SUPPLEMENTAL ENVIRONMENTAL IMPACT REPORT

HOPPING BROOK PARK ROUTE 16 HOLLISTON, MASSACHUSETTS EOEA FILE #: 4411

SUBMITTED IN COMPLIANCE WITH THE:

TON TON

MASSACHUSETTS ENVIRONMENTAL POLICY ACT (MGL Chapter 30, Sections 61 through 62H)

AND

REGULATIONS

(301 CMR 11.00 et seq.)

SUBMITTED BY:

NEW HOPPING BROOK REALTY TRUST 929 Boston Post Road East Suite #2 Marlborough, Massachusetts 01752

PREPARED BY:

SANFORD ECOLOGICAL SERVICES, INC. 30 Turnpike Road Southborough, Massachusetts 01772

July 2003

SES Job No.: 20095

List of Contributors

Supplemental Environmental Impact Report
Hopping Brook Park
Route 16
Holliston, Massachusetts
EOEA #: 4411

Sanford Ecological Services, Inc.

30 Turnpike Road Southborough, MA 01772

Abend Associates, Inc.

265 Winn Street Burlington, MA 01803

Bruce Saluk & Associates, Inc.

576 Boston Post Road Marlborough, MA 01752

New Hopping Brook Realty Trust

929 Boston Post Road East Suite #2 Marlborough, MA 01752

SEA Consultants. Inc.

485 Massachusetts Avenue Cambridge, MA 02139

Oxbow Associates, Inc.

P.O. Box 971 Acton, MA 01720-0971

Epsilon Associates, Inc.

150 Main Street Maynard, MA 01754-0700

Circulation List

Supplemental Environmental Impact Report
Hopping Brook Park, Route 16
Holliston, Massachusetts
EOEA #: 4411

Three copies will be provided to:

Secretary Ellen Roy Herzfelder Executive Office of Environmental Affairs Attn: MEPA Office 251 Causeway Street, Suite 900 Boston, MA 02114

One copy will be provided to:

Executive Office of Environmental Affairs Land Policy – Bob O'Connor 251 Causeway Street, Suite 900 Boston, MA 02114

Department of Environmental Protection Commissioner's Office One Winter Street Boston, MA 02108

Department of Environmental Protection Bureau of Waste Prevention Attn: Keith Grillo One Winter Street Boston, MA 02108

Department of Environmental Protection Central Regional Office Attn: MEPA Coordinator 627 Main Street Worcester, MA 01608

Department of Environmental Protection Central Regional Office Bureau of Resource Protection - Wetlands 627 Main Street Worcester, MA 01608

Executive Office of Transportation & Construction
Attn: Environmental Reviewer
10 Park Plaza, Room 3510
Boston, MA 02116-3969

Massachusetts Highway Department Public/Private Development Unit 10 Park Plaza Boston, MA 02116

Massachusetts Highway Department District 3 Attn: MEPA Coordinator 403 Belmont Street Worcester, MA 01604

Massachusetts Aeronautics Commission Attn: MEPA Coordinator 10 Park Plaza, Room 6620 Boston, MA 02116-3966

Massachusetts Historical Commission The MA Archives Building 220 Morrissey Boulevard Boston, MA 02125

Metropolitan Area Planning Council 60 Temple Place, 6th Floor Boston, MA 02111

Massachusetts Water Resources Authority Attn: MEPA Coordinator 100 First Avenue Charlestown Navy Yard Boston, MA 02129 Massachusetts Bay Transit Authority Attn: MEPA Coordinator 10 Park Plaza, 6th Floor Boston, MA 02216-3966

Jon Delli Priscoli New Hopping Brook Realty Trust 929 Boston Post Road, Suite #2 Marlborough, MA 01752

DEP, Central Regional Office ATTN: Mary Gardner, Deputy Regional Director 627 Main Street Worcester, MA 01608

Charles River Watershed Association ATTN: Margaret Van Deusen 2391 Commonwealth Avenue Auburndale, MA 02466-1773

Natural Heritage and Endangered Species Program ATTN: Pat Huckery One Rabbit Hill Road Westborough, MA 01581

Holliston Conservation Commission ATTN: Jane Pierce, Agent 702 Washington Street Holliston, MA 01746

Town of Holliston Board of Selectmen 702 Washington Street Holliston, MA 01746

Town of Holliston Planning Board 702 Washington Street Holliston, MA 01746

Town of Holliston Board of Health 702 Washington Street Holliston, MA 01746

Wastewater Committee Paul Saulnier, Chair 702 Washington Street Holliston, MA 01746 Abend Associates, Inc. 265 Winn Street Burlington, MA 01803

Bruce Saluk & Associates, Inc. 576 Boston Post Road Marlborough, MA 01752

Epsilon Associates, Inc. 150 Main Street Maynard, MA 01754-0700

Oxbow Associates, Inc. P.O. Box 971 Acton, MA 01720-0971

SEA Consultants. Inc. 485 Massachusetts Avenue Cambridge, MA 02139

SECRETARY

The Commonwealth of Massachusetts Executive Office of Environmental Affairs 251 Causeway Street, Suite 900 Boston, MA 02114-2119

Tel. (617) 626-1000 Fax (617) 626-1181 http://www.magnet.state.ma.us/envir

May 24, 2002

CERTIFICATE OF THE SECRETARY OF ENVIRONMENTAL AFFAIRS ON THE NOTICE OF PROJECT CHANGE

PROJECT NAME

: Hopping Brook Park

PROJECT MUNICIPALITY

: Holliston

PROJECT WATERSHED

: Charles River

EOEA NUMBER

: 4411

PROJECT PROPONENT

: Jon Delli Priscoli

DATE NOTICED IN MONITOR : April 24, 2002

Pursuant to the Massachusetts Environmental Policy Act (G.L. c. 30, ss. 61-62H) and Section 11.10 of the MEPA regulations (301 CMR 11.00), I have reviewed the Notice of Project Change submitted on this project and hereby determine that it does require the preparation of a Supplemental Environmental Impact Report (SEIR).

The original Hopping Brook Park project involved the construction of approximately 3,000,000 square feet (sf) of office and research and development space on 281 acres. project also included access roadways and 9,684 parking spaces. The buildings were to be served by the public water supply and on-site septic systems. The project was reviewed under MEPA in 1982 and 1983. A Certificate was issued on June 14, 1983 finding the_Final EIR on the project to be adequate.

To date, the Phase I portion of the project, 558,000 sf of office, manufacturing, and warehouse space, has been constructed EOEA# 4411

Phase I consists of 19 lots and occupies in 16 buildings. approximately 100 acres of the site.

The Notice of Project Change identifies several changes to the project. The proponent has acquired an adjacent 85 acre parcel which has been added to the site, making the total site 366 acres. The project has been redesigned to eliminate 45 acres of net land alteration and 43 acres of net impervious area. The redesign has reduced wetland alteration from 1,393,920 sf in the original project to 2,810 sf in the current proposal. Additionally, the redesign has provided protection for spotted turtle habitat. Finally, the current proposal includes the construction of a wastewater treatment facility with groundwater disposal of treated effluent on the site.

Other aspects of the project - gross square footage, water/sewer use, traffic generation and parking, remain at the same levels as in the original project.

While I acknowledge that many of the changes in the project are designed to reduce potential impacts associated with the original project, there are new elements to the project, such as the wastewater treatment and disposal system, and a number of new or more stringent regulatory requirements, such as the Massachusetts Endangered Species Act, the Department of Environmental Protection's (DEP) Stormwater Policy, and the Rivers Protection Act*, that require review in a Supplemental EIR.

The SEIR should follow the guidance for form and content found at Section 11.07 of the MEPA Regulations and should address the following specific issues.

PROJECT DESCRIPTION

The SEIR should contain a complete and detailed description of the site and of the master plan for the project. description should clearly identify resource areas on the site and the spatial relationship between these resource areas and facilities to be constructed as part of the project.

^{*} Although the Rivers Protection Act exempts projects for which a Draft EIR was submitted on or before November 1, 1996, this exemption does not apply to the additional site area that has no undergone MEPA review. 2

TRANSPORTATION

The NPC contains a technical memorandum dealing with traffic, but which has only analyzed the intersection of the site drive with Route 16. The SEIR should contain an updated traffic analysis that is prepared in accordance with the EOEA/EOTC Guidelines which analyzes the impacts of the project on the Route 16 corridor, between Route 126 to the east and I-495 to the west, and which revisits the mitigation proposed for the original project to determine whether that mitigation is sufficient under the current conditions. Should further mitigation appear necessary, the SEIR should describe that further mitigation. I suggest consultation with the Massachusetts Highway Department in determining the scope of the study and the study area.

AIR QUALITY

This project is expected to generate in excess of 15,000 vehicle trips per day. In order for a project with that generation rate to be consistent with the State Implementation Plan, the proponent will have to conduct an air quality mesoscale analysis for volatile organic compounds. The protocols for this study should be developed in concert with the DEP Division of Air Quality Control and the results of the study, and any Transportation Demand Management proposals or other mitigations measures, should be reported in the SEIR.

