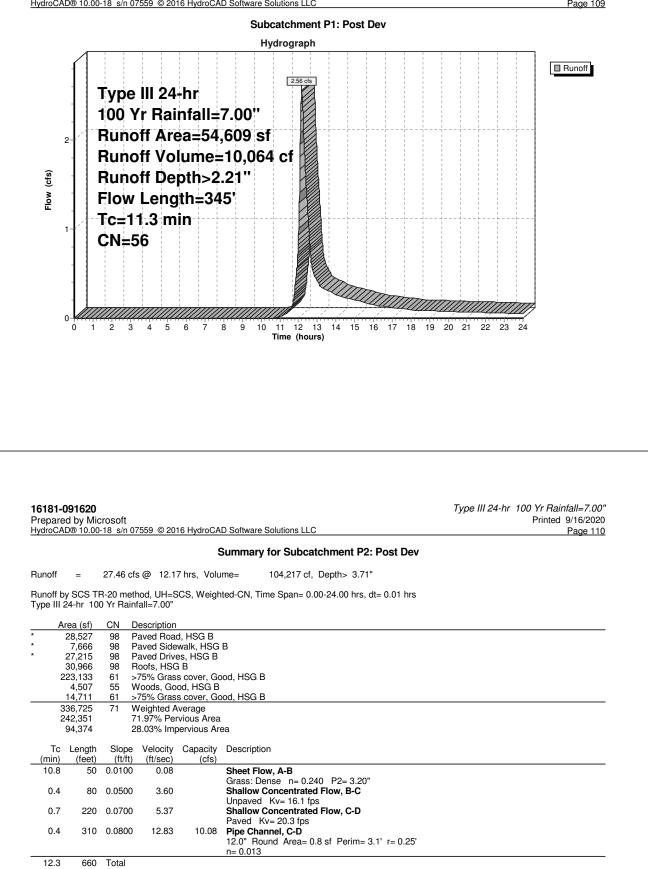

495 0.0120

0.55

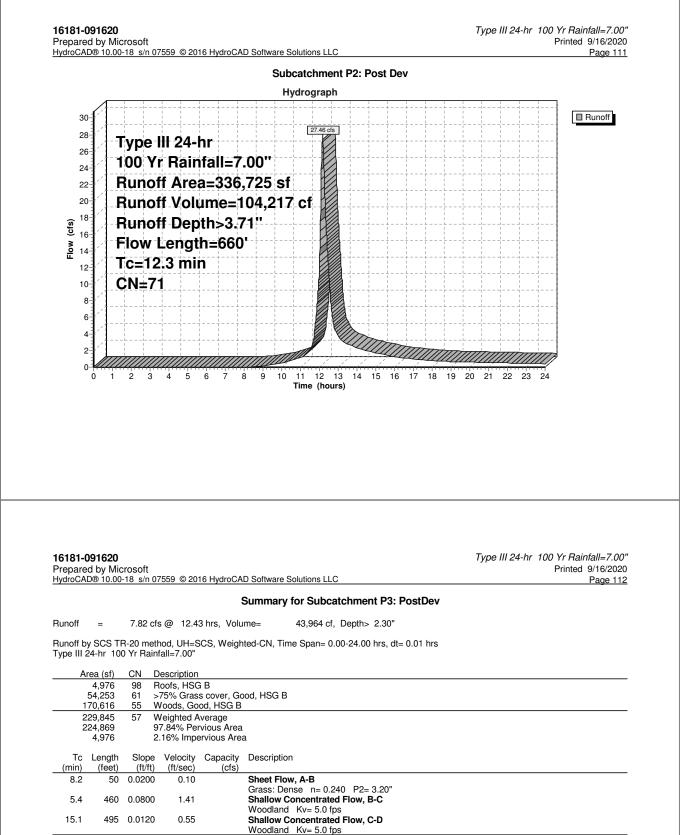
Woodland Kv= 5.0 fps



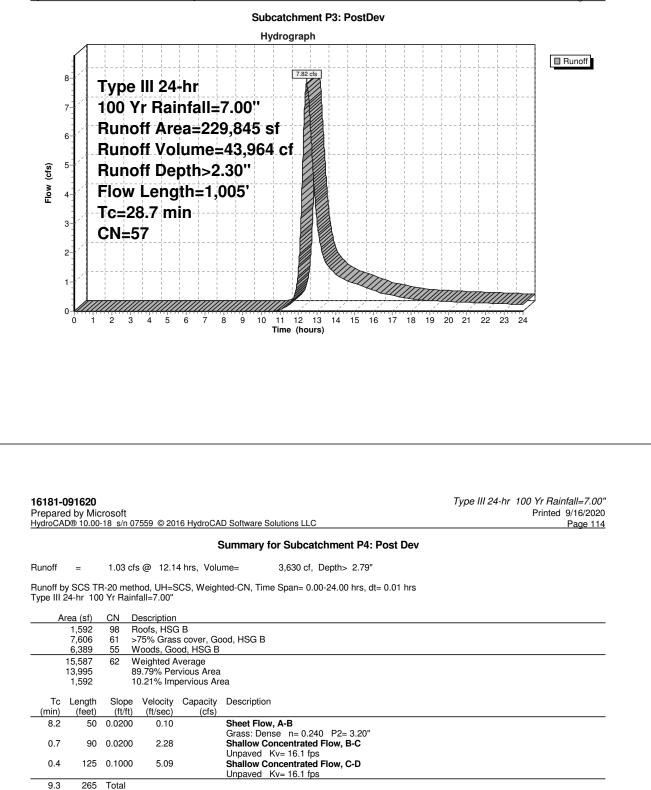

11.4 250 Total

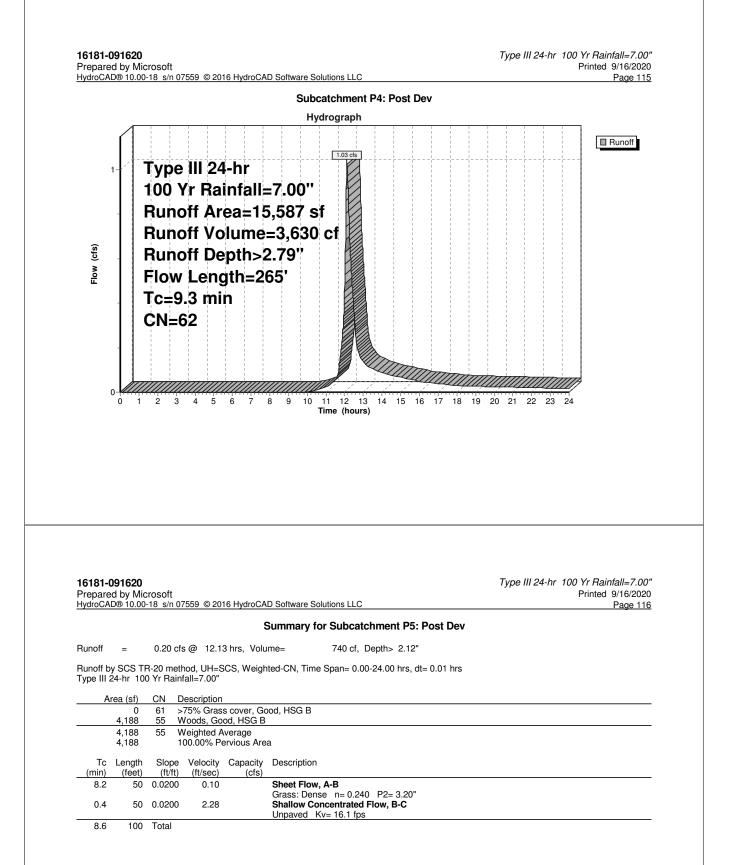


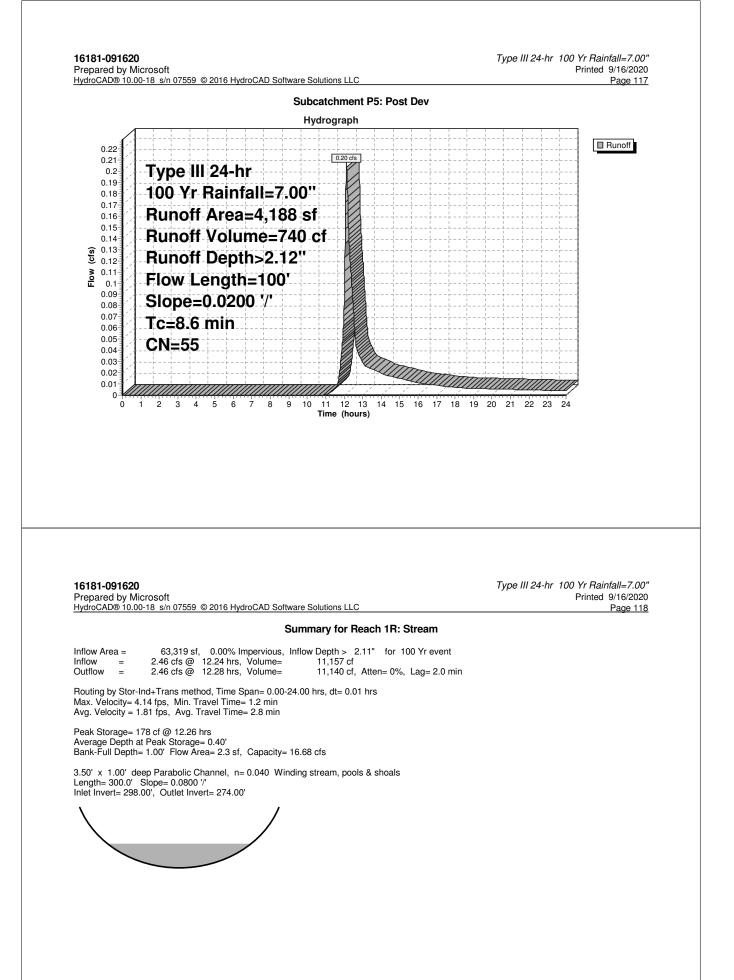

9.6 115 Total


16181-091620

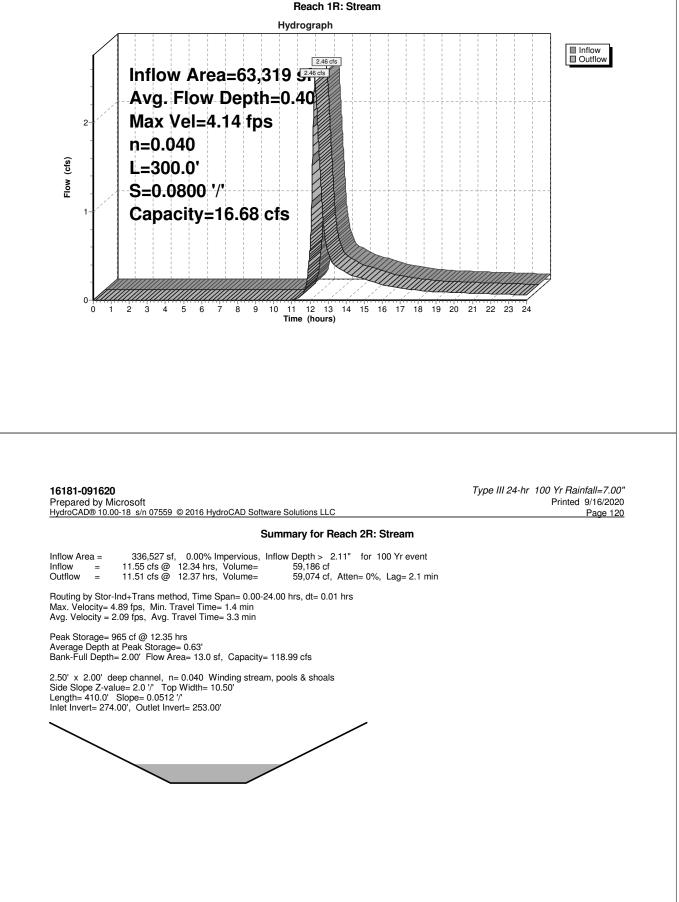


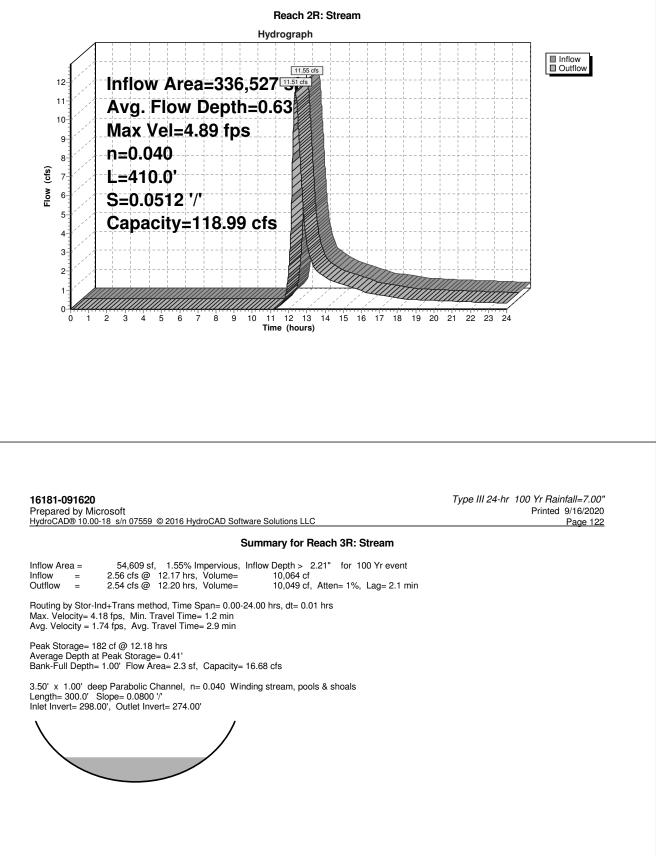

11.3 345 Total

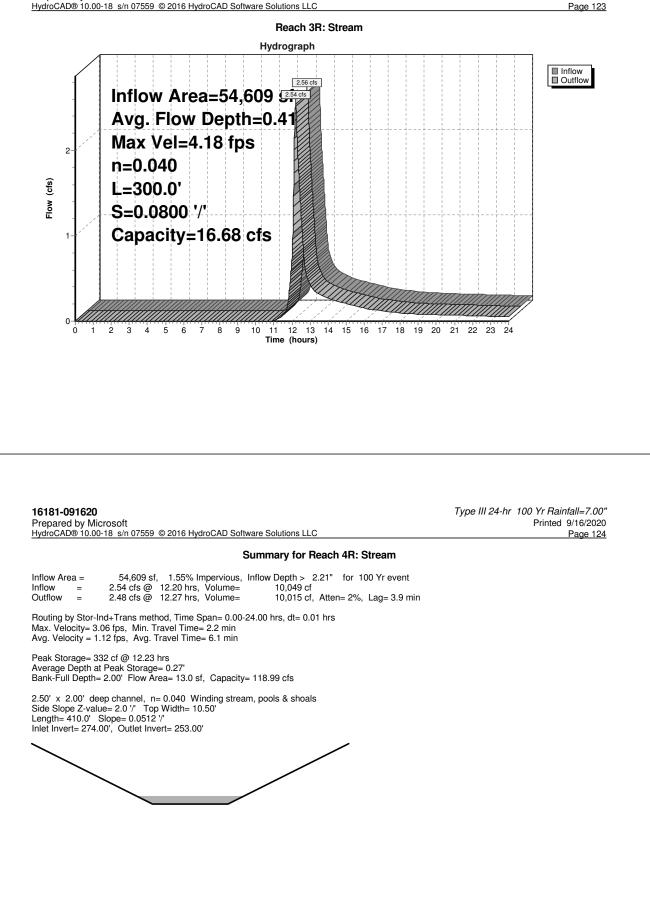


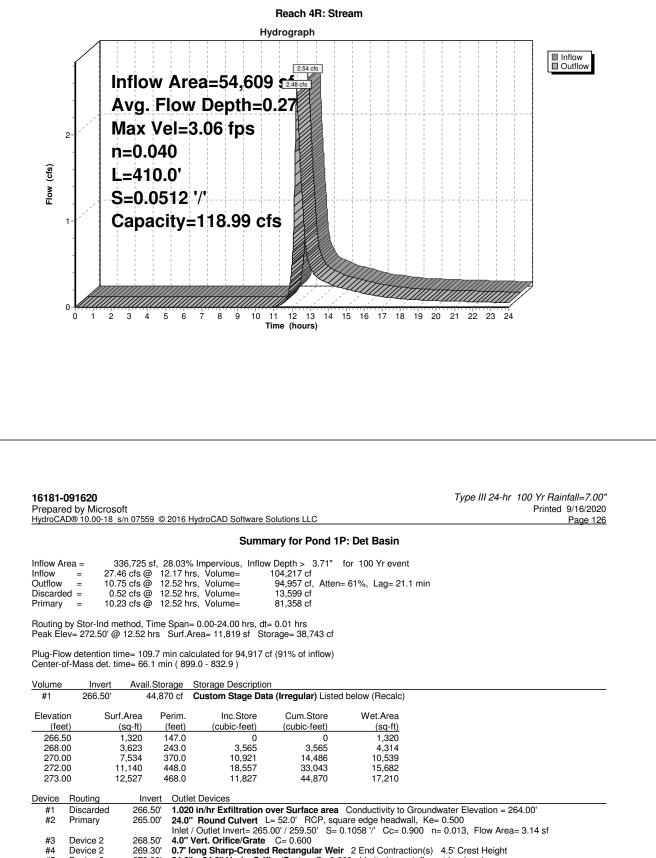


16181-091620 Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC




28.7 1,005 Total




16181-091620 Prepared by Microsoft

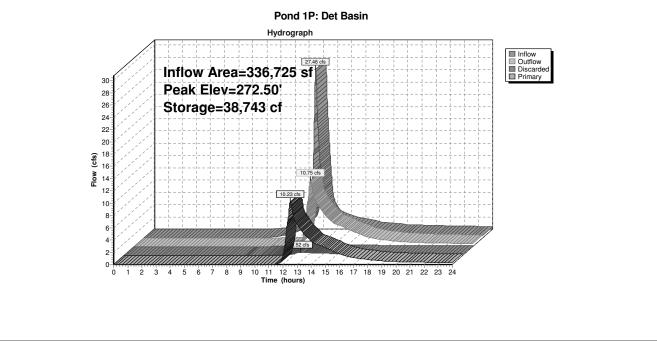








16181-091620 Prepared by Microsoft


#5

HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

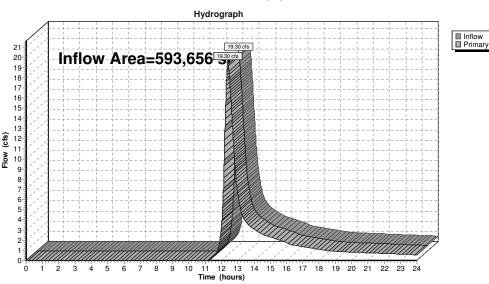
24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads Device 2 272.30'

Discarded OutFlow Max=0.52 cfs @ 12.52 hrs HW=272.50' (Free Discharge) 1=Exfiltration (Controls 0.52 cfs)

Primary OutFlow Max=10.21 cfs @ 12.52 hrs HW=272.50' (Free Discharge) Culter (Passes 10.21 cfs of 38.56 cfs potential flow)
 3=Orifice/Grate (Orifice Controls 0.82 cfs @ 9.42 fps)
 4=Sharp-Crested Rectangular Weir (Weir Controls 7.11 cfs @ 6.35 fps)
 5=Orifice/Grate (Weir Controls 2.28 cfs @ 1.45 fps)



#### 16181-091620

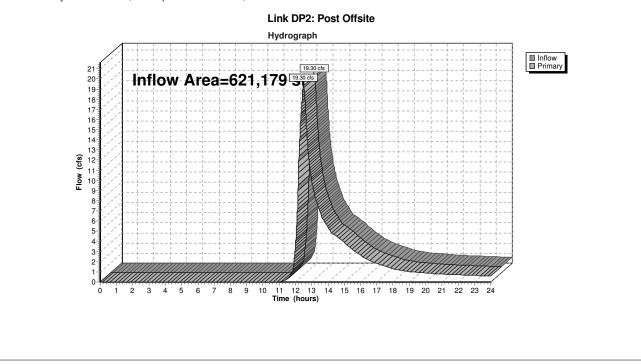

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

Type III 24-hr 100 Yr Rainfall=7.00" Printed 9/16/2020 Page 128

#### Summary for Link DP1: PreDev

| Inflow Area | a = | 593,656 sf,   | 0.00% Impervious,  | Inflow Depth > 2.11' | for 100 Yr event     |
|-------------|-----|---------------|--------------------|----------------------|----------------------|
| Inflow      | =   | 19.30 cfs @ 1 | 12.39 hrs, Volume= | 104,221 cf           |                      |
| Primary     | =   | 19.30 cfs @ 1 | 12.39 hrs, Volume= | 104,221 cf, Att      | en= 0%, Lag= 0.0 min |

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs




### Link DP1: PreDev

#### Summary for Link DP2: Post Offsite

| Inflow Are | a = | 621,179 sf, 16.13% Imperviou  | is, Inflow Depth > 2.61" for 100 Yr event |
|------------|-----|-------------------------------|-------------------------------------------|
| Inflow     | =   | 19.30 cfs @ 12.49 hrs, Volume | = 135,336 cf                              |
| Primary    | =   | 19.30 cfs @ 12.49 hrs, Volume | = 135,336 cf, Atten= 0%, Lag= 0.0 min     |

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs



## <u>APPENDIX – B</u>

<u>Hydraulic Design (Manning's Equation)</u> <u>Time of Flow, Average CN values</u> <u>Groundwater Mounding Calculations</u>

Standard 2

| IONS                           | Famation                                    |
|--------------------------------|---------------------------------------------|
| <b>I DRAINAGE CALCULATIONS</b> | Pine Flow Calculations - Manning's Famation |
| NAGE CA                        | latione - 1                                 |
| M DRAIN                        | low Cale                                    |
| STORM                          | Ding F                                      |

Pipe Flow Calculations - Manning's Equation

i = Rainfall Intensity at 25 Year Storm

Date: **5/13/20** Revised: Job No: 16,181 Calc. by: rst

|                   | ;                              |            |          |       |        |                    |            |            |           |                   |          |          |           |           | 10101       |                  |        |           |       |
|-------------------|--------------------------------|------------|----------|-------|--------|--------------------|------------|------------|-----------|-------------------|----------|----------|-----------|-----------|-------------|------------------|--------|-----------|-------|
| Project:<br>Town: | Geoffrey Park<br>Holliston, MA | oark<br>MA |          |       |        |                    |            |            |           |                   |          |          |           | Calc. by: | rst         |                  |        |           |       |
|                   |                                |            | Drain    | Total |        | Time of Concentrat | mcentratio | ion (min.) | Rainfall  | Required Capacity | Capacity | Pipe     |           | Design C  | Conditions  |                  |        |           |       |
| г                 | Line                           | Length     | Area     | Area  | Runoff | Upper              | In         |            | ·г        | Q(cfs)            |          | Diameter | Slope     | Depth     | Velocity    | Invert Elevation |        | Rim Elev. |       |
| From              | То                             | (Feet)     | (Ac)     | (Ac)  | "C"    | End                | Pipe       | Total      | (in./hr.) | Inlet             | Pipe     | (in.)    | (ft./ft.) | (in.)     | (f.p.s.)    | Upper            | Lower  | Upper     | n     |
|                   |                                |            |          |       |        |                    |            |            |           |                   |          |          |           |           |             |                  |        |           |       |
| CB 1              | DMH 3                          | 11         | 0.90     |       | 0.43   | 19.78              | 0.03       | 19.81      | 3.97      | 1.51              |          | 12       | 0.018     | 4.60      | 5.40        | 269.70           | 269.50 | 272.79    | 0.013 |
| CB 2              | DMH 3                          | 5          | 0.19     |       | 0.49   | 9.95               | 0.02       | 9.97       | 5.19      | 0.49              |          | 12       | 0.040     | 2.10      | 5.20        | 269.70           | 269.50 | 272.79    | 0.013 |
| DMH 3             | DMH 4                          | 56         |          | 1.09  | 0.44   | 19.81              | 0.21       | 20.02      | 3.96      | 1.89              |          | 12       | 0.009     | 6.40      | 4.40        | 269.40           | 268.90 | 273.50    | 0.013 |
| DMH 4             | HW 5                           | 22         | <u> </u> | 1.09  | 0.44   | 20.02              | 0.08       | 20.11      | 3.94      |                   | 1.88     | 12       | 600.0     | 6.40      | 4.40        | 268.70           | 268.50 | 288.12    | 0.013 |
|                   |                                |            |          |       |        | <u> </u>           |            |            |           |                   |          |          |           |           |             |                  |        |           |       |
| CB 20             | DMH 19                         | 15         | 0.26     |       | 0.46   | 13.59              | 0.04       | 13.64      | 4.63      | 0.55              |          | 12       | 0.033     | 2.10      | 5.80        | 305.30           | 304.80 | 309.39    | 0.013 |
| CB 21             | DMH 19                         | 10         | 0.83     |       | 0.67   | 15.21              | 0.02       | 15.24      | 4.43      | 2.46              |          | 12       | 0.050     | 5.10      | 7.70        | 305.30           | 304.80 | 309.39    | 0.013 |
| DMH 19            | DMH 18                         | 45         |          | 1.09  | 0.62   | 15.24              | 0.08       | 15.32      | 4.43      |                   | 2.98     | 12       | 0.049     | 5.10      | 9.30        | 304.70           | 302.50 | 308.83    | 0.013 |
| DMH 18            | DMH 17                         | 36         |          | 1.09  | 0.62   | 15.32              | 0.07       | 15.38      | 4.42      |                   | 2.98     | 12       | 0.044     | 5.20      | 8.90        | 302.40           | 300.80 | 306.61    | 0.013 |
| DMH 17            | DMH 16                         | 36         |          | 1.09  | 0.62   | 15.38              | 0.07       | 15.45      | 4.41      |                   | 2.97     | 12       | 0.047     | 5.20      | 9.20        | 300.70           | 299.00 | 304.84    | 0.013 |
| DMH 16            | DMH 13                         | 110        |          | 1.09  | 0.62   | 15.45              | 0.20       | 15.65      | 4.41      |                   | 2.97     | 12       | 0.045     | 5.20      | 9.10        | 298.90           | 293.90 | 303.06    | 0.013 |
| CB 14             | DMH 13                         | 11         | 0.37     |       | 0.50   | 16.04              | 0.02       | 16.06      | 4.34      | 0.81              |          | 12       | 0.091     | 2.20      | 8.10        | 294.90           | 293.90 | 298.31    | 0.013 |
| CB 15             | DMH 13                         | 5          | 0.86     |       | 0.52   | 14.87              | 0.01       | 14.88      | 4.47      | 2.02              |          | 12       | 0.200     | 2.90      | 11.90       | 294.90           | 293.90 | 298.31    | 0.013 |
| DMH 13            | DMH 12                         | 185        |          | 1.23  | 0.52   | 14.88              | 0.34       | 15.22      | 4.47      |                   | 2.85     | 12       | 0.047     | 5.10      | 9.10        | 293.80           | 285.10 | 297.96    | 0.013 |
| LC RD             | DMH 26                         | r-<br>7-   | 15 0     |       | 0 59   | 11 87              | 0.03       | 11 89      | 4 88      | 000               |          | 1 2      | 500       | 08 0      | C<br>L<br>L | 799 5U           | 799 00 | 305 10    | 0 013 |
|                   |                                | 1 5        | 0.88     |       | 0.54   | 15.87              | 0.01       | 15.87      | 4.36      | 2.07              |          | 12       | 0.100     | 3.40      | 10.90       | 299.50           | 299.00 | 305.10    | 0.013 |
| DMH 26            |                                | 36         |          | 1.19  | 0.55   | 15.87              | 0.06       | 15.94      | 4.36      |                   | 2.88     | 12       | 0.049     | 5.00      | 9.30        | 297.25           | 295.50 | 304.33    | 0.013 |
| DMH 25            | DMH 22                         | 155        |          | 1.19  | 0.55   | 15.94              | 0.28       | 16.22      | 4.35      |                   | 2.87     | 12       | 0.050     | 5.00      | 9.30        | 294.25           | 286.50 | 300.65    | 0.013 |
| CB 23             | DMH 22                         | 11         | 0.35     |       | 0.51   | 13.64              | 0.03       | 13.67      | 4.63      | 0.83              |          | 12       | 0.027     | 3.10      | 5.30        | 286.80           | 286.50 | 291.17    | 0.013 |
| CB 24             | DMH 22                         | 5          | 0.58     |       | 0.53   | 18.37              | 0.01       | 18.38      | 4.10      | 1.27              |          | 12       | 0.060     | 3.10      | 7.90        | 286.80           | 286.50 | 291.17    | 0.013 |
| DMH 22            | DMH 12                         | 32         |          | 2.13  | 0.54   | 18.38              | 0.05       | 18.44      | 4.10      |                   | 4.71     | 12       | 0.041     | 7.10      | 9.80        | 286.40           | 285.10 | 290.77    | 0.013 |
| DMH 12            | DMH 9                          | 30         |          | 3.36  | 0.53   | 18.44              | 0.05       | 18.49      | 4.09      |                   | 7.32     | 12       | 0.037     | 10.80     | 9.80        | 285.00           | 283.90 | 289.54    | 0.013 |
| CB 10             | DMH 9                          | 11         | 0.82     |       | 0.46   | 18.19              | 0.03       | 18.22      | 4.11      | 1.56              |          | 12       | 0.027     | 4.20      | 6.30        | 284.20           | 283.90 | 288.33    | 0.013 |
| CB 11             | DMH 9                          | 5          | 0.36     |       | 0.67   | 11.54              | 0.01       | 11.55      | 4.93      | 1.18              |          | 12       | 0.060     | 3.00      | 7.80        | 284.20           | 283.90 | 288.33    | 0.013 |
| DMH 9             | DMH 8                          | 40         |          | 4.54  | 0.53   | 18.49              | 0.06       | 18.54      | 4.09      |                   | 9.84     | 18       | 0.040     | 8.60      | 11.90       | 279.10           | 277.50 | 287.99    | 0.013 |
| DMH 8             | DMH 7                          | 90         |          | 4.54  | 0.53   | 18.54              | 0.13       | 18.67      | 4.08      |                   | 9.82     | 18       | 0.040     | 8.60      | 11.70       | 273.10           | 269.50 | 285.99    | 0.013 |
| DMH 7             | 9 MH                           | Ŋ          |          | 4.54  | 0.53   | 18.67              | 0.01       | 18.68      | 4.07      |                   | 9.79     | 18       | 0.040     | 8.60      | 11.70       | 269.20           | 269.00 | 273.50    | 0.013 |
|                   |                                |            |          |       |        |                    |            |            |           |                   |          |          |           |           |             |                  |        |           |       |

$$D_{50} = 0.2D[Q/(g)^{1/2}D^{2.5}]^{4/3}[D/Tw]$$

D = Diameter, ft. g = Accel. of gravity, 32.2 f.p.s. Q = Discharge rate, c.f.s. D50 = Riprap size, ft. (minimum) Tw = Tailwater Depth, ft.(Unknown Tw = 0.4 x D)

| Class | D <sub>50</sub> (in.) | Apron<br>Length | Apron<br>Depth     |
|-------|-----------------------|-----------------|--------------------|
| 1     | 5                     | 4D              | 3.5D <sub>50</sub> |
| 2     | 6                     | 4D              | 3.3D <sub>50</sub> |
| 3     | 10                    | 5D              | 2.4D <sub>50</sub> |