WETLANDS, FLOODPLAINS, AND RIVERFRONT AREAS

I acknowledge the significant reduction in wetland alteration from the original project and that the currently proposed alteration of wetlands and riverfront areas is the result of a crossing of wetlands for the access drive into Phase II and for the installation of utilities. The NPC contains a copy of the Notice of Intent that was filed in March with the Holliston Conservation Commission. The SEIR should contain a copy of the Order of Conditions issued as a result of that filing if it is available at the time of filing of the SEIR. If it is not available, the SEIR should contain a discussion explaining why it has not issued.

The SEIR should also provide greater detail on the floodplain alterations identified in the NPC and what mitigation will be provided for floodplain alterations.

ENDANGERED SPECIES

EOEA# 4411

I note that the NPC contains a study of the spotted turtle populations on the site that has resulted in modifications to the project layout that, for the most part, avoid wetland and upland habitat of these species. Nevertheless, the Natural Heritage and Endangered Species Program (NHESP) has reported that the site is also habitat for the four-toed salamander, another rare species. NHESP indicates that the project, as currently configured, will likely result in a "take" of rare species under the Massachusetts Endangered Species Act. The SEIR should contain a section that shows that the proposed project, and any proposed mitigation for rare species, will result in a long-term benefit to the conservation of the populations of rare species on the site. suggest close coordination with the NHESP during development of this information.

STORMWATER

The NPC contains a stormwater management plan designed to accommodate runoff from the roadway system and to meet the The study does standards contained in the DEP Stormwater Policy. not include other impervious areas such as parking lots and roof drains.

The SEIR should contain a stormwater management plan for all impervious areas to be developed on the site. The plan should be designed to control both the quantity of runoff and the quality of runoff and should be consistent with the DEP Stormwater Policy.

WASTEWATER DISPOSAL

The current proposal includes the construction of a wastewater treatment plant on the site to treat and dispose of the projected 225,000 gallons per day of waste from the Park. The NPC contains little information on this facility.

The SEIR should provide a location for the treatment facility and disposal site. While I don't expect that detailed design will be available at the time the SEIR is filed, I expect that the SEIR will identify one or more siting locations and will identify the disposal methodology and provide some assurance that the selected disposal methodology is feasible.

May 24, 2002

DATE

Comments received :

Department of Environmental Protection CERO Department of Environmental Protection DAQC Natural Heritage and Endangered Species Program Charles River Watershed Association

BD/rf

MICHAEL S. DUKAKIS GOVERNOR

> JAMES S. HOYTE SECRETARY

The Commonwealth of Massachusells Executive Office of Environmental Affairs 100 Cambridge Street Boston, Massachusetts 02202

CERTIFICATE OF THE SECRETARY ENVIRONMENTAL AFFAIRS

ON

FINAL ENVIRONMENTAL IMPACT REPORT

PROJECT NAME:

Hopping Brook Park

PROJECT LOCATION:

Holliston

EOEA NUMBER:

4411

PROJECT PROPONENT:

Hopping Brook Trust

DATE NOTICED IN MONITOR:

May 9, 1983

The Secretary of Environmental Affairs herein issues a statement that the Final Environmental Impact Report submitted in the above referenced project does adequately and properly comply with Massachusetts General Laws, Chapter 30, Section 62-62H inclusive, and the regulations implementing MEPA.

I find the FEIR for this project to have adequately complied with C3Q \S 61-62H; however, there remain several issues that have not been thoroughly addressed.

The EIR has defined that the developer will make improvements to Route 16 at the access drive and will install signals at that intersection. Although I agree that the developer should not be responsible for all the improvements in the area, I feel that the so-called railroad access should be the responsibility of the proponent since this will serve only his development.

I also recommend that avoidance of archaeologically sensitive areas be a prime motivation in site planning for the project and that the developer commit to an approved data recovery program for archaeological materials.

6/14/83

MIES S. HOYTY, SECRETARY

The Commonwealth of Massachusells Executive Office of Environmental Affairs 100 Cambridge Street Boston, Massachusetts 02202

JAMES S. HOYTE SECRETARY

CERTIFICATE OF THE SECRETARY OF ENVIRONMENTAL AFFAIRS

ON

DRAFT ENVIRONMENTAL INPACT REPORT

PROJECT NAME:

Ecoping Brook Park

PROJECT LOCATION:

Holliston

ECEA NUMBER:

4471

PROJECT PROPONENT:

Hopping Brook Trust

DATE NOTICED IN MONITOR:

February 22, 1983

The Secretary of Environmental Affairs herein issues a statement that the Draft Environmental Impact Report submitted on the above referenced project does adequately and properly comply with Massachusetts General Laws, Chapter 31, Section 62-62H inclusive, and the regulations implementing MEPA.

Although this EIR adequately serves as a DTaft EIR, there are some issues that must be elaborated on in the Final EIR. $^{\circ}$

The FEIR may be direculated as a supplement to the DIIR and should contain the existing Chapter 1, this Certificate and the attached letters of comment and responses to same. My comments are as follows:

Traffic

The 1987 408 table shows considerable LOS=F at the 109/495 interchange. Would signalization help?

Why does the left turn from Ramp A produce LOS E for Phase III while the same turn produces LOS E for Phase II:

FORM D

Page 2 DEIR Adequate #4411 Hopping Brook

In Figure 3.11, are the results the same for Phase II and III? The FER should present a table to show percent increases in trafic for all roads studied.

The DEIR identifies traffic improvements that would improve flow in the area. How and by whom would these improvements be implemented?

Air Quality

The FEIR should address the issues raised in the latter of comment from DEDE-DAOC attached.

Water Supply

The proponent should consider the use of on-site water sources for landscape use to reduce the demand on the municipal water system.

Archaeology

Relocate construction to avoid sensitive archaeological areas and sites or, if avoidance is not possible, a data recovery program must be developed.

The comments in the attached letters shall be addressed in the FEIR.

March 31, 1983

DATE

xii

EDWARD J. KING GOVERNOR JOHN A. BEWICK SECRETARY

The Commonwealth of Massachusells. Executive Office of Environmental Affairs 100 Cambridge Street Boston, Massachusetts 02202

CERTIFICATE OF THE SECRETARY OF ENVIRONMENTAL AFFAIRS

ON

ENVIRONMENTAL NOTIFICATION FORM

PROJECT NAME:

Hopping Brook Park

PROJECT LOCATION:

Holliston

EOEA NUMBER:

4411

PROJECT PROPONENT

Hopping Brook Trust

DATE NOTICED IN MONITOR:

May 10, 1982

Pursuant to M.G.L., Chapter 30, Section 62A and Sections 10.04(1) and 10.04(9) of the Regulations Governing the Implementation of the Massachusetts Environmental Policy Act, I hereby determine that the above referenced project does require the preparation of an Environmental Impact Report. The scope and alternatives for the EIR shall be as follows:

This project consists of 3,000,000 square feet more or less of office and manufacturing space and appurtenances to be built on 280 more or less acres off Route 16 in Holliston. This project is categorically included for preparation of an Environmental Impact Report under 301 CMR, Section 10.32, Class D, (1), (14), and (18).

The EIR for this project should follow the general format outlined in 301 CMR (MEPA Regulations), should include a copy of this scope and the attached comments, and shall include the following specific areas of investigation:

TRAFFIC

Traffic Study Area

The traffic study area shall include, at a minimum, the area defined by the intersections of Route 16/109 to the west, Route 126/16 to the north and east, Rout 126/1-495 to the south, and Route 109 and Main Street in West Medway.

FORM A

EOEA NUMBER: 4411 (Hopping Brook Park)

Page 2 (continued)

In addition, the study shall investigate all roadways with greater than 1,000 ADT to the point where the project traffic comprises less than 10% increase in ADT over the No-Build ADT. It shall also investigate roadways with less than 1,000 ADT to the point where project traffic compromises less than a 25% increase in ADT over the No-Build ADT.

Special attention should be given to the Data General and Fafard Developments at Routes 109/16/1-495 in Milford and to the Ledgemere Country, Development on Rout 126 at the Ashland line.

Traffic Analysis

Identify all roadways and intersections that are within 10% of capacity for build and no-build conditions. Develop v/c ratios for build and no-build conditions and identify amount of exceedance of v/c=1.0.

Bottlenecks and by-pass routes should be identified for both build and no-build and means of minimizing traffic impacts, i.e., traffic control devices, should be presented.

For the purposes of this study, assume that project completion will occur in 1987, and include general background growth of traffic volumes based on recent trends.

The EIR shall present justification of traffic generation methods based on use and mix of development.

Air Quality

The EIR shall contain an analysis of air quality and the potential air quality impacts resulting from the proposal. Details of the study and methodology shall be established by DEQE - NE, AQC, and the proponent.