Width(at apron end) = 3D+(2/3)L

Note: Formulas taken from HEC No. 14; Publication No. FHWA-NHI-06-086 July 2006

(1) Headwall #6 D = **1.50** ft. Q = 9.79 c.f.s. Tw = **0.60** ft.  $D_{50} =$ 0.40 ft. 4.83 inches = RipRap Class = 1 **6.00** ft. (min.) L= Depth = **16.90** inches (min.) W = **8.50** ft. (min)

$$D_{50} = 0.2D[Q/(g)^{1/2}D^{2.5}]^{4/3}[D/Tw]$$

D = Diameter, ft. g = Accel. of gravity, 32.2 f.p.s. Q = Discharge rate, c.f.s. D50 = Riprap size, ft. (minimum) Tw = Tailwater Depth, ft.(Unknown Tw = 0.4 x D)

| Class | D <sub>50</sub> (in.) | Apron<br>Length | Apron<br>Depth     |
|-------|-----------------------|-----------------|--------------------|
| 1     | 5                     | 4D              | 3.5D <sub>50</sub> |
| 2     | 6                     | 4D              | 3.3D <sub>50</sub> |
| 3     | 10                    | 5D              | 2.4D <sub>50</sub> |

Width(at apron end) = 3D+(2/3)L

Note: Formulas taken from HEC No. 14; Publication No. FHWA-NHI-06-086 July 2006

(1) Headwall #5 D = **1.00** ft. Q = 1.88 c.f.s. Tw = **0.40** ft.  $D_{50} =$ 0.12 ft. 1.38 inches = RipRap Class = 1 **4.00** ft. (min.) L= Depth = **4.83** inches (min.) W = **5.67** ft. (min)

# AVERAGE 'c' VALUE FOR STRUCTURES

## **STORM RUNOFF DATA**

## Date: **5/13/20** Revised:

| Job No:   | 16,181 |
|-----------|--------|
| Calc. by: | RST    |

Project: Geoffrey Park Town: Holliston, MA

| Structure | Total Area<br>(SF) | Ground Cover | Area<br>(SF)           | c    | Σ(Area*c) | Average c | Total Area<br>(Ac) |
|-----------|--------------------|--------------|------------------------|------|-----------|-----------|--------------------|
| CB#1      | 39,042             | imp          | ( <b>31</b> )<br>7,539 | 0.95 | 7,162.05  | 0.43      | 0.896              |
| CD#1      | 59,042             | lawn         | 31,503                 | 0.30 | 9,450.90  | 0.45      | 0.090              |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#2      | 8,359              | imp          | 2,494                  | 0.20 | 2,369.30  | 0.49      | 0.192              |
| CDII2     | 0,557              | lawn         | 5,865                  | 0.30 | 1,759.50  | 0.19      | 0.172              |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#10     | 35,825             | imp          | 8,950                  | 0.95 | 8,502.50  | 0.46      | 0.822              |
| CDIIIO    | 55,025             | lawn         | 26,875                 | 0.30 | 8,062.50  | 0.10      | 0.022              |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#11     | 15,656             | imp          | 8,792                  | 0.95 | 8,352.40  | 0.67      | 0.359              |
| 02.11     | 10,000             | lawn         | 6,864                  | 0.30 | 2,059.20  | 0107      | 0.000              |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#14     | 16,127             | imp          | 5,048                  | 0.95 | 4,795.60  | 0.50      | 0.370              |
|           |                    | lawn         | 11,079                 | 0.30 | 3,323.70  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#15     | 37,649             | imp          | 12,870                 | 0.95 | 12,226.50 | 0.52      | 0.864              |
|           |                    | lawn         | 24,779                 | 0.30 | 7,433.70  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#20     | 11,208             | imp          | 3,604                  | 0.95 | 3,423.80  | 0.51      | 0.257              |
|           | ,                  | lawn         | 7,604                  | 0.30 | 2,281.20  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#21     | 36,311             | imp          | 7,673                  | 0.95 | 7,289.35  | 0.44      | 0.834              |
|           | ,                  | lawn         | 28,638                 | 0.30 | 8,591.40  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#27     | 13,608             | imp          | 6,104                  | 0.95 | 5,798.80  | 0.59      | 0.312              |
|           |                    | lawn         | 7,504                  | 0.30 | 2,251.20  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#28     | 38,293             | imp          | 14,234                 | 0.95 | 13,522.30 | 0.54      | 0.879              |
|           | ,                  | lawn         | 24,059                 | 0.30 | 7,217.70  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#23     | 15,412             | imp          | 4,940                  | 0.95 | 4,693.00  | 0.51      | 0.354              |
|           |                    | lawn         | 10,472                 | 0.30 | 3,141.60  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |
| CB#24     | 25,304             | imp          | 9,100                  | 0.95 | 8,645.00  | 0.53      | 0.581              |
|           |                    | lawn         | 16,204                 | 0.30 | 4,861.20  |           |                    |
|           |                    | wooded       | 0                      | 0.20 | 0.00      |           |                    |

## **OVERLAND FLOW TRAVEL TIME**

#### STORM RUNOFF DATA

| Date:    | 5/7/20 |
|----------|--------|
| Revised: |        |
|          |        |

**Geoffrey Park** Holliston, **M**A Project: Town:

R Job No: 16,181 Calc. by: rst

| Structure |             | Impervious  | ;           |             | Lawn        |             |             | Wooded      |             | Total                 |
|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------|
|           | Length (ft) | Slope ('/') | Time (min.) | Length (ft) | Slope ('/') | Time (min.) | Length (ft) | Slope ('/') | Time (min.) | Travel Time<br>(min.) |
| 1         | 20          | 0.080       | 0.21        | 325         | 0.090       | 19.57       |             |             |             | 19.78                 |
| 2         | 240         | 0.080       | 1.40        | 45          | 0.060       | 8.55        |             |             |             | 9.95                  |
| 10        | 200         | 0.044       | 1.54        | 210         | 0.075       | 16.66       |             |             |             | 18.19                 |
| 11        | 190         | 0.044       | 1.48        | 45          | 0.030       | 10.06       |             |             |             | 11.54                 |
| 14        | 140         | 0.015       | 1.77        | 110         | 0.040       | 14.28       |             |             |             | 16.04                 |
| 15        | 170         | 0.044       | 1.35        | 120         | 0.060       | 13.52       |             |             |             | 14.87                 |
| 20        | 175         | 0.040       | 1.44        | 55          | 0.020       | 12.16       |             |             |             | 13.59                 |
| 21        | 175         | 0.040       | 1.44        | 125         | 0.060       | 13.78       |             |             |             | 15.21                 |
| 23        | 140         | 0.065       | 1.00        | 120         | 0.080       | 12.63       |             |             |             | 13.64                 |
| 24        | 200         | 0.065       | 1.32        | 180         | 0.050       | 17.05       |             |             |             | 18.37                 |
| 27        | 220         | 0.035       | 1.80        | 45          | 0.030       | 10.06       |             |             |             | 11.87                 |
| 28        | 220         | 0.035       | 1.80        | 125         | 0.055       | 14.06       |             |             |             | 15.87                 |

# <u>APPENDIX – C</u>

# Stormwater Recharge Calculations, Water Quality Volumes, TSS Removal & Infiltration BMP Drain Time Groundwater Mounding Calculations

Standards 3 & 4:

## <u>APPENDIX – B</u> <u>Stormwater Recharge, Water Quality & Forebay Calculations</u> Standard 3 & 4:

### Project:

Geofrey Park Holliston, Massachusetts Date: May 14, 2020

Water Quality Volume (WQV): Based on 0.5 inch rainfall Recharge Volume(Rv): Based on Soil Classification Rv = F \* Impervious Area Rv = Required Recharge Volume F = Depth Factor Soil Type A – 0.60 inch Soil Type B – 0.35 inch Soil Type C – 0.25 inch Soil Type D – 0.00 inch
Total Impervious Area:

Roadway/Drives:63,408 s.f. (To drainage basin)Roof: (to basins)30,966 s.fRoof: (bypass basin)5,824 s.f.Total Imp. Area:100,198 s.f.

Total Impervious to Recharge Basins: 94,374 s.f. Total Impervious Area Uncaptured: 5,824 s.f. Capture Adjustment: 94,374 s.f. / 100,198 s.f. = 94.2% > 65% 100,198 s.f. / 94,374 s.f. = 1.06 capture adjustment

### Drainage Basin #1 :

Imp. Area Pavement: 63,408 s.f. WQV = (63,408 sf \* 0.5 in)/12 = <u>2642 c.f.</u>

Recharge Volume Required: (Soil Type B – 0.35 inch) Tot. Imp Area: 94,374 s.f. Rv = (94,374 sf \* 0.35 in)/12 = <u>2752 c.f.</u> x Capture Adjustment (1.06) = <u>2,918 c.f.</u>

<u>Storage Volume below outlet</u> <u>"Static" Storage Volume Provided:</u> Volume ( Outlet 268.5) provided = 5,584 c.f. <u>5,584 > 2,918 c.f. **OK**</u>

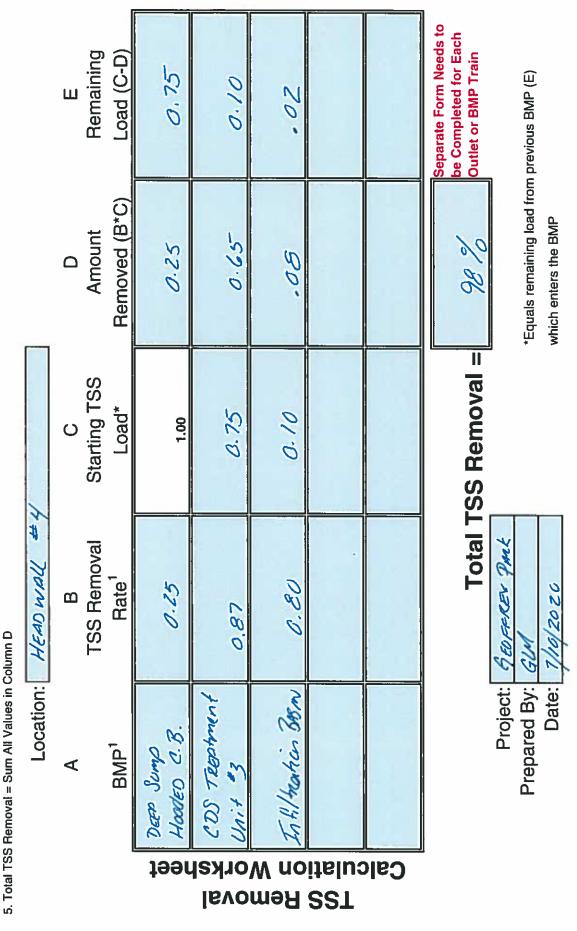
<u>Time to drain:</u> Drawdown time = Volume/(K\*Bottom Area) Volume = 2918 cf K=1.02 in/hr = 0.085 ft/hr Bottom Area = 3620 sf (El.268.0) Drawdown time = 2918/(0.085 ft/hr x 3620 sf) Drawdown time = 9.5 hr < 72 hr **ok** 

## 16181-070820

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

## Stage-Area-Storage for Pond 1P: Det Basin

| Elevation        | Surface          | Storage          | Elevation        | Surface          | Storage          |
|------------------|------------------|------------------|------------------|------------------|------------------|
| (feet)           | (sq-ft)          | (cubic-feet)     | (feet)           | (sq-ft)          | (cubic-feet)     |
| 266.50           | 1,320            | 0                | 271.70           | 10,554           | 29,789           |
| 266.60           | 1,438            | 138              | 271.80           | 10,748           | 30,854           |
| 266.70           | 1,561            | 288              | 271.90           | 10,943           | 31,939           |
| 266.80           | 1,690            | 450              | 272.00           | 11,140           | 33,043           |
| 266.90           | 1,823            | 626              | 272.10           | 11,275           | 34,164           |
| 267.00<br>267.10 | 1,961<br>2,105   | 815<br>1,018     | 272.20<br>272.30 | 11,411<br>11,548 | 35,298<br>36,446 |
| 267.20           | 2,103            | 1,236            | 272.40           | 11,685           | 37,607           |
| 267.30           | 2,407            | 1,469            | 272.50           | 11,823           | 38,783           |
| 267.40           | 2,565            | 1,718            | 272.60           | 11,962           | 39,972           |
| 267.50           | 2,729            | 1,982            | 272.70           | 12,102           | 41,175           |
| 267.60           | 2,898            | 2,264            | 272.80           | 12,243           | 42,393           |
| 267.70           | 3,071            | 2,562            | 272.90           | 12,385           | 43,624           |
| 267.80           | 3,250            | 2,878            | 273.00           | 12,527           | 44,870           |
| 267.90           | 3,434            | 3,212            |                  |                  |                  |
| 268.00<br>268.10 | 3,623<br>3,785   | 3,565<br>3,935   |                  |                  |                  |
| 268.20           | 3,950            | 4,322            |                  |                  |                  |
| 268.30           | 4,119            | 4,725            |                  |                  |                  |
| 268.40           | 4,292            | 5,146            |                  |                  |                  |
| 268.50           | 4,468            | 5,584            |                  |                  |                  |
| 268.60           | 4,648            | 6,040            |                  |                  |                  |
| 268.70           | 4,831            | 6,514            |                  |                  |                  |
| 268.80           | 5,017            | 7,006            |                  |                  |                  |
| 268.90<br>269.00 | 5,208<br>5,402   | 7,517<br>8,048   |                  |                  |                  |
| 269.10           | 5,599            | 8,598            |                  |                  |                  |
| 269.20           | 5,800            | 9,168            |                  |                  |                  |
| 269.30           | 6,004            | 9,758            |                  |                  |                  |
| 269.40           | 6,212            | 10,369           |                  |                  |                  |
| 269.50           | 6,424            | 11,000           |                  |                  |                  |
| 269.60           | 6,639            | 11,653           |                  |                  |                  |
| 269.70           | 6,857            | 12,328<br>13,025 |                  |                  |                  |
| 269.80<br>269.90 | 7,079<br>7,305   | 13,744           |                  |                  |                  |
| 270.00           | 7,534            | 14,486           |                  |                  |                  |
| 270.10           | 7,698            | 15,248           |                  |                  |                  |
| 270.20           | 7,863            | 16,026           |                  |                  |                  |
| 270.30           | 8,030            | 16,820           |                  |                  |                  |
| 270.40           | 8,199            | 17,632           |                  |                  |                  |
| 270.50           | 8,370            | 18,460           |                  |                  |                  |
| 270.60<br>270.70 | 8,542<br>8,716   | 19,306           |                  |                  |                  |
| 270.70           | 8,892            | 20,168<br>21,049 |                  |                  |                  |
| 270.90           | 9,070            | 21,947           |                  |                  |                  |
| 271.00           | 9,249            | 22,863           |                  |                  |                  |
| 271.10           | 9,430            | 23,797           |                  |                  |                  |
| 271.20           | 9,613            | 24,749           |                  |                  |                  |
| 271.30           | 9,798            | 25,720           |                  |                  |                  |
| 271.40           | 9,984            | 26,709           |                  |                  |                  |
| 271.50<br>271.60 | 10,173<br>10,363 | 27,716<br>28,743 |                  |                  |                  |
| 271.00           | 10,000           | 20,740           |                  |                  |                  |
|                  |                  |                  | I                |                  |                  |


INSTRUCTIONS:

Non-automated: Mar. 4, 2008

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

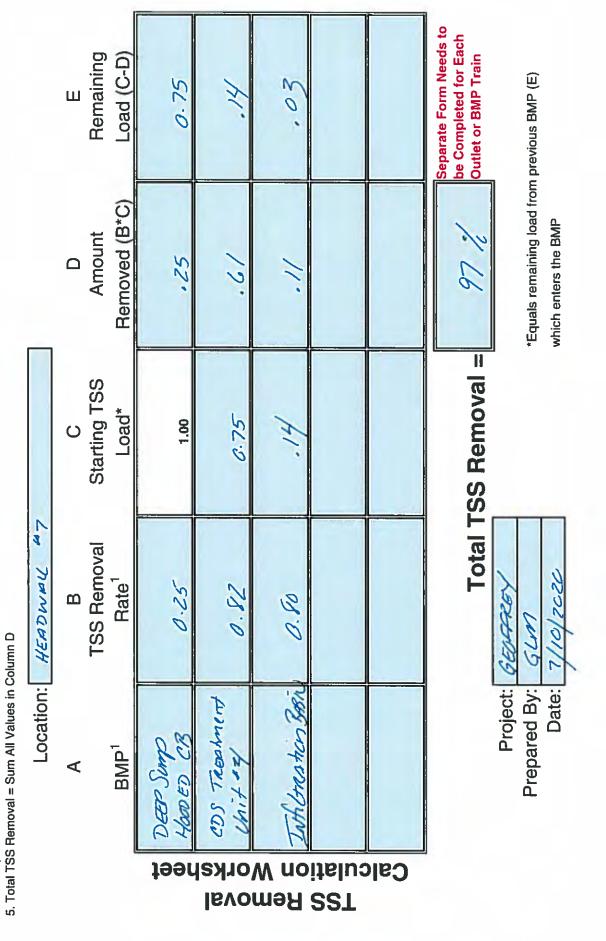
2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row



Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection


INSTRUCTIONS:

Non-automated: Mar. 4, 2008

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row 3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row



Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection





#### CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD GEOFFREY PARK** HOLLISTON, MA Unit Site Designation Treatment Unit #7 Area 1.21 ac Weighted C 0.9 Rainfall Station # 68 6 min t<sub>c</sub> CDS Model 2015-4 **CDS** Treatment Capacity 1.4 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity<sup>1</sup> Volume<sup>1</sup> **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.3% 9.3% 0.02 0.02 9.3 0.04 0.04 0.04 9.5% 18.8% 9.3 0.06 8.7% 27.5% 0.07 0.07 8.5 0.08 10.1% 37.6% 0.09 0.09 9.7 0.10 7.2% 44.8% 0.11 0.11 6.8 0.12 6.0% 50.8% 0.13 0.13 5.7 0.14 6.3% 57.1% 0.15 0.15 5.9 0.16 5.6% 62.7% 0.17 0.17 5.2 0.18 4.7% 67.4% 0.20 0.20 4.3 0.20 3.6% 71.0% 0.22 0.22 3.3 0.25 8.2% 79.1% 0.27 0.27 7.1 0.50 94.0% 0.54 11.1 14.9% 0.54 0.75 3.2% 97.3% 0.82 0.82 2.0 1.00 1.2% 98.5% 1.09 1.09 0.6 1.50 0.7% 99.2% 1.63 1.40 0.2 2.00 0.8% 100.0% 2.18 1.40 0.2 89.1 Removal Efficiency Adjustment<sup>2</sup> = 6.5% Predicted % Annual Rainfall Treated = 93.2% Predicted Net Annual Load Removal Efficiency = 82.6% 1 - Based on 10 years of rainfall data from NCDC station 736, Blue Hill, Norfolk County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

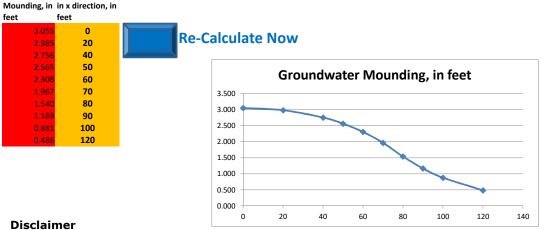




#### CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION **BASED ON THE RATIONAL RAINFALL METHOD GEOFFREY PARK** HOLLISTON, MA 0.23 ac Unit Site Designation Treatment Unit #4 Area Rainfall Station # Weighted C 0.9 68 6 min t<sub>c</sub> CDS Treatment Capacity CDS Model 1515-3 1.0 cfs Rainfall Percent Rainfall Cumulative Total Flowrate **Treated Flowrate** Incremental Intensity<sup>1</sup> Volume<sup>1</sup> **Rainfall Volume** Removal (%) (cfs) (cfs) (in/hr) 0.02 9.3% 9.3% 0.00 0.00 9.0 9.5% 0.01 0.01 9.2 0.04 18.8% 0.06 8.7% 27.5% 0.01 0.01 8.4 10.1% 0.08 37.6% 0.02 0.02 9.7 0.10 7.2% 44.8% 0.02 0.02 6.9 0.12 6.0% 50.8% 0.02 0.02 5.7 0.14 6.3% 57.1% 0.03 0.03 6.0 0.16 5.6% 62.7% 0.03 0.03 5.3 0.18 4.7% 67.4% 0.04 0.04 4.4 0.20 3.6% 71.0% 0.04 0.04 3.4 0.25 8.2% 79.1% 0.05 0.05 7.6 13.4 0.50 14.9% 94.0% 0.10 0.10 0.75 3.2% 97.3% 0.16 0.16 2.8 1.00 1.2% 98.5% 0.21 0.21 1.0 99.2% 1.50 0.7% 0.31 0.31 0.5 2.00 0.8% 100.0% 0.41 0.41 0.5 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 0.00 0.0% 100.0% 0.00 0.00 0.0 100.0% 0.00 0.0 0.00 0.0% 0.00 0.00 0.0% 100.0% 0.00 0.00 0.0 94.0 Removal Efficiency Adjustment<sup>2</sup> = 6.5% Predicted % Annual Rainfall Treated = 93.5% Predicted Net Annual Load Removal Efficiency = 87.6% 1 - Based on 10 years of rainfall data from NCDC station 736, Blue Hill, Norfolk County, MA 2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

#### Mound Calculation Basin Geoffrey Park, Holliston, MA Date: 05/14/2020

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".


The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

use consistent units (e.g. feet & days or inches & hours)

| Input Values |       | use consistent units (e.g. feet & days <b>or</b> inches & hours) | Conve<br>inch/h | rsion Tabl<br>our fee | ble<br>eet/day                                   |
|--------------|-------|------------------------------------------------------------------|-----------------|-----------------------|--------------------------------------------------|
| 1.2100       | R     | Recharge (infiltration) rate (feet/day)                          |                 | 0.67                  | 1.33                                             |
| 0.210        | Sy    | Specific yield, Sy (dimensionless, between 0 and 1)              |                 |                       |                                                  |
| 20.40        | к     | Horizontal hydraulic conductivity, Kh (feet/day)*                |                 | 2.00                  | 4.00 In the report accompanying this spreadsheet |
| 76.000       | x     | 1/2 length of basin (x direction, in feet)                       |                 |                       | (USGS SIR 2010-5102), vertical soil permeability |
| 37.000       | У     | 1/2 width of basin (y direction, in feet)                        | hours           | da                    | ays (ft/d) is assumed to be one-tenth horizontal |
| 1.000        | t     | duration of infiltration period (days)                           |                 | 36                    | 1.50 hydraulic conductivity (ft/d).              |
| 25.000       | hi(0) | initial thickness of saturated zone (feet)                       |                 |                       |                                                  |

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)



h(max)

Δh(max)

Distance from center of basin

28.05

Ground-

water

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

## <u>APPENDIX – D</u>

Stormwater Operation and Maintenance Plan and Long Term Pollution Prevention Plan

Standard 9

## Stormwater Management Operation and Maintenance Plan And Long Term Pollution Prevention Plan

## Maintenance Agreement Geoffrey Park Holliston, Massachusetts

May 14, 2020 Revised: July 10, 2020 Sept. 16, 2020

In accordance with Standard 9 of the Massachusetts Department of Environmental Protection Stormwater Handbook (February 2008), the attached on-site maintenance program for the proposed stormwater management system has been developed to ensure the Best Management Practices (BMP's) in place will remain functioning as designed. The landowner/operator, or its successors, of the Project Site, Geoffrey Park shall be responsible for financing maintenance and emergency repairs of the entire storm-water management system on the property. The Plan contains both construction period operations and maintenance as well as post construction responsibilities that shall "run" with the property if ownership is transferred.

## **Responsible Operator:**

Indian Ridge Realty Trust Attn: David Adams 223 Courtland Street Holliston, MA 01746 Office: 508-561-4197

| David Adams                                       | Date             |
|---------------------------------------------------|------------------|
|                                                   |                  |
| Estimated Maintenance Yearly Budget:              |                  |
| Annual Catch Basin and CDS Units Cleaning:        | \$ 1,500.00      |
| Mowing, vegetation maintenance of Drainage Basin: | \$ 480.00        |
| Repairs:                                          | <u>\$ 250.00</u> |
| Total                                             | \$ 2,230.00      |

## **Construction Period Operation and Maintenance:**

## **Good Housekeeping Practices:**

- Remove all debris from site and dispose of in trash dumpsters
- Plan for adequate disposal of scrap, waste and surplus materials
- Keep work area clean
- Secure loose or light material that is stored on the site
- Store flammable materials apart from other materials
- Secure all materials at the end of each work day
- Maintain a clean neat and orderly site

## Safety:

Keep safety considerations at the forefront of inspection procedures at all times. Likely hazards should be anticipated and avoided. Never enter a confined space (outlet structure, manhole, etc) without proper training or equipment. A confined space should never be entered without at least one additional person present. If a toxic or flammable substance is discovered, leave the immediate area and contact the local authorities at 911.

All cast iron storm water structure grates and covers shall be kept in good condition and kept closed at all times. Any damaged or broken structures will be replaced immediately upon discovery.

## **Construction Entrances:**

The purpose of stabilizing entrances to a construction site is to minimize the amount of sediment leaving the area as mud and sediment attached to vehicles. The entrances shall be sized according to the Massachusetts DEP and US EPA guidelines and will be maintained on a weekly basis during construction. A Detail is included in the Site Plans prepared for the Project.

## **Dust Control:**

Soils information for the site indicates that it is comprised of sandy soils. Therefore, Dust control BMPs to reduce surface activities and air movement that causes dust to be generated from disturbed soil surfaces will be required. The preferred measure for dust control is sprinkling/irrigation. This is an on-going/as-needed requirement until surfaces have been stabilized. There shall be a water truck on-site available as needed.

## Catch Basin Protection:

Temporary inlet protection barriers consisting of Silt Sacks<sup>®</sup> will be placed within all constructed inlets to prevent inflow of sediments into the constructed drainage system. The barriers shall remain in place until a permanent cover is established or diversions away from the inlets are constructed. The barriers shall be observed and maintained as necessary on a weekly basis and after every rainfall of 0.5 inches or more.

## Spill Control:

A contingency plan to address the spillage/release of petroleum products and any hazardous materials will be implemented for the site during construction. The plan will include the following measures:

- Equipment necessary to quickly attend to inadvertent spills or leaks shall be on-site in a secure but accessible location. Such equipment will include, but not be limited to, the following: urethane drain cover seals (mats), a spill containment kit which includes sand and shovels, suitable absorbent materials, storage containers, safety goggles, chemically resistant gloves and overshoe boots, water and chemical fire extinguishers, and first aid equipment.
- Spills or leaks will be treated properly according to material type, volume of spillage and location of spill. Mitigation will include preventing further spillage, containing the spilled material to the smallest practical area, removing spilled material in a safe and environmentally friendly manner, and remediating any damage to the environment.
- The contractor shall be familiar with the reporting requirements of the Massachusetts Contingency Plan (310 CMR 40.00) as issued by the Massachusetts Department of Environmental Protection (DEP); specifically Subpart C Notification of Releases and Threats of Release of Oil and Hazardous Materials and Subpart D Preliminary Response Activities and Risk Reduction Measures.
- For any large spills. The Massachusetts DEP Hazardous Waste Incident Response Group shall be notified immediately at 1-617-792-7653 and an emergency response contractor will be called in.

## **Post-Construction Period Operation and Maintenance:**

## **Pavement Sweeping:**

Sweeping has been shown to be an effective initial treatment for reducing contaminants in stormwater runoff. Sweeping is not required to meet TSS removal goals in this case but should be performed at least once per year, in the spring to remove winter accumulations or at other when warranted.

## **CDS Treatment Units:**

Sediments, associated pollutants and trash are removed only when inlets or sumps are cleaned out, so regular maintenance is essential. Cleaning includes removal of accumulated oil and grease and sediment using a vacuum truck or other ordinary catch basin cleaning device. In areas of high sediment loading, inspect and clean inlets after every major storm. At a minimum, inspect oil grit separators and clean them out at least twice per year. Cleaning of a Stormceptor systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. (See attached manufacturer maintenance)

Stormceptor Treatment Units:

|                          | Inspection                                                                                          |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Activity                 | Frequency                                                                                           |  |  |
| Inspect Inlet and Outlet | 4 times per yr.                                                                                     |  |  |
|                          | After a heavy rain event                                                                            |  |  |
|                          | 1" storm or larger                                                                                  |  |  |
| Sediment buildup & Clean | 2 times per yr. (minimum)<br>Accumulated sediment buildup shall be<br>Vacuumed cleaned as necessary |  |  |

## **Retention Basin:**

Vehicle access if necessary will be via the access around the top of the retention basin. The drainage easement shall be mowed twice a year and kept clear of any trees. The easement will be used for access to the basin.

Inspect it after every major storm for the first few months to ensure it is stabilized and functioning properly and if necessary to take corrective action. Also inspect the basin every time there is a discharge through the high outlet weir. A major storm is defined as a storm that is equal to or greater than the 2.5 inches in a 24-hour storm. Note how long the water remains standing after a storm. If longer than 72 hours, there may be clogging of the infiltrative surfaces. Inspect the basin and mow it as needed. When mowing keep the grass height no greater than 6 inches. Set mower blades no lower than 3 to 4 inches. Remove grass clippings, organic matter and trash. Use deep tilling to break up compacted or clogged surfaces.

Check for signs of gullying and repair as needed. After removing the sediment, replace any vegetation damaged during the clean-out by reseeding.

**GLM Engineering Consultants Inc.** 

## **Retention Basin:**

|                  | Inspection                                             |
|------------------|--------------------------------------------------------|
| Activity         | Frequency                                              |
| Sediment Removal | Inspect Monthly                                        |
|                  | Remove accumulated sediment buildup                    |
|                  | Grass Mowing during growing season                     |
|                  | (Keep grasses no greater than 6 inches & no lower than |
|                  | 3 to 4 inches)                                         |

## Deep Sump Catch Basins:

Deep sump catch basins remain effective at removing pollutants only if they are cleaned out frequently. Inspect and clean sumps when sediments whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert to the lowest pipe in the basin, at least once (1) time per year, at the end of the foliage and snow removal seasons. Clamshell buckets or vacuum trucks shall be utilized.

|                          | Inspection                                                                                          |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Activity                 | Frequency                                                                                           |  |  |
| Inspect Inlet and Outlet | 4 times per yr.                                                                                     |  |  |
|                          | After a heavy rain event                                                                            |  |  |
|                          | 1" storm or larger                                                                                  |  |  |
| Sediment buildup & Clean | 1 times per yr. (minimum)<br>Accumulated sediment buildup shall be<br>Vacuumed cleaned as necessary |  |  |

## **Riprap Outlet Maintenance:**

Maintenance needs are relatively low. Inspect outlet protection on a regular basis for erosion, sedimentation, scour or undercutting. Repair or replace riprap, geotextile or concrete structures as necessary to handle design flows.

Remove trash, debris, grass, sediment or burrowing animals as needed.

## **Snow Removal and De-icing:**

Snow shall be stored in the designated areas shown on the site plans. If snow accumulation exceeds the limits of the storage areas, excess snow shall be removed from the site and disposed of in a proper manner.

The use of Sodium Chloride ("rock salt") for de-icing of paved surfaces will be limited; except when found to be necessary for safety of the residents. Sand will be the primary icing control agent. Alternative de-icing products such as calcium chloride may be used as temperatures or other conditions warrant.

## Fertilizer:

Slow release organic fertilizers will be used in landscape areas to limit nutrient transport to groundwater and wetland areas. Application will be limited to 3 lbs. per 1000 sf of lawn area.

| General Information                                                                                                                                              |                                  |                |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-------------------------------|
| Project Name                                                                                                                                                     | Geoffrey Park                    |                |                               |
| MA DEP File No.                                                                                                                                                  |                                  | Location       |                               |
| Date of Inspection                                                                                                                                               |                                  | Start/End Time |                               |
| Inspector's Name(s)                                                                                                                                              |                                  |                |                               |
| Inspector's Title(s)                                                                                                                                             |                                  |                |                               |
| Inspector's Contact Information                                                                                                                                  |                                  |                |                               |
| Inspector's Qualifications                                                                                                                                       |                                  |                |                               |
| Describe present phase of construction                                                                                                                           |                                  |                |                               |
| Type of Inspection:□ Regular□ Pre-storm event                                                                                                                    | During storm event               | Post-storm e   | vent                          |
| Weather Information                                                                                                                                              |                                  |                |                               |
| Has there been a storm event since<br>If yes, provide:                                                                                                           | <b>the last inspection?</b> □Yes | s 🗖No          |                               |
| Storm Start Date & Time: S                                                                                                                                       | torm Duration (hrs):             | Approximate    | Amount of Precipitation (in): |
| Weather at time of this inspection?         Clear       Cloudy       Rain       Sleet       Fog       Snowing       High Winds         Other:       Temperature: |                                  |                |                               |
| Have any discharges occurred since the last inspection?  Yes  No<br>If yes, describe:                                                                            |                                  |                |                               |
| Are there any discharges at the time of inspection? □Yes □No<br>If yes, describe:                                                                                |                                  |                |                               |

## **Stormwater Construction Site Inspection Report**

#### Site-specific BMPs

- Number the structural and non-structural BMPs identified in your SWPPP on your site map and list them below (add as many BMPs as necessary). Carry a copy of the numbered site map with you during your inspections. This list will ensure that you are inspecting all required BMPs at your site.
- Describe corrective actions initiated, date completed, and note the person that completed the work in the Corrective Action Log.

|   | BMP                                                                                                    | BMP<br>Installed? | BMP<br>Maintenance<br>Required? | Corrective Action Needed and Notes |
|---|--------------------------------------------------------------------------------------------------------|-------------------|---------------------------------|------------------------------------|
| 1 | Deep Sump Catch<br>Basins<br>(Inspections 4 times per<br>year & cleaning a min.<br>of 1 time per year) | □Yes □No          | Yes No                          |                                    |

### Geoffrey Park

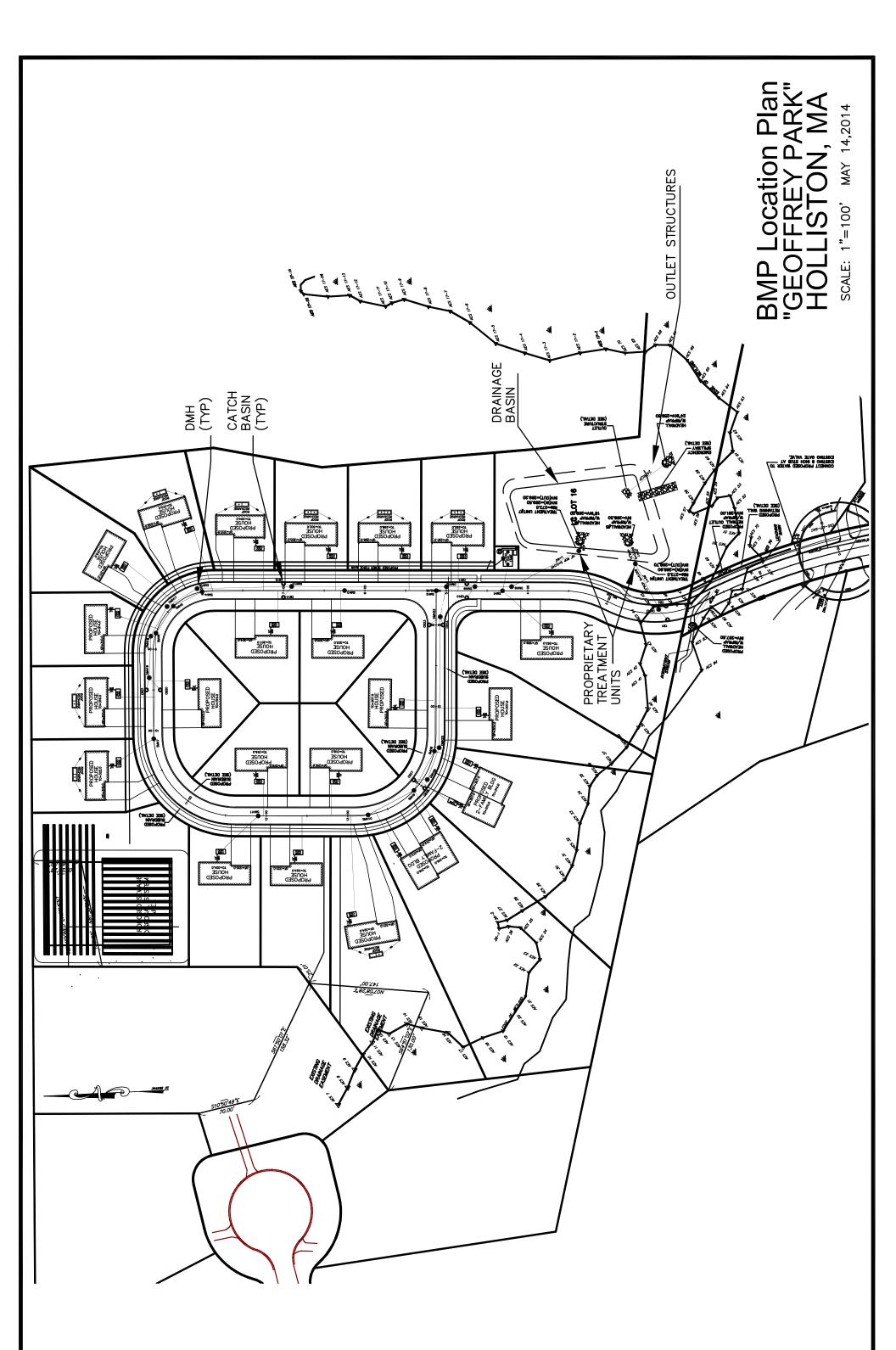
Holliston, Massachusetts

|   | BMP                                                                                                         | BMP<br>Installed? | BMP<br>Maintenance | Corrective Action Needed and Notes |
|---|-------------------------------------------------------------------------------------------------------------|-------------------|--------------------|------------------------------------|
|   |                                                                                                             | instancu:         | Required?          |                                    |
| 2 | Drainage Basin<br>(Siltation buildup, grass<br>mowing, side slopes and<br>removal of sediment)              | □Yes □No          | □Yes □No           |                                    |
| 3 | Outlet Structure<br>(Inspect semi annually,<br>riprap, debri, sediment<br>buildup and vegetative<br>growth) | □Yes □No          | □Yes □No           |                                    |
| 4 | CS Treatment Units<br>(Inspection 4 times per<br>year & cleaning min. 1<br>time per year)                   | □Yes □No          | □Yes □No           |                                    |
|   |                                                                                                             |                   |                    |                                    |

### Non-Compliance

Describe any incidents of non-compliance not described above:

### **CERTIFICATION STATEMENT**


"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

#### Print name and title: \_\_\_\_\_\_

Signature: Date:

# Appendix A

# **BMP Location Plan**





# **CDS®** Inspection and Maintenance Guide





### Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

# Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

# Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes.



| CDS Model | Dian | neter |      | Water Surface<br>ediment Pile | Sediment Sto | rage Capacity |
|-----------|------|-------|------|-------------------------------|--------------|---------------|
|           | ft   | m     | ft   | m                             | У³           | m³            |
| CDS1515   | 3    | 0.9   | 3.0  | 0.9                           | 0.5          | 0.4           |
| CDS2015   | 4    | 1.2   | 3.0  | 0.9                           | 0.9          | 0.7           |
| CDS2015   | 5    | 1.3   | 3.0  | 0.9                           | 1.3          | 1.0           |
| CDS2020   | 5    | 1.3   | 3.5  | 1.1                           | 1.3          | 1.0           |
| CDS2025   | 5    | 1.3   | 4.0  | 1.2                           | 1.3          | 1.0           |
| CDS3020   | 6    | 1.8   | 4.0  | 1.2                           | 2.1          | 1.6           |
| CDS3025   | 6    | 1.8   | 4.0  | 1.2                           | 2.1          | 1.6           |
| CDS3030   | 6    | 1.8   | 4.6  | 1.4                           | 2.1          | 1.6           |
| CDS3035   | 6    | 1.8   | 5.0  | 1.5                           | 2.1          | 1.6           |
| CDS4030   | 8    | 2.4   | 4.6  | 1.4                           | 5.6          | 4.3           |
| CDS4040   | 8    | 2.4   | 5.7  | 1.7                           | 5.6          | 4.3           |
| CDS4045   | 8    | 2.4   | 6.2  | 1.9                           | 5.6          | 4.3           |
| CDS5640   | 10   | 3.0   | 6.3  | 1.9                           | 8.7          | 6.7           |
| CDS5653   | 10   | 3.0   | 7.7  | 2.3                           | 8.7          | 6.7           |
| CDS5668   | 10   | 3.0   | 9.3  | 2.8                           | 8.7          | 6.7           |
| CDS5678   | 10   | 3.0   | 10.3 | 3.1                           | 8.7          | 6.7           |

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities



#### Support

- Drawings and specifications are available at www.contechstormwater.com.
- Site-specific design support is available from our engineers.
- ©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, earth stabilization and wastewater treament products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS AN EXPRESSED WARRANTY OR AN IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. SEE THE CONTECH STANDARD CONDITION OF SALES (VIEWABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; 7,517,450 related foreign patents or other patents pending.



# CDS Inspection & Maintenance Log

| CDS Mode | l:                                         |                                              | Lo                                   | ocation:                 |          |
|----------|--------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------|----------|
| Date     | Water<br>depth to<br>sediment <sup>1</sup> | Floatable<br>Layer<br>Thickness <sup>2</sup> | Describe<br>Maintenance<br>Performed | Maintenance<br>Personnel | Comments |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |
|          |                                            |                                              |                                      |                          |          |

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

### <u>APPENDIX – E</u>

**Illicit Discharge Statement** 

# Standard 10

### **Illicit Discharge Compliance Statement**

### Geoffrey Park Holliston, Massachusetts

#### May 14, 2020

This statement is provided in accordance with the provisions of the Massachusetts Stormwater Management Standard #10.

To the best of the applicant's/owners knowledge there are no illicit discharges to the site's stormwater management system.

All proposed uses on the site will not generate, store or discharge any pollutants to the groundwater and/or wetland resource areas.

Any illicit discharges identified during or after construction will be terminated immediately.

#### Applicant/Owner:

Indian Ridge Realty Trust Attn: David Adams 232 Courtland Street Holliston, MA 01746 Phone: 508-561-4197

David Adams

Date

### <u>APPENDIX – R</u>

# **Culvert Crossing Sizing Calculations**

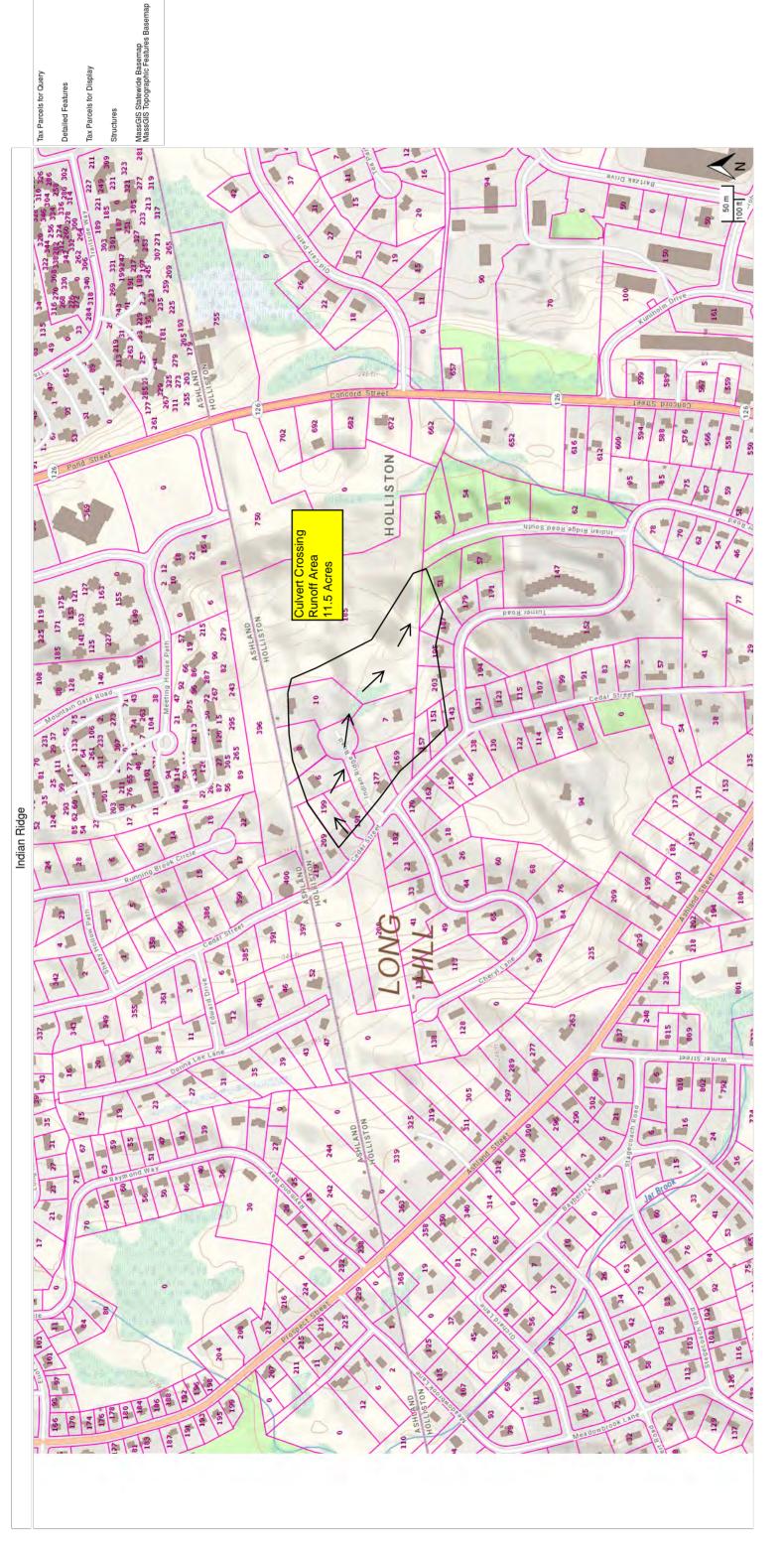
### Appendix – F

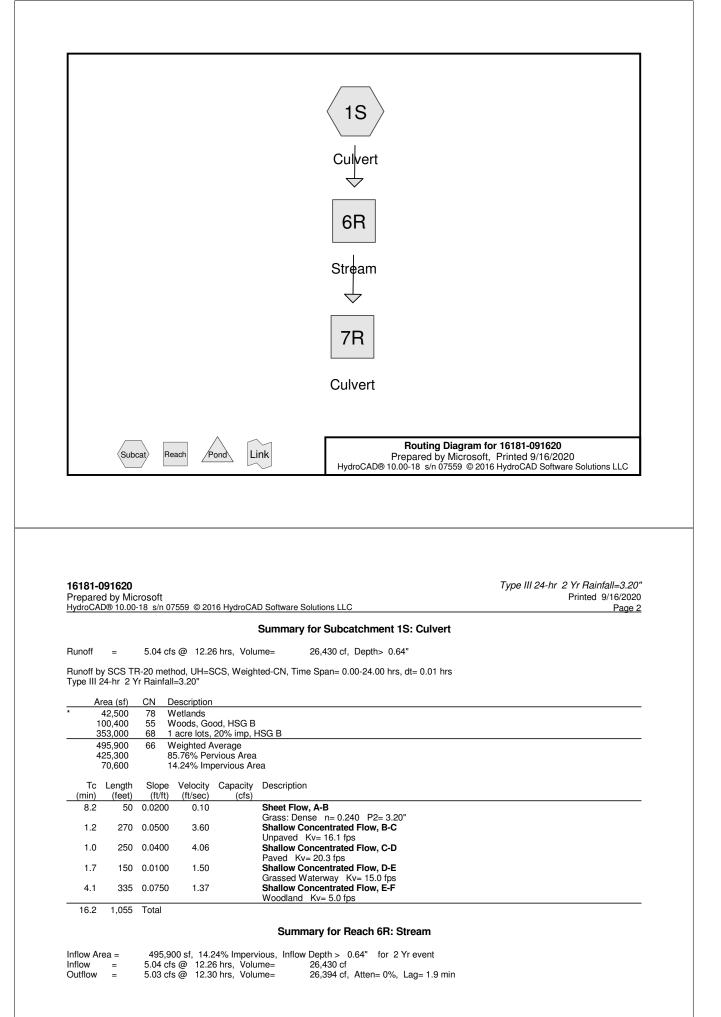
### Culvert Crossing Sta. 1+75

#### Project:

Geofrey Park Holliston, Massachusetts Date: July 9, 2020

#### Subcatchment 1S <u>Total Runoff Area:</u> 11.4 Acres


#### Avg CN Values:


| Wetlands: | 42,500 s.f.             |
|-----------|-------------------------|
| Woods:    | 100,400 s.f.            |
| 1 Ac Res. | <u>353,000 s.f.</u>     |
| Total     | 495,900 s.f. or 11.4 ac |