Hydrology & Wetlands

The proposal calls for construction of storm water detention areas to reduce peak rates of runoff. The EIR should define by what methods this detention will be accomplished and at what locations, including supporting calculations. In addition, the EIR should evaluate the effect of development on the Natural Valley Storage Area P, and on flood storage on the site.

The site contains 32 acres, more or less, of wetlands and the EIR should define what effect development will have on the wetland values of these areas, including stream crossings.

The EIR shall present what methods will be employed to minimize impacts on these systems, including water quality impacts.

UTILITIES

Sewage Disposal

The project is expected to generate 225,000 gpd of sanitary waste that is scheduled to be disposed of through on-site disposal systems. The EIR should identify the water quality impacts from such a system and shall investigate the alternatives of on-site treatment and connection to a public sewer system, and the potential impacts of these alternatives.

Water Supply

The project is expected to require 250,000 gpd of potable water. The early phases of development are expected to be connected to public water with wells to supply future development.

The EIR should define the existing capacity and quality of the public supply and should present sufficient data to show that wells can be developed with adequate volume and qulaity to supply the proposed development, particularly in view of the potential for disposal of 225,000 gpd of sanitary wastes on-site.

In addition, the EIR should identify and assess the potential for impacts to the existing Holliston Wells near the site.

The comments of the Board of Water Commissioners should be included in this discussion.

Archaeology

The concerns of the MHC regarding an archaeological survey should be addressed in be EIR. The required study should be developed in concert with the MHC.

Wastes

The EIR should identify an estimated volume and composition of solid waste to be generated by the project and make some assumptions on how this waste will be disposed of, based on the types of industries intended for the park.

In addition, the EIR should make a general inventory of other wastes to be generated by the industries in the park, based on the general waste lists for the types of industries to be located in the park.

ALTERNATIVES

Access

The EIR should assess the use of a three lane entry with the third land being in-bound in the a.m. and out-bound in the p.m.

In addition, the EIR should assess the possibility of access to 1-495 over the abandoned Railroad row.

The present access scheme calls for a loop roadway that will require another stream crossing to be constructed. The EIR should investigate whether or not access can be adequate without constructing the new crossing.

DISTRIBUTION OF EIR

In addition to the distribution mandated by 301 CMR, the EIR shall be distributed to the South Middlesex News, attn: Ron Doyle (1 copy), and to the Holliston Public Library (2 copies), and to the Selectmen and Conservation Commission of the Town of Holliston.

06/17/82

JOHN A. BEWICK, SECRETARY

X۱

Table of Contents

Supplemental Environmental Impact Report Hopping Brook Park Route 16 Holliston, Massachusetts EOEA FILE #: 4411

TECHNICAL REPORT	
	ge#
Title Page	
List of Contributors	
Circulation List	III-IV
Certificate of the Secretary of Environmental Affairs on the Notice of Project Change	v-vix
Certificate of the Secretary of Environmental Affairs on the Final	
Environmental Impact Report	X
Certificate of the Secretary of Environmental Affairs on the Draft	
Environmental Impact Report	
Certificate of the Secretary of Environmental Affairs on the Environmental	
Notification Form	
Table of Contents	xvi
List of Figures	
List of Tables	
Plan Pocket	
Appendices	
1.0 EXECUTIVE SUMMARY	
1.1 History of Certificates Issued	1-1
1.2 Project Summary	1-2
1.2.1 Site Description	1-2
1.2.2 Project Description	1-2
1.2.3 Description of Resources and Relationship to Proposed	d
Construction	
1.2.4 Potential Environmental Impacts and Mitigations	1-5
1.2.5 Required Permits and Status	1-7
2.0 SUMMARY OF FEIR	
	2-1
2.1 IIII/0duction	<u> </u>
3.0 SUMMARY OF NPC	
3.1 Introduction	3-1
3.2 Proposed Changes and Improvements	3-1
3.3 Proposed Impacts and Mitigation	3-2

4.0 REVISED TRANSPORTATION STUDY AND AIR QUALITY ANALYS	
4.1 Transportation	
4.1.1 Impact Analysis	
4.1.2 Proposed Mitigation	4-2
4.1.3 Proposed Mitigation Commitments	4-3
4.2 Air Quality	4-3
5.0 REVISED WETLANDS, FLOODPLAINS, AND RIVERFRONT AREA	E 4
5.1 Existing Conditions	5-1
5.2 Proposed Impacts	
5.3 Proposed Mitigation	D-4
5.4 Order of Conditions	5-5
5.5 Proposed Work Outside of Floodplain	5-6
6.0 REVISED ENDANGERED SPECIES	6 1
6.1 Summary of Conservation Permit Request	, O-1
6.2 Impacts to Spotted Turtle Habitat	
6.2.1 Mitigation and Long-Term Net Benefit for the Spotted	6.2
Turtle	6-2
6.3 Impacts to Four-toed Salamander Habitat	0-3
6.3.1 Mitigation and Long-Term Net Benefit for the Fo	ur-
toed Salamander	6-3
7.0 REVISED STORMWATER	7.1
7.1 Introduction	7-1
7.2 Revised Stormwater Management Report	7 2
7.3 Correspondence with the Division of Fisheries and Wildlife	7-3
8.0 REVISED WASTEWATER DISPOSAL 8.1 Introduction	8.1
8.2 Potential Locations of the Treatment Facility and Disposal	0-1
Site	8-1
8.3 Field Investigations and Feasibility of Disposal	
8.4 Wastewater Treatment Facility Design and Methodology of	•
Disposal	8-2
Disposai	-
9.0 RESPONSE TO COMMENTS	. 9-1
LIST OF FIGURES	
Figure 1-1 Site Locus	
Figure 1-2 Current Phase I Development	
Figure 1-3 Proposed Phase II Development	
Figure 5-1 BVW Replication Area	
Figure 5-2 Bank Replication	
Figure 8-1 Potential Locations for the WWTF and Disposal Site	
riguie 0-1 - 1 otolitai cooccolo loi cio 4444.1 ana Disposal elle	

List of Tables

- Table 4-1 Summary of Mesoscale Analysis
- Table 5-1 Summary of Resource Area and Buffer Zone Impacts Regulated Under the MWPA and Holliston Wetlands Bylaw
- Table 5-2 Proposed Alterations in Riverfront Area
- Table 7-1 Reduction of Peak Flow Rates (cfs) Between Existing and Proposed Conditions
- Table 7-2 Reduction of Stormwater Runoff Volume (acres-feet) Between Existing and Proposed Conditions

Plan Pocket

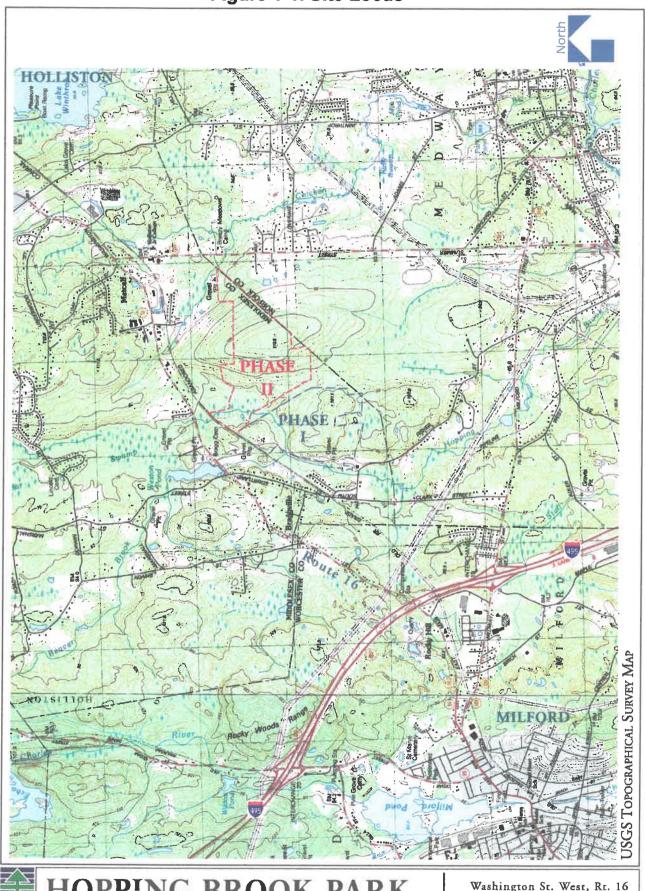
Proposed Conditions, prepared by Bruce Saluk and Associates, Inc., dated March 4, 2002, last revised March 21, 2003

TECHNICAL APPENDICES

- A. Revised Traffic Impact Assessment, prepared by Abend Associates, Inc., dated July 2003.
- B. Air Quality Mesoscale Analysis, prepared by Epsilon Associates, Inc. dated June 19, 2003
- C. Order of Conditions issued by the Holliston Conservation Commission
- D. Stormwater Management Report, prepared by Bruce Saluk and Associates, Inc., dated April 2002, latest revision March 21, 2003
- E. Stormwater Pollution and Prevention Plan, prepared by Bruce Saluk and Associates, Inc., dated March 21, 2003
- F. Letters from Division of Fisheries and Wildlife dated July 29, 2002 and October 2, 2002
- G. Approval of Amendment to the Town of Holliston Zoning By-law