Time of Concentration:

50' Grass S=0.020 270' Grass S=0.050 250' Paved S=0.040 (Road) 150' Grass S=0.010 (Through detention basin at Cul-de-sac) 335' Woods S=0.075 (To intermittent stream) Reach 6R To Crossing (Same as 1R) Culvert (Reach 7R)







Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 5.10 fps, Min. Travel Time= 1.0 min Avg. Velocity = 2.46 fps, Avg. Travel Time= 2.0 min

Peak Storage= 296 cf @ 12.28 hrs Average Depth at Peak Storage= 0.56' Bank-Full Depth= 1.00' Flow Area= 2.3 sf, Capacity= 16.68 cfs

3.50' x 1.00' deep Parabolic Channel, n= 0.040 Winding stream, pools & shoals Length= 300.0' Slope= 0.0800 '/' Inlet Invert= 298.00', Outlet Invert= 274.00'



#### Summary for Reach 7R: Culvert

 Inflow Area =
 495,900 sf, 14.24% Impervious, Inflow Depth > 0.64" for 2 Yr event

 Inflow =
 5.03 cfs @ 12.30 hrs, Volume=
 26,394 cf

 Outflow =
 5.02 cfs @ 12.30 hrs, Volume=
 26,388 cf, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 8.98 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.55 fps, Avg. Travel Time= 0.3 min

Peak Storage= 39 cf @ 12.30 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.50' Flow Area= 6.0 sf, Capacity= 139.52 cfs

48.0" W x 18.0" H Box Pipe n= 0.013 Length= 70.0' Slope= 0.0929 '/' Inlet Invert= 267.50', Outlet Invert= 261.00'

16181-091620

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC Type III 24-hr 2 Yr Rainfall=3.20" Printed 9/16/2020 Page 4

#### Summary for Subcatchment 1S: Culvert

Runoff = 14.73 cfs @ 12.24 hrs, Volume= 65,546 cf, Depth> 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 10 Yr Rainfall=4.80"

| Ar                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                                                                       | 42,500<br>00,400                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Netlands<br>Noods Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | od, HSG B                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       | 53,000                                                                                                                                                                                                                                                                   | 68 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | acre lots,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20% imp, l                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       | 95,900                                                                                                                                                                                                                                                                   | 66 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Neighted A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | verage                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       | 25,300<br>70,600                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rvious Area<br>pervious Ar                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| Tc<br>(min)                                                                                                                                                                                                                                           | Length<br>(feet)                                                                                                                                                                                                                                                         | Slope<br>(ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Capacity<br>(cfs)                                                                                                                                                              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| 8.2                                                                                                                                                                                                                                                   | (ieet)<br>50                                                                                                                                                                                                                                                             | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (015)                                                                                                                                                                          | Sheet Flow, A-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                | Grass: Dense n= 0.240 P2= 3.20"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 1.2                                                                                                                                                                                                                                                   | 270                                                                                                                                                                                                                                                                      | 0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Shallow Concentrated Flow, B-C<br>Unpaved Kv= 16.1 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| 1.0                                                                                                                                                                                                                                                   | 250                                                                                                                                                                                                                                                                      | 0.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Shallow Concentrated Flow, C-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| 1.7                                                                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                                      | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Paved Kv= 20.3 fps<br>Shallow Concentrated Flow, D-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| 1.7                                                                                                                                                                                                                                                   | 150                                                                                                                                                                                                                                                                      | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Grassed Waterway Kv= 15.0 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| 4.1                                                                                                                                                                                                                                                   | 335                                                                                                                                                                                                                                                                      | 0.0750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                | Shallow Concentrated Flow, E-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| 16.2                                                                                                                                                                                                                                                  | 1,055                                                                                                                                                                                                                                                                    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                | Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| 10.2                                                                                                                                                                                                                                                  | 1,000                                                                                                                                                                                                                                                                    | 10101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                | Summary for Reach 6R: Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| offerer A                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                          | 405 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | سا /40                                                                                                                                                                         | views Inflow Dopth 4 50% for 40 Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| nflow Are                                                                                                                                                                                                                                             | ea =<br>=                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24% Impen<br>4 hrs, Volu                                                                                                                                                       | vious, Inflow Depth > 1.59" for 10 Yr event<br>ume= 65,546 cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| Outflow                                                                                                                                                                                                                                               | =                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 hrs, Volu                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 16181-0                                                                                                                                                                                                                                               | 91620                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type III 24-hr 10 Yr Rainfall=4.80" |
| Prepare                                                                                                                                                                                                                                               | d by Mic                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Printed 9/16/2020                   |
| Prepare                                                                                                                                                                                                                                               | d by Mic                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7559 © 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 HydroCA                                                                                                                                                                     | AD Software Solutions LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Prepared<br>HydroCAL<br>Routing b                                                                                                                                                                                                                     | d by Mic<br>D® 10.00<br>by Stor-Ir                                                                                                                                                                                                                                       | <u>-18 s/n 0</u><br>nd+Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s method, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ime Span=                                                                                                                                                                      | = 0.00-24.00 hrs, dt= 0.01 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo                                                                                                                                                                                                        | d by Mic<br>D® 10.00<br>by Stor-Ir<br>pocity= 6.1                                                                                                                                                                                                                        | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s method, T<br>⁄lin. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ime Span=<br>Time= 0.7                                                                                                                                                         | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo                                                                                                                                                                                                        | d by Mic<br>D® 10.00<br>by Stor-Ir<br>pocity= 6.1                                                                                                                                                                                                                        | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s method, T<br>⁄lin. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ime Span=                                                                                                                                                                      | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto                                                                                                                                                                               | d by Mic<br><del>08</del> 10.00<br>by Stor-Ir<br>bocity = 6.1<br>bocity = 3.<br>rage= 63                                                                                                                                                                                 | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, <i>M</i><br>89 cf @ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s method, T<br>Ain. Travel<br>Avg. Travel<br>12.25 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | īme Span=<br>Time= 0.7<br>Time= 1.7                                                                                                                                            | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average                                                                                                                                                                    | d by Mic<br><del>08</del> 10.00<br>by Stor-Ir<br>bocity = 6.1<br>bocity = 3.<br>rage= 63<br>Depth at                                                                                                                                                                     | - <u>18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, <i>M</i><br>99 cf @ 1<br>Peak St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s method, T<br>Ain. Travel<br>Avg. Travel<br>2.25 hrs<br>orage= 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'                                                                                                                                     | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average                                                                                                                                                                    | d by Mic<br><del>08</del> 10.00<br>by Stor-Ir<br>bocity = 6.1<br>bocity = 3.<br>rage= 63<br>Depth at                                                                                                                                                                     | - <u>18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, <i>M</i><br>99 cf @ 1<br>Peak St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s method, T<br>Ain. Travel<br>Avg. Travel<br>2.25 hrs<br>orage= 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'                                                                                                                                     | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful                                                                                                                                                        | d by Mic<br>$D^{\textcircled{B}} 10.00$<br>by Stor-Ir<br>pocity = 6.3<br>pocity = 3.<br>rage= 63<br>Depth at<br>I Depth=                                                                                                                                                 | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, N<br>02 fps, /<br>39 cf @ 1<br>Peak St<br>1.00' Fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s method, T<br>Ain. Travel<br>Avg. Travel<br>2.25 hrs<br>orage= 0.9<br>ow Area= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap                                                                                                                      | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s method, T<br>Ain. Travel<br>Avg. Travel<br>2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Max. Vela<br>Max. Vela<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                              | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Max. Vela<br>Max. Vela<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                              | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>/ min<br>pacity= 16.68 cfs<br>40 Winding stream, pools & shoals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Vek<br>Avg. Vek<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3                                                                                                                                | d by Mic<br><u>0</u> ® 10.00<br>by Stor-Ir<br>pocity = 6.<br>pocity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dea<br>300.0' S                                                                                                                                    | <u>-18 s/n 0</u><br>nd+Trans<br>91 fps, M<br>02 fps, A<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>' min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing L<br>Max. Velo<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve                                                                                                                                          | d by Mic<br>0 10.00<br>any Stor-In<br>1 coity = 6.<br>1 coity = 3.<br>1 rage= 63<br>1 Depth at<br>1 Depth=<br>1.00' dec<br>300.0' S<br>rt= 298.0                                                                                                                         | - <u>18 s/n 0</u><br>- <u>18 s/n 0</u><br>- <u>17 fps</u> , N<br>- <u>02 fps</u> , <i>J</i><br>- <u>39 cf @ 1</u><br>- <u>Peak St</u><br>1.00' Fl<br>- <u>ep Parab</u><br>Slope= 0.<br>- <u>00'</u> , Outle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                            | e 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>pacity= 16.68 cfs<br>40 Winding stream, pools & shoals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Printed 9/16/2020                   |
| Prepared<br>HydroCAE<br>Routing b<br>Max. Velo<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve                                                                                                                                          | d by Mic<br>0 10.00<br>any Stor-In<br>1 coity = 6.<br>1 coity = 3.<br>1 rage= 62<br>1 Depth at<br>1 Depth=<br>1.00' dec<br>300.0' S<br>rt= 298.0                                                                                                                         | -18 s/n 0<br>nd+Trans<br>91 fps, N<br>02 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                            | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' × 1<br>Length= 5<br>nlet Inve                                                                                                                 | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>boity = 6.<br>boity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' S<br>rt= 298.0<br>ea =                                                                                                                   | -18 s/n 0<br>nd+Trans<br>91 fps, N<br>02 fps, /<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e method, T<br>Min. Travel<br>Avg. Travel<br>12.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                            | <ul> <li>0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>ure= 65,489 cf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                   |
| Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve                                                                                                                                         | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>boity = 6.<br>boity = 3.<br>rage= 62<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' S<br>rt= 298.0<br>ea =<br>=<br>=                                                                                                         | -18 s/n 0<br>hd+Trans<br>91 fps, N<br>02 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2<br>000 sf, 14.2<br>(5 @ 12.2)<br>(5 @ 12.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impen<br>6 hrs, Volu<br>6 hrs, Volu                                                 | <ul> <li>0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>pacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>40 Winding stream, pools &amp; s</li></ul> | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing L<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' × 1<br>Length= 3<br>nlet Inve                                                                                                                 | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>city = 6.<br>city = 3.<br>rage = 62<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' Strt = 298.0<br>ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                    | -18 s/n 0<br>nd+Trans<br>91 fps, N<br>02 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.71 cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impen<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu                                  | <ul> <li>a.000-24.00 hrs, dt= 0.01 hrs<br/>min<br/>min<br/>min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>me= 65,489 cf<br/>me= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>a.000-24.00 hrs, dt= 0.01 hrs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>_ength= ;<br>nlet Inve<br>nflow Ard<br>nflow Cutflow<br>Routing L<br>Max. Veld                                                         | d by Mic<br><u>0</u> ® 10.00<br>yy Stor-Ir<br>porty = 6.<br>porty = 3.<br>rage = 63<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' S<br>rt = 298.0<br>ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                              | -18 s/n 0<br>nd+Trans<br>21 fps, N<br>02 fps, /<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>14.71 cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e method, T<br>Min. Travel<br>Avg. Travel<br>12.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>'s @ 12.2'<br>'s @ 12.2'<br>s method, T<br>Min. Trave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impen<br>6 hrs, Volu<br>6 hrs, Volu                                                 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>me= 65,489 cf<br/>ame= 65,489 cf<br/>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve<br>nflow Ard<br>nflow<br>Dutflow<br>Routing b<br>Max. Velo                                                      | d by Mic<br><del>0</del> 10.00<br>by Stor-In<br>city = 6.<br>coty = 3.<br>rage = 62<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' Strt = 298.0<br>ea =<br>=<br>=<br>=<br>by Stor-In<br>coty = 13<br>coty = 4.                                                           | -18 s/n 0<br>hd+Trans<br>91 fps, N<br>02 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.71 rf<br>14.71 rfs, 66 fps, /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>Time Span=<br>of Time= 0.    | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>me= 65,489 cf<br/>ame= 65,489 cf<br/>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' × 1<br>Length= 3<br>nlet Inve<br>nflow Ard<br>nflow Ard<br>nflow<br>Dutflow<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto                | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>city = 6.<br>city = 3.<br>rage = 62<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' Strt = 298.0<br>ea =<br>=<br>=<br>=<br>by Stor-In<br>city = 13<br>city = 4.<br>rage = 76                                                  | -18 s/n 0<br>hd+Trans<br>91 fps, N<br>02 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>hd+Trans<br>.47 fps, /<br>66 fps, /<br>3 cf @ 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 <sup>1</sup> /<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel<br>2.26 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>7 Time Span=<br>el Time= 0.3 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>me= 65,489 cf<br/>ame= 65,489 cf<br/>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing b<br>Max. Velo<br>Average<br>Bank-Ful<br>3.50' x 1<br>ength= 3<br>nlet Inve<br>nflow Arc<br>nflow Arc<br>nflow<br>Dutflow<br>Routing b<br>Max. Velo<br>Average<br>Peak Sto<br>Average                                 | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>pocity = 6.<br>popth at<br>I Depth =<br>1.00' dea<br>300.0' S<br>rt = 298.0<br>city = 13<br>pocity = 13<br>pocity = 4.<br>rage = 76<br>Depth at                                                                              | -18 s/n 0<br>nd+Trans<br>91 fps, N<br>92 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.                                                                                                                                           | e method, T<br>Min. Travel<br>Avg. Travel<br>12.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>i | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>7'                           | <ul> <li>a.00-24.00 hrs, dt= 0.01 hrs</li> <li>min 'min 'min'</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event me= 65,489 cf</li> <li>ame= 65,489 cf</li> <li>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>a min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed 9/16/2020                   |
| Prepared<br>HydroCAL<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve<br>nflow Arc<br>nflow Arc<br>nflow Arc<br>Nutflow<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>pocity = 6.<br>popth at<br>I Depth =<br>1.00' dea<br>300.0' S<br>rt = 298.0<br>city = 13<br>pocity = 13<br>pocity = 4.<br>rage = 76<br>Depth at                                                                              | -18 s/n 0<br>nd+Trans<br>91 fps, N<br>92 fps, /<br>99 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outlo<br>495,9<br>14.71 cf<br>14.71 cf<br>14.                                                                                                                                           | e method, T<br>Min. Travel<br>Avg. Travel<br>12.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>i | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>7'                           | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>'min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event<br/>me= 65,489 cf<br/>ame= 65,489 cf<br/>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing L<br>Max. Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' × 1<br>Length= 3<br>nlet Inve<br>Alength= 3<br>nlet Inve<br>Veld<br>Avg. Veld<br>Peak Sto<br>Average<br>Bank-Ful<br>48.0" W 5                 | d by Mic<br><u>De 10.00</u><br>by Stor-In<br>porty = 6.<br>porty = 3.<br>rage = 63<br>Depth at<br>I Depth=<br>1.00' dec<br>300.0' Strt= 298.0'<br>ea =<br>=<br>=<br>by Stor-In<br>porty = 13<br>porty = 4.<br>rage = 76<br>Depth at<br>I Depth=<br>< 18.0'' H            | <ul> <li><u>18 s/n 0</u></li> <li><u>16 s/n 0</u></li> <li><u>17 fps, N</u></li> <li><u>102 fps, /</u></li> <li><u>19 cf @ 1</u></li> <li><u>19 Peak St</u></li> <li><u>1.00' Fl</u></li> <li><u>100' Fl</u></li> <li><u>100', Outlo</u></li> <li><u>100', Outlo</u></li> <li><u>110' fl</u></li> <li><u>1</u></li></ul> | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel<br>2.26 hrs<br>orage= 0.2<br>ow Area= 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>7'                           | <ul> <li>a.00-24.00 hrs, dt= 0.01 hrs</li> <li>min 'min 'min'</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event me= 65,489 cf</li> <li>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>a min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |
| Prepared<br>HydroCAI<br>Routing b<br>Max. Velo<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x 1<br>Length= 3<br>nlet Inve<br>nflow Ard<br>nflow<br>Dutflow<br>Routing b<br>Max. Velo<br>Peak Sto<br>Average<br>Bank-Ful                   | d by Mic<br><u>0</u> 10.00<br>by Stor-In<br>pocity = 6.<br>pocity = 3.<br>rage = 62<br>Depth at<br>I Depth=<br>1.00' det<br>300.0' S<br>rt = 298.0<br>ea =<br>=<br>=<br>=<br>pocity = 13<br>pocity = 13<br>pocity = 4.<br>rage = 76<br>Depth at<br>I Depth=<br>< 18.0" H | -18 s/n 0<br>nd+Trans<br>21 fps, N<br>02 fps, /<br>39 cf @ 1<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0.<br>00', Outle<br>495,9<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>14.71 cf<br>15.0' Fl<br>1 Box Pip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a method, T<br>Min. Travel<br>Avg. Travel<br>(2.25 hrs<br>orage= 0.9<br>ow Area= 2<br>olic Chann<br>(0800 '/'<br>et Invert= 2<br>(000 sf, 14.2<br>'s @ 12.2<br>'s @ 12.2     | Time Span=<br>Time= 0.7<br>Time= 1.7<br>4'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>6 hrs, Volu<br>6 hrs, Volu<br>6 hrs, Volu<br>7'                           | <ul> <li>a.00-24.00 hrs, dt= 0.01 hrs</li> <li>min 'min 'min'</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 1.58" for 10 Yr event me= 65,489 cf</li> <li>ame= 65,480 cf, Atten= 0%, Lag= 0.1 min</li> <li>a min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Printed 9/16/2020                   |