1.0 EXECUTIVE SUMMARY

The project is currently divided into Phase I and Phase II (See Figure 1-1, Site Locus). Phase I consists of the buildings that have been constructed to date and is almost complete (See Figure 1-2, Current Phase I Development). Construction of Phase I of the project began in 1983 and has been on-going. Phase II consists of the development of the remainder of the site; which includes the construction of the access road to the Phase II portion and the construction of the proposed buildings and infrastructure (See Figure 1-3, Proposed Phase II Development). Approximately 558,000 square-feet of the Phase I portion of Hopping brook Park has been constructed. The Phase II portion of Hopping Brook Park is proposed to be 2,215,500 square-feet. The original size of the project area was 281 acres. The proponent acquired an additional 85+/- acres, a portion of which Phase II will be located, making the total acreage of Hopping Brook Park 366 acres. The construction sequence of Phase II will be phased. The construction of the access road and associated activities (i.e. clearing, grading, construction of mitigation areas) will occur first (See Proposed Conditions Plan in the Plan Pocket). Construction of the buildings and infrastructure will follow at a later date. There will not be any additional environmental impacts, to those described in the SEIR, associated with the construction of the buildings in Phase II. The analyses for traffic and air quality and the estimated quantity of wastewater discharge are based on the full build out of the site.


1.1 History of Certificates Issued

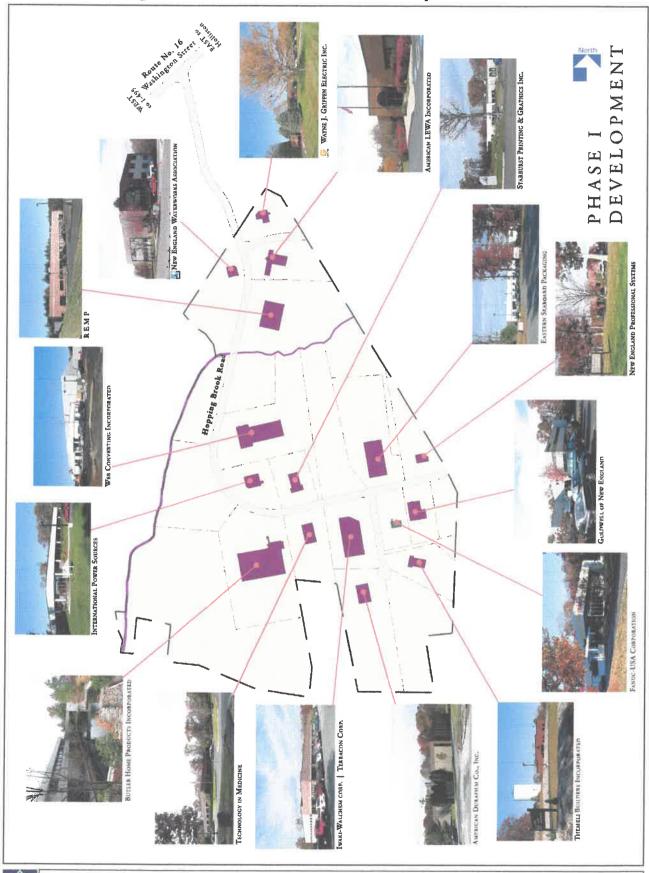
The following section is a brief history of the Certificates issued by the Secretary of Environmental Affairs for the project. The former name of the proponent at the time Phase I began was Hopping Brook Trust. The current name of the proponent is New Hopping Brook Realty Trust. The following is the list of filings and Certificates:

- Environmental Notice Form (ENF) filed May 10, 1982
- Certificate of the Secretary issued June 17, 1982; requested the preparation of an Environmental Impact Report (EIR).
- Draft EIR (DEIR) filed on February 22, 1983
- Certificate of the Secretary issued on March 31, 1983; requested the preparation of a Final EIR (FEIR)
- FEIR filed on May 9, 1983
- Certificate of the Secretary issued on June 14, 1983; determined FEIR adequately complied with M.G.L.c.30, SS. 61-62H. Additional issues were requested to be addressed; these included work on the railroad access and avoidance of archeology sensitive areas

NO RUPO DE MERAPE

Figure 1-1. Site Locus

HOPPING BROOK PARK


Washington St. West, Rt. 16 Holliston, Massachusetts

WITH THE

A BOILD A THILL

E HOPPING BROOK PARK

Figure 1-2. Current Phase I Development

from a result of the second of the second

REAL ROOM IN DAILY ME

Figure 1-3. Proposed Phase II Development 3 STORIES
3 STORIES
3 STORIES PHASE II DEVELOPMENT Werlands 605,500 GSF 589,000 GSF 589,000 GSF 432,000 GSF 2,215,500 GSF 8,667,907 sF BUILDING "A"
BUILDING "B"
BUILDING "C"
BUILDING "C"
TOTAL. SITE AREA I HOPPING BROOK PARK Washington St. West, Rt. 16 Holliston, Massachusetts

Liquie 1 d. Proposition of Place in Developing

- A Notice of Project Change was submitted on April 24, 2002 by New Hopping Brook Realty Trust
- Certificate of the Secretary issued May 24, 2002; requested the preparation of a Supplemental Environmental Impact Report (SEIR).

This SEIR includes additional information and analyses requested in the Certificate issued May 24, 2002. The SEIR includes details of the project, wetland resources, mitigation measures for wetland resource impacts, and mitigation for the long-term net benefit to rare species populations. Revised traffic and stormwater analyses, an air quality analysis, and additional information regarding wastewater disposal are also included in the SEIR.

1.2 Project Summary

1.2.1 Site Description

The site is a vacant, wooded lot consisting of a mixed coniferous and deciduous forest. A drumlin is located the central portion of the site. The topography gradually slopes in an easterly direction from the drumlin at an elevation of approximately 336 feet down to 225 feet. The topography slopes from approximately 336 feet to 240 feet in a northwesterly direction from the drumlin then levels out to a wetland. In a southwesterly direction, the topography slopes down to approximately 270 ft and levels out to another wetland. A former gravel pit area is located in the northwest portion of the site. An NSTAR power easement is located along the western boundary of the site. Paths and dirt roads are located on the site. Hopping Brook flows in a southerly direction across the northwest portion of the site. The brook then flows in a southwesterly direction off site.

1.2.2 Project Description

As stated above, the project is currently divided into Phase I and Phase II. Phase II of Hopping Brook Park consists of the development of the remainder of the site; which includes the construction of the access road to the Phase II portion and the construction of additional buildings. The SEIR addresses, in detail, proposed activities and mitigation for the construction of the access road for Phase II (See Proposed Conditions Plan in the Plan Pocket). There will not be any additional environmental impacts, to those described in the SEIR, associated with the construction of the buildings in Phase II. The analyses for traffic and air quality and the estimated quantity of wastewater discharge and water usage are based on the full build out of the site.

Several proposed activities are associated with the construction of the access road; these include clearing, grading, installation of underground utilities, construction of wetland and wildlife habitat mitigation, and construction of the stormwater drainage system. The location of the access road requires a wetland

crossing. The alignment of the road has been designed to avoid and minimize impacts to wetland resources to the greatest extent possible. Wetland resources that will be impacted include Bordering Vegetated Wetlands (BVW) and Bank. Impacts to BVW will be mitigated by the construction of a wetland replacement area. Bank impacts will be mitigated by the construction of a rip-rap channel on the north side of the access road and a water quality swale on the south side of the access road. A section of the underground utilities proposed to be installed is in an area on the site that has been identified as Spotted turtle habitat. To minimize impact and maintain an unrestricted migratory pathway for the Spotted turtles, the utilities will be placed in a trench and the trench will be surfaced with gravel. A turtle nesting habitat area will be construction to mitigate for the construction of the trench.

Since the filing of the NPC, additional issues have been addressed and are included in the SEIR. Four-toad salamander habitat has been identified on the site. The proponent's representative has consulted with Natural Heritage and modifications to the project have been made to avoid and minimize impact to the salamander habitat. In addition, a conservation plan to mitigate and protect the habitat of the Four-toed salamander and the Spotted turtle has been submitted to Natural Heritage. The design of the stormwater system has been modified such that the discharge will not impact Hopping Brook; which is identified as a cold water resource. The Division of Fisheries and Wildlife reviewed the stormwater management plan and approved the design.