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC

#### 16181-091620

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC Type III 24-hr 25 Yr Rainfall=5.10" Printed 9/16/2020 Page 8

#### Summary for Subcatchment 1S: Culvert

Runoff = 16.81 cfs @ 12.23 hrs, Volume=

73,917 cf, Depth> 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 25 Yr Rainfall=5.10"

| _ | A     | rea (sf) | CN E    | Description |              |                                 |
|---|-------|----------|---------|-------------|--------------|---------------------------------|
| * |       | 42,500   | 78 V    | Vetlands    |              |                                 |
|   | 1     | 00,400   | 55 V    | Voods, Go   | od, HSG B    |                                 |
| _ | 3     | 53,000   | 68 1    | acre lots,  | 20% imp, H   | ISG B                           |
|   | 4     | 95,900   | 66 V    | Veighted A  | verage       |                                 |
|   | 4     | 25,300   | 8       | 5.76% Pe    | rvious Area  |                                 |
|   |       | 70,600   | 1       | 4.24% Imp   | pervious Are | ea                              |
|   |       |          |         |             |              |                                 |
|   | Tc    | Length   | Slope   | Velocity    | Capacity     | Description                     |
| _ | (min) | (feet)   | (ft/ft) | (ft/sec)    | (cfs)        |                                 |
|   | 8.2   | 50       | 0.0200  | 0.10        |              | Sheet Flow, A-B                 |
|   |       |          |         |             |              | Grass: Dense n= 0.240 P2= 3.20" |
|   | 1.2   | 270      | 0.0500  | 3.60        |              | Shallow Concentrated Flow, B-C  |
|   |       |          |         |             |              | Unpaved Kv= 16.1 fps            |
|   | 1.0   | 250      | 0.0400  | 4.06        |              | Shallow Concentrated Flow, C-D  |
|   |       |          |         |             |              | Paved Kv= 20.3 fps              |
|   | 1.7   | 150      | 0.0100  | 1.50        |              | Shallow Concentrated Flow, D-E  |
|   |       |          |         |             |              | Grassed Waterway Kv= 15.0 fps   |
|   | 4.1   | 335      | 0.0750  | 1.37        |              | Shallow Concentrated Flow, E-F  |
| _ |       |          |         |             |              | Woodland Kv= 5.0 fps            |

16.2 1,055 Total

#### Summary for Reach 6R: Stream

| Inflow Area = | 495,900 sf, 14.24% Impervious, | Inflow Depth > 1.79" | for 25 Yr event     |
|---------------|--------------------------------|----------------------|---------------------|
| Inflow =      | 16.81 cfs @ 12.23 hrs, Volume= | 73,917 cf            |                     |
| Outflow =     | 16.78 cfs @ 12.26 hrs, Volume= | 73,856 cf, Atter     | n= 0%, Lag= 1.3 min |

Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 7.16 fps, Min. Travel Time= 0.7 min Avg. Velocity = 3.11 fps, Avg. Travel Time= 1.6 min

Peak Storage= 703 cf @ 12.24 hrs Average Depth at Peak Storage= 1.00' Bank-Full Depth= 1.00' Flow Area= 2.3 sf, Capacity= 16.68 cfs

3.50' x 1.00' deep Parabolic Channel, n= 0.040 Winding stream, pools & shoals Length= 300.0' Slope= 0.0800  $^{\prime\prime}$  Inlet Invert= 298.00', Outlet Invert= 274.00'



#### Summary for Reach 7R: Culvert

 Inflow Area =
 495,900 sf, 14.24% Impervious, Inflow Depth > 1.79" for 25 Yr event

 Inflow =
 16.78 cfs @
 12.26 hrs, Volume=
 73,856 cf

 Outflow =
 16.78 cfs @
 12.26 hrs, Volume=
 73,847 cf, Atten= 0%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Max. Velocity= 14.14 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.83 fps, Avg. Travel Time= 0.2 min

Peak Storage= 83 cf @ 12.26 hrs Average Depth at Peak Storage= 0.30' Bank-Full Depth= 1.50' Flow Area= 6.0 sf, Capacity= 139.52 cfs

48.0" W x 18.0" H Box Pipe n= 0.013 Length= 70.0' Slope= 0.0929 '/' Inlet Invert= 267.50', Outlet Invert= 261.00'

16181-091620

Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC Type III 24-hr 25 Yr Rainfall=5.10" Printed 9/16/2020 Page 10