1.2.3 Description of Resource Areas and Relationship to Proposed Construction

Description of Wetland Resources and Buffer Zones

Wetland resource areas identified on the site that are regulated by the Massachusetts Wetlands Protection Act (MWPA) include Bordering Vegetated Wetlands (BVW), Bank, and Buffer Zone (not considered a resource area). Wetland resource areas identified on the site that are regulated by Holliston Wetland Bylaws include BVW, Bank, Riverfront Area, Buffer Zone (not considered a resource area), Bordering Land Subject to Flooding, Holliston Wetlands (non-state isolated wetlands E and J), Vernal Pool habitat, and Vernal Pool Buffer Zone

The subdivision of the parcels for this project was created prior to November 1, 1996; which is the date the Rivers Protection Act went into effect. As a result, the work within the original subdivision is exempt from the performance standards for Riverfront Area (See Certificate of the Secretary on Page v in the front of the SEIR). Although the performance standards for Riverfront Area apply to land recently acquired by the proponent, all of the Riverfront Area resource is associated with the original subdivision. Work on the newly acquired portion of the project is outside the limits of the Riverfront Area. Although Riverfront Area exists on the site, proposed work in this resource is not reviewed by the state.

The proponent has included information regarding work in the Riverfront Area to clarify all proposed work on the site.

Delineated BVW are associated with Hopping Brook. The Bank resource areas are associated with Hopping Brook and three intermittent streams that were created to control surface water on the site. The Riverfront resource area is associated with Hopping Brook. Two isolated wetlands were delineated on the site. These wetlands do not qualify as state resource areas since they do not hold ¼-acre foot of water, however, they qualify as wetlands under the Holliston Wetlands Bylaw and the Army Corps of Engineers. Bordering Land Subject to Flooding is associated with Hopping Brook. Vernal Pool Habitat and Vernal Pool Buffer Zone are associated with the three certified vernal pools on the site. Spotted turtle (Clemmys guttata) and Four-toed salamander (Hemidactylium scutatum) habitat have been identified on the site. See Section 6.0 for more information regarding these species.

Proposed Impacts to Wetland Resources and Buffer Zones

Impacts to several wetland resources under the jurisdiction of the Massachusetts Wetland Protection Act (MWPA) and the Holliston Wetlands Bylaw will occur. The impacts include clearing and grading of portions of the site to prepare for the proposed access road, construction of the stormwater facilities, installation of utilities, and the construction of the wetland replacement area and turtle nesting habitat area.

The following table summarizes the square footage of proposed permanent impacts to the resource areas and Buffer Zones under both the MWPA and Holliston Wetlands Bylaw.

Table 5-1. Summary of Resource Area and Buffer Zone Impacts Regulated Under the MWPA and Holliston Wetlands Bylaw

Resource Area and Buffer Zones	MWPA (square feet of impact)	Holliston Wetlands Bylaw (square feet of impact)
Riverfront Area	14,442	14,442
BVW	3,236	3,236
Freshwater Wetlands (Wetlands E and J)	NA	26,122
Buffer Zone	110,210	147,419
Bank	153	153
Bank Buffer Zone	NA	18,767
Bordering Land Subject to Flooding	NA	51,074
(not to be impacted; work within 100' of boundary is proposed)		
Vernal Pool Habitat (within 100' of basin)	NA	16,784
Vernal Pool Buffer Zone (100' - 200' of basin)	NA	38,779

NA - wetland resources, specific to this project, not under the jurisdiction of the MWPA

A wetland crossing for the construction of the access road will impact BVW (3,236 square feet) and Bank (153 linear feet). Wetland J, the northernmost isolated non-state wetland, will also be impacted from the construction of the access road. In addition, Wetland E, the southernmost isolated non-state wetland, will be impacted during future build out. The total square footage of the two isolated wetlands is 26,122 square feet (See Table 5.1).

Work is also proposed in the Buffer Zone of BVW under the MWPA. Approximately 110,210 square feet will be impacted from clearing and grading activities. Under the Holliston Wetlands Bylaw, 147,419 square feet of clearing and grading activities will in the Buffer Zone and in the Adjacent Upland Resource Area (i.e. areas within 100 feet of BVW, other Freshwater Wetlands, Bank and Bordering Land Subject to Flooding and areas within 200 feet of the Mean Annual High-Water Line of Hopping Brook).

There are no proposed impacts to the three certified vernal pools under the MWPA. Under the Holliston Wetlands Bylaw, approximately 16,784 square feet of upland vernal pool habitat (within 100 feet of basin boundary) and 38,779 square feet of buffer zone to the vernal pool (100 – 200 feet from basin boundary) will be impacted. Proposed work in these areas include clearing, grading, installation of utilities, creation of the Spotted turtle nesting habitat with a groundwater infiltration system beneath it, and placement of a level spreader for discharge of clean stormwater from a detention basin.

No proposed work will be located within Bordering Land Subject to Flooding. The only activity that will occur in the floodplain is placement of haybales to define limit of work. A total of 51,074 square feet of work is proposed within 100 feet of the boundary. The proposed work includes, 4,059 square feet of grading; 6,625 square feet of clearing; and 40,390 square feet of utility installation. Most of this work is also located in Riverfront Area. Mitigation is not proposed for this work.

The Holliston Conservation Commission, issued an Order of Conditions, on April 30, 2003, for the proposed work and mitigation for Phase II.

1.2.4 Potential Environmental Impacts and Mitigations

Proposed impacts to the wetland resource areas and buffer zones are described above. This section includes the mitigation measures for those impacts. In addition, this section describes proposed impacts and mitigation measures for work in rare species habitat as well as impacts and mitigation for traffic, stormwater, and wastewater.

Wetland Resources, Buffer Zones, and Rare Species

The mitigation package was developed with recommendations from the Holliston Conservation Commission and the Natural Heritage and Endangered Species Program. The proposed mitigation package will provide:

- replacement of wetland resources areas under the MWPA and Holliston Wetlands Bylaw
- construction of a vernal pool, vernal pool habitat, and vernal pool buffer zone (under the Holliston Wetlands Bylaw) for proposed work in these existing areas
- long-term net benefits to rare species identified on the site; benefits

A constructed wetland replacement area, 14,263 square feet in size, is proposed as mitigation for impacts to BVW (state and local wetlands) due to the wetland crossing for the access road and filling of Wetlands E and J (isolated non-state wetlands under the jurisdiction of the Holliston Wetlands Bylaw). Bank will be impacted due to the wetland crossing. Mitigation will consist of the construction of a rip-rap channel on the north side of the access road and a water quality swale on the south side of the access road for a total of 270 linear feet of replacement. In addition, box culverts will be placed under the access road in the location of the two existing Bank resource areas. The proposed mitigation package is designed to protect resource areas from long-term impacts where work is proposed in the adjacent Buffer Zone and Adjacent Upland Resource The elements to protect the resource areas include: 1) stormwater management system designed to avoid the discharge of untreated water to areas adjacent to resource areas as well as directly into resource areas, 2) installation of erosion and sediment control measures to prevent siltation into resource areas until vegetation is re-established, 3) placing a Conservation Restriction on rare species habitat located in Buffer Zone and in the Adjacent Upland Resource Area

Traffic

A revised traffic analysis was conducted and the results show that two intersections in the study area may require improvement with full build out of Phase II. The intersections and proposed mitigation include:

Route 16 at Central Street

The Level of Service, during both morning and evening peak hours, can be improved to level D and C, respectively, from the current level of service F. The proposed improvements include signalizing the intersection and adding turn lanes in both directions along Route 16. Likely, the edge of pavement will not require alterations since the existing lane widths appear sufficient to provide the additional lanes.

Route 16 at Route 126 (South)

Signalizing the intersection and creating a left-turn lane westbound along Route 16 will result in increased Level of Service to B during the morning

peak hour and E during the evening peak hours. To significantly improve this intersection to a higher Level of Service would likely require land-takings and roadway widening.

Stormwater

Clearing and grading of the site for the proposed work will alter stormwater runoff patterns. The stormwater management plan is designed to meet the standards in the DEP Stormwater Management Policy, Holliston Wetlands Bylaw Regulations, and the Holliston Board of Health Stormwater and Runoff regulations. In addition, the stormwater management system has been designed to meet the criteria in the Surface Water Quality Regulations for Class B cold water resources. The design has been approved by the Division of Fisheries and Wildlife and is considered to not pose a significant risk to Hopping Brook (See correspondence in Appendix F).

Wastewater

An on-site wastewater treatment facility, with on-site disposal, is proposed for Phase II. The impacts of this proposed method will be clearing and grading of the areas where the facility and disposal sites will ultimately be located. If some of the areas are located within the Buffer Zone of wetlands, the proponent will file an NOI with the Holliston Conservation Commission. Appropriate erosion and sedimentation control will be installed where required.

The suitability of the proposed areas to be utilized as disposal sites was determined by field investigations that included analysis of test pits and soil borings, groundwater well installation and monitoring, and conducting the 10-day loading test. The results of the investigations support the use of the proposed areas as disposal sites.

1.2.5 Required Permits and Status

AGENCY	PERMIT	STATUS
Holliston Conservation Commission	-Order of Conditions (work associated with the entrance road, drainage, utilities, and replication within Hopping Brook Phase II)	April 30, 2003
Holliston Building	Building	Anticipating
Department	Occupancy	Anticipating
Natural Heritage and Endangered Species Program	Conservation Permit Request	Anticipating
DEP	Major Groundwater Discharge Permit	Anticipating
MA Highway Department	Highway Access Permit	Anticipating
Environmental Protection Agency	NPDES Construction Permit	Proponent will file prior to commencement of work

2.0 SUMMARY OF FEIR

2.1 Introduction

The Final EIR was approved on June 14, 1983 (see Certificate of the Secretary on Page x in the front of the SEIR). The original project was located on 281 acres of wooded land in the southwest portion of Holliston, Massachusetts. The proposed project called for the construction of a multi-use development covering 3 million square feet of floor space to be utilized for office, research and development, and high technology assembly purposes. Parking consisted of 9,684 spaces. Total area of the buildings, parking areas, and access roads totaled approximately 146 acres. The project was to be serviced by on-site septic systems.

The stormwater management system consisted of two detention basins to be located within two existing wetland areas. The wastewater disposal method was subsurface leaching systems for each building. The internal roadway system was a four-lane road in a circular pattern that was to cross a wetland and pass through spotted turtle habitat. Water supply to the site was estimated to be 250,000 gallons per day.

3.0 SUMMARY OF NOTICE OF PROJECT CHANGE

3.1 Introduction

The proponent filed a Notice of Project Change (NPC) in April 2002. The Secretary of Environmental Affairs issued a Certificate for the NPC on May 24, 2002 (see Page v in the front of the SEIR). The purpose of the NPC was to revise the original project (proposed in the FEIR, approved June 14, 1983) to meet current regulatory standards. The currently proposed project presents several changes that will provide for less impact and that are improvements to the previously certified project.

3.2 Project Changes and Improvements

Section 2.0 describes the previously certified project. The material changes and improvements to the FEIR include the following:

- The proponent has purchased an abutting lot; which is approximately 85.4+/- acres in size and is located within the northern portion of the Phase II area. A portion of the proposed buildings will be located on this lot. The addition of this new lot will create a business park with more open space and a campus-like atmosphere to reduce the density of the building layout.
- A new internal roadway system for the project has been proposed. The layout has been modified and the length has been reduced from 1.9 miles to 0.23 miles. This change will minimize the impact to Spotted turtle habitat. (Since the submission of the NPC, Four-toed salamander habitat has been identified on the site. Subsequently, the project has been modified to avoid Four-toed salamander habitat).
- The prior proposed wastewater disposal method was subsurface leaching systems for each building. The current proposal for wastewater disposal is a centralized on-site treatment plant.
- Two stormwater detention basins were proposed to be located in the wetlands. Since the implementation of the Surface Water Quality Standards Regulations, no discharges of untreated stormwater will occur in wetlands. In addition, the stormwater system was designed to meet the DEP Stormwater Policy. This will increase water quality discharge and decrease impact to the wetlands. The revised stormwater management system was designed to utilize one detention basin for the construction of the access road. Since the filing of the NPC, the stormwater management system has been revised.

Wildlife habitat was not identified in the previous filing. After the completion of a spotted turtle habitat assessment, it was concluded that spotted turtle habitat does exist on the site. The original project proposed a four-lane paved road, 60 feet wide, to be located in the area of the spotted turtle habitat. The current project proposes less impact to the environment by placing only the water and sewer pipes in this area. In addition, the current project proposes to enhance spotted turtle habitat by creating a spotted turtle nesting area.

3.2 Proposed Impacts and Mitigation

Wetland Resources

Bordering Vegetated Wetlands, Bank, two non-state isolated wetlands, and Riverfront Area were proposed to be impacted by the proposed construction. The construction of the access road required a wetland crossing, which will impact BVW and Bank. The mitigation proposed for the wetland crossing is the construction of two wetland replication areas. The replication areas are designed to also offset the impact to the two non-state isolated wetlands. Riverfront Area will be altered by clearing, grading, and trenching activities for the installation of the utilities in the northern portion of the site.

Spotted Turtle Habitat

The previously proposed paved road was located in the area of the site designated as Spotted turtle habitat. Placement of the road in this location would have disrupted the spotted turtle habitat by creating a barrier between the two wetland areas identified as utilized by the spotted turtles.

Mitigation measures include minimizing the use of the road as an emergency access, placing the utilities below the emergency road, and maintaining a gravel surface on the road. In addition, the following measures will reduce the impact to Spotted turtle habitat and enhance the existing habitat:

- Design the project to avoid direct impacts to wetland habitat utilized by the spotted turtles.
- Clearing and trenching work will be done in the winter to avoid interference of spotted turtle migration
- Supplement the existing nesting areas with an approximate ½ acre area; which should be composed of a sandy substrate void of woody vegetation.
- The supplemental area should be located along the existing gravel road in areas where nesting was confirmed as well as areas where nesting was attempted.
- Periodic cleaning of the supplemental area is recommended to maintain open area preferable for nesting habitat of the spotted turtle.

The proposed turtle nesting area is designed to provide nesting habitat in the area currently used by the spotted turtles (the existing gravel road). The recommendation to maintain the nesting area as an open area is essential since the cleared area along the existing gravel road is slowly being overgrown and will eventually be shaded by the encroaching vegetation.

Traffic Update

This traffic update was conducted to determine any changes to the traffic patterns since 1983 when the Final EIR was reviewed. The results concluded that a significant change in the traffic pattern is not anticipated. The results showed that peak morning hour vehicle trips would increase by 22%; however, the evening hour vehicle trips would be 17% less than the previously projected number and the traffic volume would be 16% lower than originally projected. The previously proposed upgrade of the intersection; which included additional lanes and a signal, remains the same. The traffic mitigation package will remain the same as presented in the original FEIR. The results of this analysis confirm that the original mitigation package will adequately accommodate the remaining construction of the proposed project.

4.0 REVISED TRANSPORTATION STUDY AND AIR QUALITY ANALYSIS

The Certificate of the Secretary on the Notice of Project Change, issued May 24, 2002, requested an updated traffic analysis and an air quality mesoscale analysis for volatile organic compounds to be conducted. The certificate requested that the traffic analysis be prepared in accordance with the EOEA/EOTC Guidelines and used to analyze impacts to the Route 16 corridor to determine if the previously proposed mitigation is sufficient under the current conditions. In addition, the Certificate requested that the air quality mesoscale protocols be consistent with the DEP Division of Air Quality Control. The complete traffic analysis for transportation, dated July 2003, was prepared by Abend Associates, Inc., and is presented in Appendix A. Abend Associates, Inc. consulted with the MassHighway Department District 3 Office to determine the scope of the project and the scope of the study area. Appendix B presents the Mesoscale Analysis, dated June 2003, prepared by Epsilon Associates, Inc.

4.1 Transportation

Since the time the original project was certified in 1983, traffic conditions along local streets and the nearby regional highways have changed. The study area for the analysis was developed at the direction of the MassHighway Department District 3 Office. Information on trip generation relies on ITE data as well as information for the existing 558,000 square feet of development associated with Phase I.

This section presents a summary of the Revised Transportation Report focusing on the projected impacts of the project on the Route 16 corridor and proposed mitigation. Twelve intersections in the towns of Milford and Holliston were evaluated. Two intersections and the entrance to the park are recommended to be improved. The proponent is prepared to work with the towns and the state to design and construct the appropriate improvements.

4.1.1 Impact Analysis

The study area intersections have been evaluated based on the **2000 Highway** Capacity Manual using Synchro 5 software. The methodology incorporates the geometric and volume related data at an intersection and computes a Level of Service, which provides a "grade" for the intersection's operations. The Level of Service grade is based on the average delay per vehicle entering along each approach or entering the intersection as a whole. Grades range from A, representing free-flow conditions, to F representing over-capacity conditions where long delays occur. A grade of E represents close to capacity conditions where flows are unstable and congestion could likely occur. An overall intersection Level of Service grade of D or better is considered by traffic

engineering professionals to be acceptable for peak hour conditions. Intersections that were evaluated in the analysis include:

- Route 85 at Route 495 northbound ramps, Milford
- Route 85 at Route 495 southbound ramps, Milford
- Route 85 at Dilla Street/Fortune Boulevard, Milford
- Route 16 at Fortune Boulevard/Beaver Street, Milford
- Route 16 at Route 109, Milford
- Route 109 at Beaver Street/Beaver Street Extension, Milford
- Route 109 at Route 495 southbound ramps, Milford
- Route 109 at Route 495 northbound ramps, Milford
- Route 16 at Route 126 (North), Holliston
- Route 16 at Central Street, Holliston
- Route 16 at Route 126 (South), Holliston
- Route 16 at Hopping Brook Road, Holliston

The Level of Service results indicate that the proposed project estimated traffic flows will not significantly impact the intersections in Milford. The Level of Service remained at acceptable levels during both the morning and evening peak hours (See Exhibits 12 and 13 in Appendix A). Development is on-going along the 495 corridor and improvements to intersections are concurrent. The Level of Service results indicate that two intersections, in addition to the entrance to Hopping Brook Road, along Route 16 in Holliston may require improvement. These intersections include:

- Route 16 at Central Street
- Route 16 at Route 126 (South)

4.1.2 Proposed Mitigation

Recommended improvements to the two intersections listed above include:

Route 16 at Hopping Brook Road

The proposed improvements to this intersection include signalizing and adding dedicated turn lanes in both directions along Route 16. The Level of Service during the morning and evening peak hours is estimated to be B and D, respectively, with these changes.