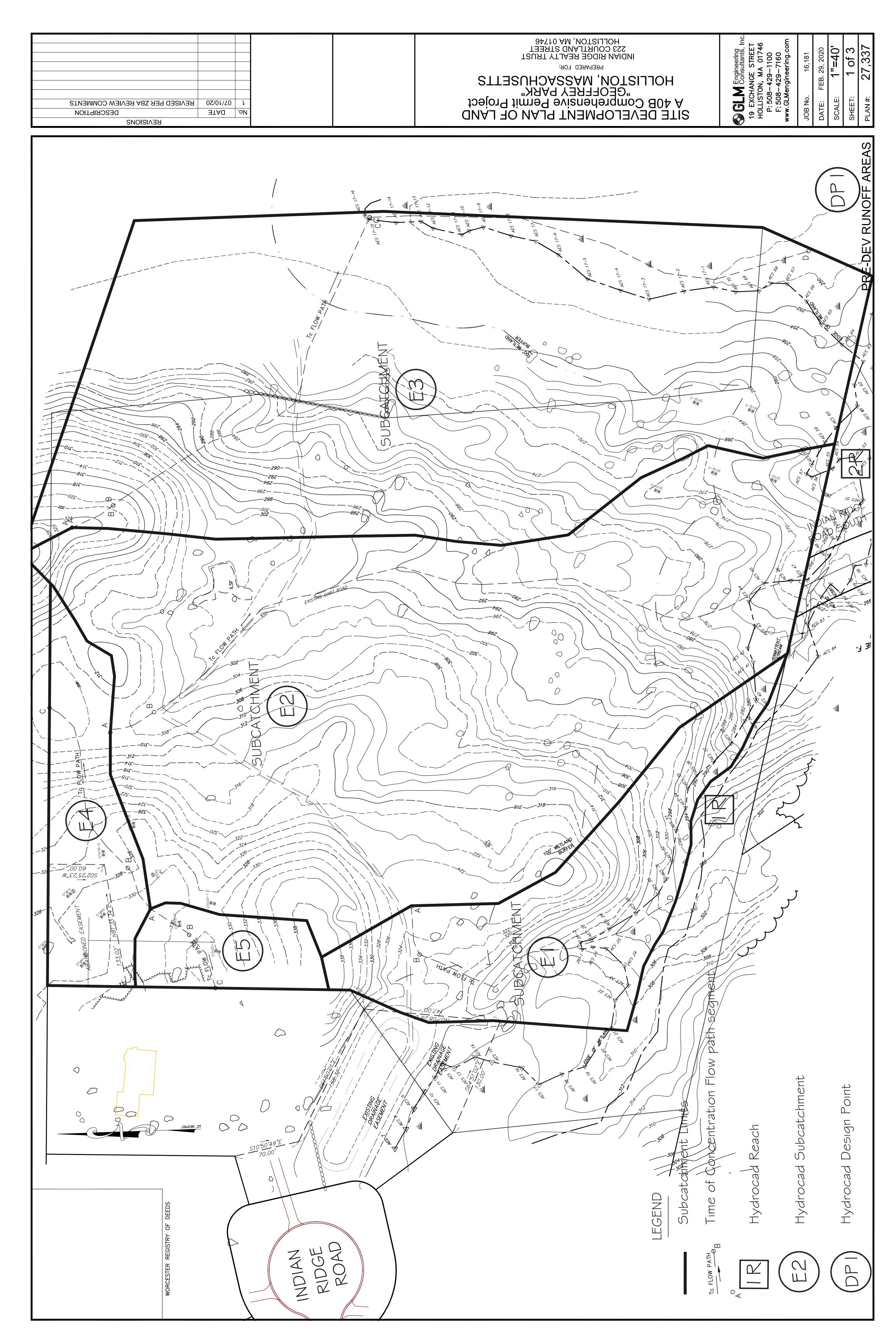


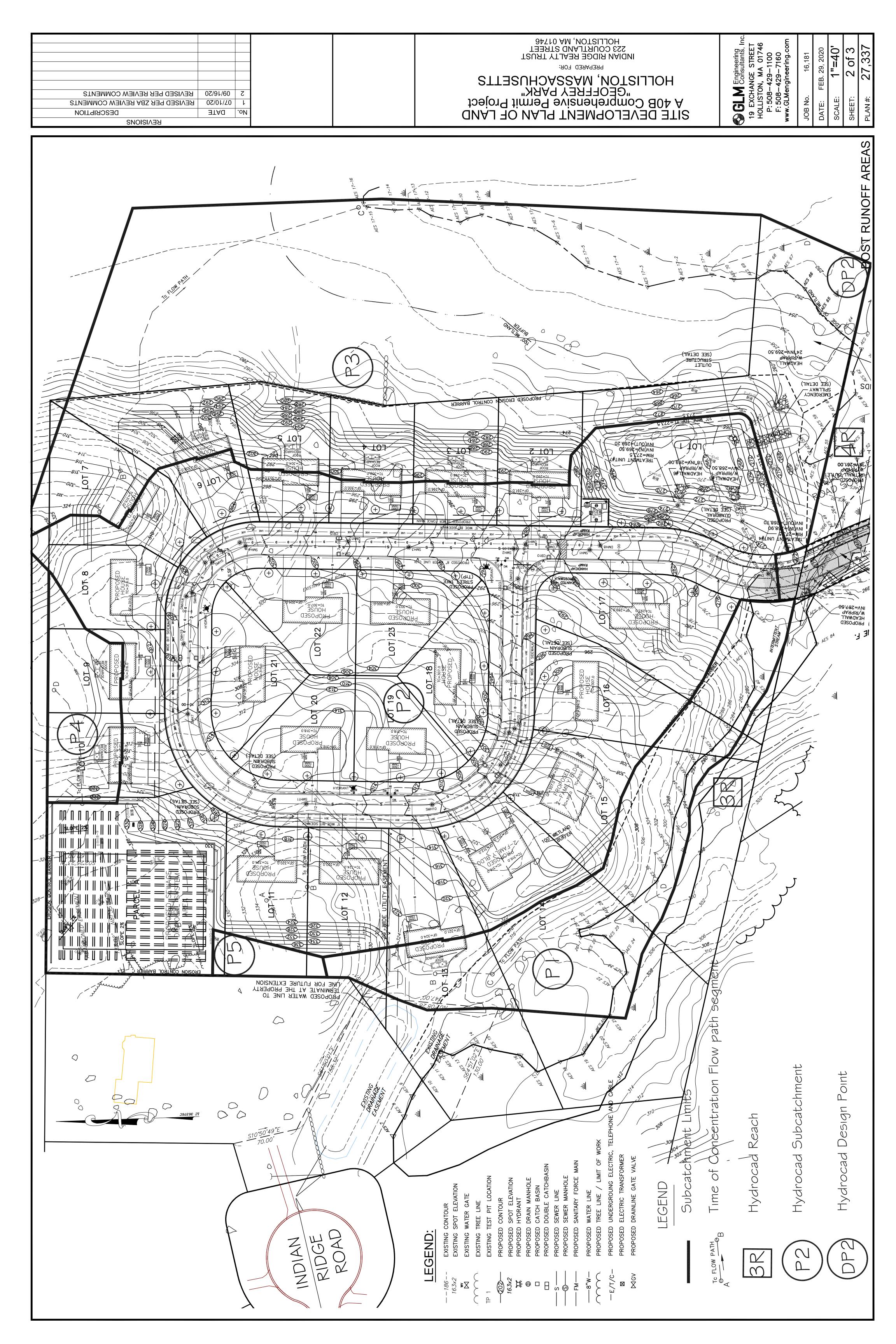

#### Summary for Subcatchment 1S: Culvert

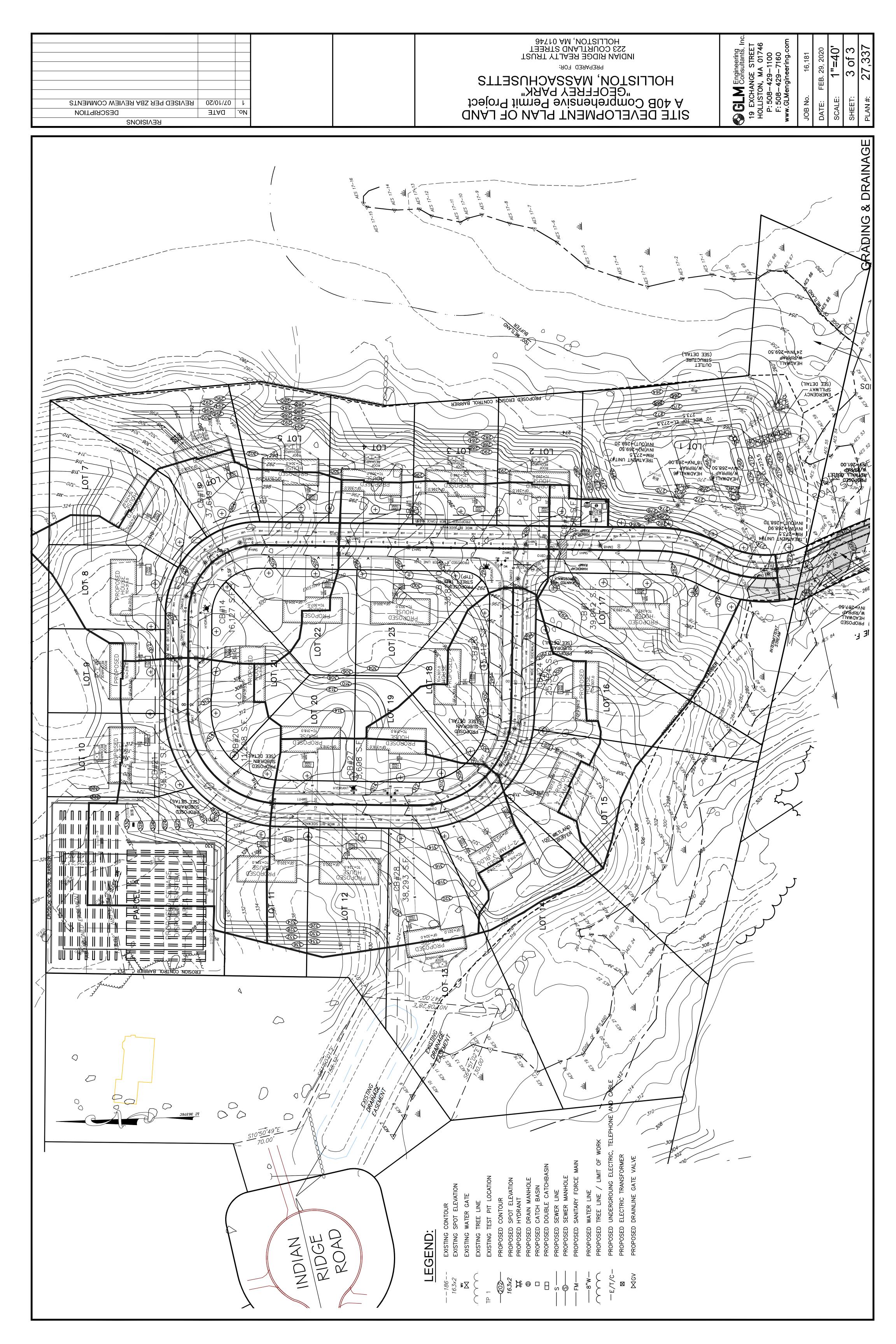
Runoff = 31.12 cfs @ 12.22 hrs, Volume= 131,940 cf, Depth> 3.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 100 Yr Rainfall=7.00"

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>rea (sf)</u><br>42,500                                                                                                                      |                                                                                                                                                                                                                               | <u>Description</u><br>Netlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00,400                                                                                                                                         | 55                                                                                                                                                                                                                            | Noods, Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53,000                                                                                                                                         |                                                                                                                                                                                                                               | acre lots,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 | HSG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95,900<br>25,300                                                                                                                               |                                                                                                                                                                                                                               | Neighted A<br>35.76% Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25,300<br>70,600                                                                                                                               |                                                                                                                                                                                                                               | 14.24% Imp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Length<br>(feet)                                                                                                                               | Slope<br>(ft/ft)                                                                                                                                                                                                              | Velocity<br>(ft/sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
| (min)<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (leet)<br>50                                                                                                                                   | 0.0200                                                                                                                                                                                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (cfs)                                                                                                                                                                           | Sheet Flow, A-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                                                                                             | 0.0200                                                                                                                                                                                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Grass: Dense n= 0.240 P2= 3.20"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270                                                                                                                                            | 0.0500                                                                                                                                                                                                                        | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Shallow Concentrated Flow, B-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250                                                                                                                                            | 0 0 4 0 0                                                                                                                                                                                                                     | 4.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Unpaved Kv= 16.1 fps<br>Shallow Concentrated Flow, C-D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250                                                                                                                                            | 0.0400                                                                                                                                                                                                                        | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Paved Kv= 20.3 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150                                                                                                                                            | 0.0100                                                                                                                                                                                                                        | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Shallow Concentrated Flow, D-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 005                                                                                                                                            | 0.0750                                                                                                                                                                                                                        | 4.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Grassed Waterway Kv= 15.0 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |
| 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 335                                                                                                                                            | 0.0750                                                                                                                                                                                                                        | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                 | Shallow Concentrated Flow, E-F<br>Woodland Kv= 5.0 fps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
| 16.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,055                                                                                                                                          | Total                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 | Summary for Reach 6R: Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| nflow Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 | vious, Inflow Depth > 3.19" for 100 Yr event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |
| nflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                                                                                                                              |                                                                                                                                                                                                                               | s@ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| Outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                                                                                                              | 31.05 C                                                                                                                                                                                                                       | s@ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o nrs, Volu                                                                                                                                                                     | ume= 131,858 cf, Atten= 0%, Lag= 1.2 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| 16181-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01620                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type III 24-hr, 100 Yr Bainfall=7 00"                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                | rosoft                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type III 24-hr 100 Yr Rainfall=7.00"<br>Printed 9/16/2020 |
| Prepare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d by Mic                                                                                                                                       |                                                                                                                                                                                                                               | 7559 © 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 HydroCA                                                                                                                                                                      | AD Software Solutions LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Printed 9/16/2020                                         |
| Prepare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d by Mic                                                                                                                                       |                                                                                                                                                                                                                               | 7559 © 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 HydroCA                                                                                                                                                                      | AD Software Solutions LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                           |
| Prepare<br>HydroCAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d by Mic<br>D® 10.00                                                                                                                           | -18 s/n 0                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 | AD Software Solutions LLC<br>= 0.00-24.00 hrs, dt= 0.01 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d by Mic<br>D® 10.00<br>by Stor-In<br>ocity= 8.                                                                                                | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, <b>1</b>                                                                                                                                                                              | s method, T<br>⁄lin. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ime Span=<br>Time= 0.6                                                                                                                                                          | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d by Mic<br>D® 10.00<br>by Stor-In<br>ocity= 8.                                                                                                | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, <b>1</b>                                                                                                                                                                              | s method, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ime Span=<br>Time= 0.6                                                                                                                                                          | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel<br>Avg. Velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d by Mic<br>D® 10.00<br>by Stor-In<br>ocity= 8.<br>bcity = 3.                                                                                  | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1                                                                                                                                                                        | s method, T<br>Ain. Travel<br>Avg. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ime Span=<br>Time= 0.6                                                                                                                                                          | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel<br>Avg. Velo<br>Peak Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d by Mic<br>$D^{\textcircled{B}} 10.00$<br>by Stor-In<br>ocity= 8.<br>ocity = 3.<br>orage= 1,                                                  | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @                                                                                                                                                            | s method, T<br>Ain. Travel<br>Avg. Travel<br>) 12.24 hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ïme Span=<br>Time= 0.6<br>Time= 1.4                                                                                                                                             | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel<br>Avg. Velo<br>Peak Sto<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>$D^{\textcircled{m}} 10.00$<br>by Stor-Ir<br>ocity= 8.<br>ocity = 3.<br>prage= 1,<br>Depth at                                      | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St                                                                                                                                                 | s method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'                                                                                                                                      | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing b<br>Max. Vel<br>Avg. Velo<br>Peak Sto<br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>$D^{\textcircled{m}} 10.00$<br>by Stor-Ir<br>ocity= 8.<br>ocity = 3.<br>prage= 1,<br>Depth at                                      | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St                                                                                                                                                 | s method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'                                                                                                                                      | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d by Mic<br>D® 10.00<br>by Stor-Ir<br>ocity= 8.<br>ocity = 3.<br>prage= 1,<br>Depth at<br>I Depth=                                             | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl                                                                                                                                     | s method, T<br>Ain. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap                                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d by Mic<br>$D^{\textcircled{B}} 10.00$<br>by Stor-In<br>ocity= 8.<br>ocity = 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' dea            | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak Si<br>1.00' Fi<br>20 Parab                                                                                                                         | s method, T<br>Ain. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap                                                                                                                       | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | s method, T<br>Ain. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Routing b<br>Max. Vel<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>bacity= 16.68 cfs<br>40 Winding stream, pools & shoals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Max. Vel<br>Avg. Vel<br>Avg. Vel<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>$D^{\textcircled{B}}$ 10.00<br>by Stor-In<br>ocity= 8.<br>ocity= 3.<br>brage= 1,<br>Depth at<br>II Depth=<br>1.00' der<br>300.0' S | <u>-18 s/n 0</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0                                                                                                             | method, T<br>Min. Travel<br>Avg. Travel<br>12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04                                                                                                        | = 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>I min<br>pacity= 16.68 cfs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=<br>Inlet Inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>D® 10.00<br>by Stor-Ir<br>ocity= 8.<br>boity = 3.<br>brage= 1,<br>Depth at<br>I Depth=<br>1.00' der<br>300.0' S<br>brt= 298.0      | - <u>18 s/n C</u><br>nd+Trans<br>19 fps, 1<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl                                                                                               | s method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                             | e 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>pacity= 16.68 cfs<br>40 Winding stream, pools & shoals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=<br>Inlet Inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d by Mic<br>D® 10.00<br>by Stor-Ir<br>ocity= 8.<br>ocity= 3.<br>orage= 1,<br>Depth at<br>I Depth=<br>1.00' der<br>300.0' S<br>ort= 298.0       | - <u>18 s/n C</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl                                                                                               | s method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                             | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs</li> <li>min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> </ul> Summary for Reach 7R: Culvert vious, Inflow Depth > 3.19" for 100 Yr event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ea = _ =                                                                                                                                       | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c                                                                                   | s method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.8800 <sup>1</sup> /<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                             | <ul> <li>0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>bracity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>urne= 131,858 cf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ea = _ =                                                                                                                                       | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c                                                                                   | s method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'                                                                                             | <ul> <li>0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>bracity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>ume= 131,858 cf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=<br>Inlet Inve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                               | <u>-18 s/n C</u><br>nd+Trans<br>19 fps, 1<br>53 fps, .<br>137 cf @<br>Peak S1<br>1.00' Fl<br>ap Parab<br>Slope= 0<br>00', Outl<br>495,s<br>31.05 c<br>31.04 c                                                                 | e method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Impern<br>5 hrs, Volu<br>5 hrs, Volu                                                 | e 0.00-24.00 hrs, dt= 0.01 hrs<br>min<br>pacity= 16.68 cfs<br>40 Winding stream, pools & shoals<br><b>Summary for Reach 7R: Culvert</b><br>vious, Inflow Depth > 3.19" for 100 Yr event<br>une= 131,858 cf<br>une= 131,845 cf, Atten= 0%, Lag= 0.1 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inve<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Outflow<br>Routing I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ea = = = = = = = = = = = = = = = = = = =                                                                                                       | <u>-18 s/n C</u><br>nd+Trans<br>19 fps, I<br>53 fps, J<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,c<br>31.05 c<br>31.04 c<br>nd+Trans                                                     | a method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Imperv<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu                                  | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>brain</li> <li>brain</li> <li>brain<!--</td--><td>Printed 9/16/2020</td></li></ul> | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inver<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Outflow<br>Routing I<br>Max. Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                               | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c<br>31.04 c<br>                                                                    | e method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Trave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Imperv<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu                   | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inver<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Outflow<br>Routing I<br>Max. Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                               | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak St<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c<br>31.04 c<br>                                                                    | a method, T<br>Min. Travel<br>Avg. Travel<br>0 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Imperv<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu                   | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=<br>Inlet Inve<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Outflow<br>Routing I<br>Max. Vela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                               | <u>-18 s/n C</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak SI<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,9<br>31.05 c<br>31.05 c<br>31.04 cm<br>-64 fps, 7<br>3 fps, -                           | is method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Imperv<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu                   | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>Length=<br>Inlet Inve<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Dutflow<br>Routing I<br>Max. Vela<br>Peak Sto<br>Peak Sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ea = = = = = = = = = = = = = = = = = = =                                                                                                       | <u>-18 s/n C</u><br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,c<br>31.05 c<br>31.04 c<br>nd+Trans<br>.64 fps, 73 fps, .23 cf @                        | e method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Trave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>274.00'<br>24% Imperv<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>7 ime Span=<br>el Time= 0.2   | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inver<br>Inflow Ar<br>Inflow Ar<br>Inflow Cutflow<br>Routing I<br>Max. Vel<br>Avg. Vela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ea = = = = = = = = = = = = = = = = = = =                                                                                                       | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c<br>31.04 c<br>                                                                    | e method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel<br>2.25 hrs<br>orage= 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>24% Impent<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 me Span=<br>4 Time= 0.2 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>bacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li>Summary for Reach 7R: Culvert</li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Velo<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' X<br>_ength=<br>nlet Inver<br>and Inver<br>nflow Ar<br>nflow Ar<br>nflow<br>Dutflow<br>Routing I<br>Max. Velo<br>Avg. Velo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ea = = = = = = = = = = = = = = = = = = =                                                                                                       | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c<br>31.04 c<br>                                                                    | e method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel<br>2.25 hrs<br>orage= 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>24% Impent<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 me Span=<br>4 Time= 0.2 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>Dacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' ×<br>Length=<br>Inlet Inve<br>Inflow Ar<br>Inflow Ar<br>Inflow<br>Outflow<br>Routing I<br>Max. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>48.0" W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                 | -18 s/n C<br>nd+Trans<br>19 fps, 1<br>53 fps, 1<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,6<br>31.05 c<br>31.05 c<br>31.04 c<br>nd+Trans<br>.64 fps, 7<br>23 cf @<br>Peak Si<br>1.50' Fl | a method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0800 '/<br>et Invert= 2<br>000 sf, 14.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is @ 12.2<br>is method, T<br>Min. Travel<br>(2.25 hrs<br>orage= 0.4<br>ow Area= 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>24% Impent<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 me Span=<br>4 Time= 0.2 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>Dacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Printed 9/16/2020                                         |
| Prepare<br>HydroCAI<br>Routing I<br>Max. Vel<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>3.50' x<br>ength=<br>nlet Inve<br>Net<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>48.0'' W 3<br>here a Sto<br>Average<br>Bank-Ful<br>Avg. Vela<br>Peak Sto<br>Average<br>Bank-Ful<br>100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 | ea =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                 | -18 s/n C<br>nd+Trans<br>19 fps, I<br>53 fps, .<br>137 cf @<br>Peak Si<br>1.00' Fl<br>ep Parab<br>Slope= 0<br>00', Outl<br>495,5<br>31.05 c<br>31.04 c<br>31.04 c<br>                                                         | a method, T<br>Min. Travel<br>Avg. Travel<br>O 12.24 hrs<br>orage= 1.4<br>ow Area= 2<br>olic Chann<br>0.800 '/'<br>et Invert= 2<br>0.000 sf, 14.2<br>is @ 12.2<br>is @ 12 | Time Span=<br>Time= 0.6<br>Time= 1.4<br>2'<br>2.3 sf, Cap<br>el, n= 0.04<br>24% Impent<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 hrs, Volu<br>5 me Span=<br>4 Time= 0.2 | <ul> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>min<br/>h min</li> <li>Dacity= 16.68 cfs</li> <li>40 Winding stream, pools &amp; shoals</li> <li><b>Summary for Reach 7R: Culvert</b></li> <li>vious, Inflow Depth &gt; 3.19" for 100 Yr event<br/>me= 131,858 cf<br/>ume= 131,845 cf, Atten= 0%, Lag= 0.1 min</li> <li>= 0.00-24.00 hrs, dt= 0.01 hrs<br/>1 min</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Printed 9/16/2020                                         |


Length= 70.0' Slope= 0.0929 '/' Inlet Invert= 267.50', Outlet Invert= 261.00' Prepared by Microsoft HydroCAD® 10.00-18 s/n 07559 © 2016 HydroCAD Software Solutions LLC





### <u>APPENDIX – G</u>

# Supplemental Stormwater Plans

Pre-Development Subcatchment Areas Post-Development Subcatchment Areas Hydraulic Subcatchment Areas