Route 16 at Central Street

The Level of Service, during both morning and evening peak hours, can be improved to level D and C, respectively, from the current level of service F. The proposed improvements include signalizing the intersection and adding turn lanes in both directions along Route 16. Likely, the edge of pavement will not require alterations since the existing lane widths appear sufficient to provide the additional lanes.

Route 16 at Route 126 (South)

Signalizing the intersection and creating a left-turn lane westbound along Route 16 will result in increased Level of Service to *B* during the morning peak hour and *E* during the evening peak hours. To significantly improve this intersection to a higher Level of Service would likely require land-takings and roadway widening.

4.1.3 Proposed Mitigation Commitments

The proponent is prepared to provide the design and construction for improvements to the intersection of Route 16 and Hopping Brook Road. The proponent is prepared to work with MassHighway Department District 3 and the Town of Holliston to develop appropriate designs for the intersections at Route 16 at Central Street and Route 16 at Route 126 (South). In addition, the proponent is prepared to participate in the design and/or funding of the improvements to these intersections.

Although the project location may not support a typical Travel Demand Management (TDM) Program, an alternative approach for mitigating traffic impacts from the proposed project is available. The proponent is prepared to designate a transportation coordinator for the proposed Phase II portion of Hopping Brook Park. The transportation coordinator will work with the various businesses to encourage carpooling and ridesharing between employees of the various companies on the site, will provide information on the limited transit services, and provide other information related to typical TDM programs. If allowable under the Holliston Zoning Bylaws, the proponent will encourage developers of the individual parcels to consider offering on-site services that accommodate on-site employees and businesses to minimize the number of vehicle trips per day as much as practicable. Examples of services include a coffee shop, an ATM, and cafeteria. See Appendix A for more detailed information.

4.2 Air Quality

The Certificate of the Secretary on the Notice of Project Change requested that a mesoscale analysis for volatile organic compounds be conducted because the proposed project exceeds the 3,000 vehicle trips per day threshold in the MEPA regulations. The complete mesoscale analysis is presented in Appendix B. This section provides a summary of the report.

The mesoscale analysis includes (1) an estimate of the volatile organic carbon (VOC) emissions associated with all project-related vehicle trips, (2) a demonstration that the VOC emissions associated with the Build condition will be less than those of the existing condition in both the short and long term, and (3) mitigation measures. The Massachusetts Department of Environmental Protection was consulted for guidance as well as confirmation of the study area

prior to conducting the analysis. The modeling methodology for the mesoscale analysis was developed in accordance with the MA DEP guidelines. A modeling protocol was submitted to MA DEP on March 25, 2003 and approved on April 3, 2003 by Keith Grillo, Regional Planner.

The analysis was conducted at eight intersections. The intersections were chosen because they met one of two of the following criteria: (1) the intersection has a Level of Service D where the project increases traffic volumes by 10% or greater or (2) the intersection operates at Level of Service E or F and the project degrades the location. The analysis was performed at the following intersections:

- Route 16 at Hopping Brook Road
- Route 16 at Route 126 South
- Route 16 at Central Street
- Route 85 at dilla/Fortune
- Route 85 at Route 495 northbound ramps
- Route 85 at Route 495 southbound ramps
- Route 109 at Beaver Street/Beaver Street Expansion
- Route 16 at 109

The results of the analysis show that the daily VOC emissions for the 2008 Build condition will be greater than the daily VOC emissions for the 2008 No-Build condition. The increase in VOC emissions is 13% and 16% for the morning and evening peak hours, respectively. The results show that the daily VOC emissions for the 2008 Build condition will be less than the existing conditions due to cleaner, more efficient vehicles. The reduction in emissions is 28% and 22% for the morning and evening peak hours, respectively. The following table summarizes the results. The complete table is presented in Appendix B.

Table 4-1 Summary of Mesoscale Analysis

Pollutant	Time	Full Build*	No-Build* (2008)	% Difference Build-No Build	Existing*	% Difference Build-Existing
VOC	AM peak	2,429.7	2,155.8	13%	3,114.8	-28%
100	PM peak	2,736.8	2,369.5	16%	3,338.5	-22%
NOx	AM peak	5,172.6	4,589.6	13%	6,916.5	-34%
HOX	PM peak	5,826.5	5,044.6	16%	7,413.1	-27%

Note: *results are in grams/hr

5.0 REVISED WETLANDS, FLOODPLAINS, AND RIVERFRONT AREA

The Certificate of the Secretary for the Notice of Project Change, issued May 24, 2002, requested that the Order of Conditions for the Notice of Intent submitted on March 8, 2002 be included in the Supplemental EIR. An Order of Conditions has been issued and is presented in Appendix C. The Certificate also requested a description of floodplain mitigation. Proposed work in the floodplain was incorrectly indicated in the Notice of Project Change. Work is not proposed in the floodplain. This section includes a description of existing conditions and information concerning proposed conditions and mitigation measures for proposed work that has been added since the issuance of the Certificate.

The subdivision of the parcels for this project was created prior to November 1, 1996; which is the date the Rivers Protection Act went into effect. As a result, the work within the original subdivision is exempt from the performance standards for Riverfront Area (See Certificate of the Secretary on Page v in the front of the SEIR). Although the performance standards for Riverfront Area apply to land recently acquired by the proponent, all of the Riverfront Area resource is associated with the original subdivision. Although Riverfront Area exists on the site, proposed work in this resource is not reviewed by the state. The proponent has included information regarding work in the Riverfront Area to clarify all proposed work on the site.

5.1 Existing Conditions

Phase I of Hopping Brook Park consists of the buildings and infrastructure that have been constructed to date (See Figure 1-2). The Phase I portion is almost complete. Phase II of Hopping Brook Park is the currently proposed project. Work has not started for this phase.

The portion of the site where Phase II is to be constructed is a vacant, wooded lot consisting of a mixed coniferous and deciduous forest. A drumlin is located the central portion of the site. The topography gradually slopes down in all directions away from the top of the drumlin; which is at an elevation of approximately 372 feet. In the northwesterly and southwesterly directions, the drumlin slopes to wetlands associated with Hopping Brook. A former gravel pit area is located in the northwest portion of the site. A power easement, owned by NStar, is located along the western boundary of the site. Paths and dirt roads are located on the site. Hopping Brook flows in a southerly direction across the northwest portion of the site. The brook then flows in a southwesterly direction off site.

Wetland resource areas identified on the site that are regulated by the Massachusetts Wetlands Protection Act (MWPA) include Bordering Vegetated

Wetlands (BVW), Bank, and Buffer Zone (not considered a resource area). Wetland resource areas identified on the site that are regulated by Holliston Wetland Bylaws include BVW, Bank, Riverfront Area, Buffer Zone (not considered a resource area), Bordering Land Subject to Flooding, Holliston Wetlands (non-state isolated wetlands E and J), Vernal Pool habitat; and Vernal Pool Buffer Zone. BVW and wetlands E and J were established by an Order of Resource Area Delineation (DEP# 185-524). Additional BVW and the Mean Annual High Water Line of Hopping Brook were established by an Order of Resource Area Delineation (DEP# 185-538).

Delineated BVW are associated with Hopping Brook. The Bank resource areas are associated with Hopping Brook and three intermittent streams that were created to control surface water on the site. The Riverfront resource area is associated with Hopping Brook. Two isolated wetlands were delineated on the site. These wetlands do not qualify as state resource areas since they do not hold ¼-acre foot of water, however, they qualify as wetlands under the Holliston Wetland Bylaw and the Army Corps of Engineers. Bordering Land Subject to Flooding is associated with Hopping Brook. Vernal Pool Habitat and Vernal Pool Buffer Zone are associated with the three certified vernal pools on the site. Spotted turtle (Clemmys guttata) and Four-toed salamander (Hemidactylium scutatum) habitat have been identified on the site. See Section 6.0 for more information regarding these species.

5.2 Proposed Conditions

As described in Section 1.0 and shown on Figure 1-1, Hopping Brook Park consists of two phases. Phase I, as described above is almost complete. Phase II is the proposed work described in this SEIR. The construction of Phase If will be phased. The construction of the access road, stormwater management facilities, wetland and wildlife mitigation, and associated activities (i.e. clearing and grading) will occur first. Construction of the buildings and the remaining infrastructure will follow at a later date. Impacts to several wetland resources under the jurisdiction of the Massachusetts Wetland Protection Act (MWPA) and the Holliston Wetlands Bylaw, will occur. The impacts include clearing and grading of portions of the site to prepare for the proposed access road, construction of the stormwater facilities, installation of utilities, and the construction of the wetland replacement area and turtle nesting habitat area. All impacts to wetland resource for the entire Phase II project have been identified. Mitigation for impacts will be provided during construction of the currently proposed phase of work. As outlined in the Order of Conditions (See Section 5.4), mitigation will be provided for impacts to BVW, Bank, and two non-state isolated wetlands. This mitigation includes replication for future impact to one of the non-state isolated wetlands, Wetland E. Any additional work in Buffer Zone, either under the MWPA or Holliston Wetlands Bylaw, will require a Notice of No additional wetland resource impacts are proposed for the future development. The full build out will occur in upland areas on the site.

The following table summarizes the square footage of proposed permanent impacts to the resource areas and Buffer Zones under both the MWPA and Holliston Wetlands Bylaw.

Table 5-1. Summary of Resource Area and Buffer Zone Impacts Regulated

Under the MWPA and Holliston Wetlands Bylaw

Resource Area and Buffer Zones	MWPA (square feet of impact)	Holliston Wetlands Bylaw (square feet of impact)		
Riverfront Area	14,442	14,442		
BVW	3,236	3,236		
Freshwater Wetlands (Wetlands E and J)	NA	26,122		
Buffer Zone	110,210	147,419		
Bank	153	153		
Bank Buffer Zone	NA	18,767		
Bordering Land Subject to Flooding (not to be impacted; work within	NA	51,074		
100' of boundary is proposed)				
Vernal Pool Habitat (within 100' of basin)	NA	16,784		
Vernal Pool Buffer Zone (100' - 200' of basin)	NA	38,779		

NA - wetland resources, specific to this project, not under the jurisdiction of the MWPA

Riverfront Area in the northern portion of the site will be altered by the installation of the proposed utility easement; which will be constructed to pass under Hopping Brook. The utility easement will be north of the existing gravel road. Riverfront Area will be impacted by clearing and trenching activities. The following table summarizes the area of proposed work in the Riverfront Area.

Table 5-2. Proposed Alterations in Riverfront Area

	Riverfront Area Alterations (square feet)					
Existing Area	within 100' 275,938	within 200' 293,073	Total 569,011 1,702			
Clearing	0	1,702				
Trenching	3,738	9,002	12,740			
Total Alteration	3,738	10,704	14,442			

A wetland crossing for the construction of the access road will impact BVW (3,236 square feet) and Bank (153 linear feet). Wetland J, the northernmost isolated non-state wetland, will also be impacted from the construction of the access road. In addition, Wetland E, the southernmost isolated non-state wetland, will be impacted during future build out. The total square footage of the two isolated wetlands is 26,122 square feet (See Table 5-1).

Work is also proposed in the Buffer Zone of BVW under the MWPA. Approximately 110,210 square feet will be impacted from clearing and grading activities. Under the Holliston Wetlands Bylaw, 147,419 square feet of clearing and grading activities will in the Buffer Zone and in the Adjacent Upland Resource Area (i.e. areas within 100 feet of BVW, other Freshwater Wetlands, Bank and Bordering Land Subject to Flooding and areas within 200 feet of the Mean Annual High-Water Line of Hopping Brook).

There are no proposed impacts to the three certified vernal pools under the MWPA. Under the Holliston Wetlands Bylaw, approximately 16,784 square feet of upland vernal pool habitat (within 100 feet of basin boundary) and 38,779 square feet of buffer zone to the vernal pool (100 – 200 feet from basin boundary) will be impacted. Proposed work in these areas include clearing, grading, installation of utilities, creation of the Spotted turtle nesting habitat with a groundwater infiltration system beneath it, and placement of a level spreader for discharge of clean stormwater from a detention basin.

5.3 Proposed Mitigations

The proposed mitigation package will provide:

- replacement of wetland resources areas under the MWPA and Holliston Wetlands Bylaw
- construction of a vernal pool, vernal pool habitat, and vernal pool buffer zone (under the Holliston Wetlands Bylaw) for proposed work in these existing areas
- long-term net benefits to rare species identified on the site; benefits include:
 - habitat enhancement
 - o conservation Restriction on rare species habitat
 - o development of monitoring programs for habitat use

The mitigation package was developed with recommendations from the Holliston Conservation Commission and the Natural Heritage and Endangered Species Program. The details of mitigation for the Spotted turtle and Four-toad salamander are discussed in Section 6.0 of this report.

BVW

A constructed wetland replacement area is proposed as mitigation for impacts to BVW (state and local wetlands) due to the wetland crossing for the access road and filling of Wetlands E and J (isolated non-state wetlands under the jurisdiction of the Holliston Wetlands Bylaw). The wetland replacement area will be 14,263 square feet in size; which is 11,027 square feet greater than the proposed impact to the state-regulated wetlands. The replacement area will be located approximately 260 feet south of certified vernal pools 2807 and 2808 and to the east of the Nstar Easement. Figure 5-1 shows the layout of the replacement

area and the Proposed Conditions Plan shows the location of the replacement area on the site. The construction of the replacement area will begin after installation of appropriate erosion controls in work areas and the placement of anti-tracking pads at the north and south entrances. No other construction will begin until the replacement area is complete.

Bank

Approximately 153 linear feet of Bank will be impacted due to the wetland crossing. Mitigation will consist of the construction of a rip-rap channel on the north side of the access road and a water quality swale on the south side of the access road for a total of 270 linear feet of replacement (Figure 5-2). In addition, box culverts will be placed under the access road in the location of the two existing Bank resource areas. The box culverts will maintain storm damage prevention and flood control functions of the existing Bank resources.

Buffer Zone

The proposed mitigation package is designed to protect resource areas from long-term impacts where work is proposed in the adjacent Buffer Zone and Adjacent Upland Resource Area. The elements to protect the resource area include:

- design of the stormwater management system to avoid the discharge of untreated water to areas adjacent to resource areas as well as directly into resource areas
- installation of erosion and sediment control measures to prevent siltation into resource areas until vegetation is re-established
- a Conservation Restriction on rare species habitat located in Buffer Zone and in the Adjacent Upland Resource Area

5.4 Order of Conditions

A Notice of Intent (NOI) was originally submitted to the Holliston Conservation Commission on March 8, 2002. It was revised and resubmitted to the Commission on April 18, 2002 and January 29, 2003. The final NOI was submitted on March 13, 2003. An Order of Conditions was issued on April 30, 2003 for the NOI and is presented in Appendix C. Areas where work is proposed are significant to the following interests of the MWPA and will be protected by the conditions listed in the Order.

- Public Water Supply
- Private Water Supply
- Groundwater Supply
- Fisheries
- Storm Damage Prevention
- Prevention of Pollution
- Protection of Wildlife Habitat
- Flood Control

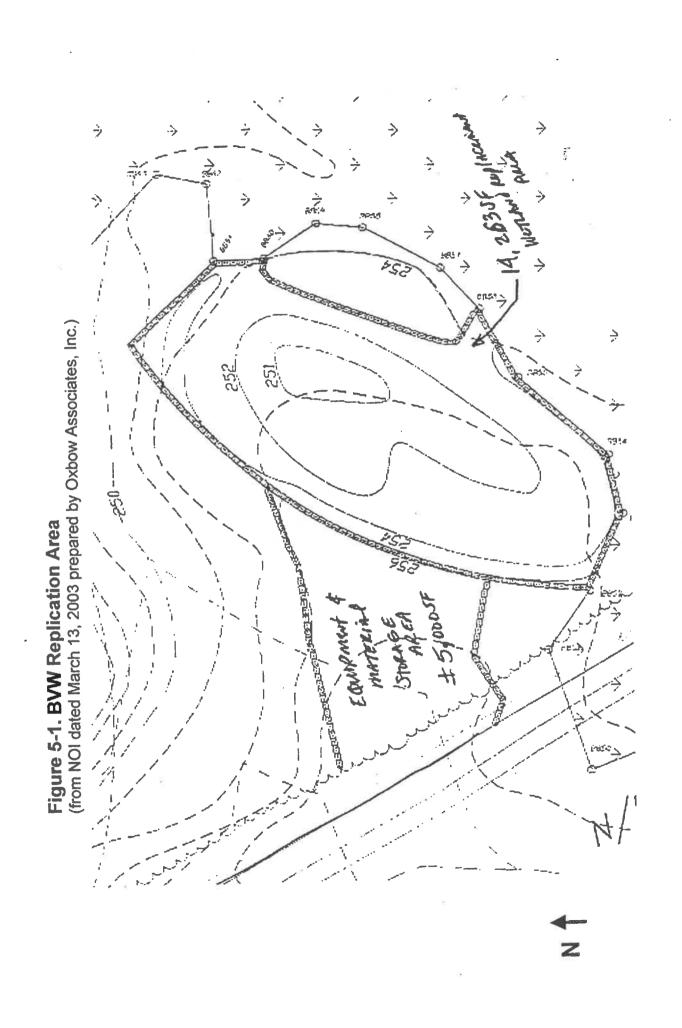
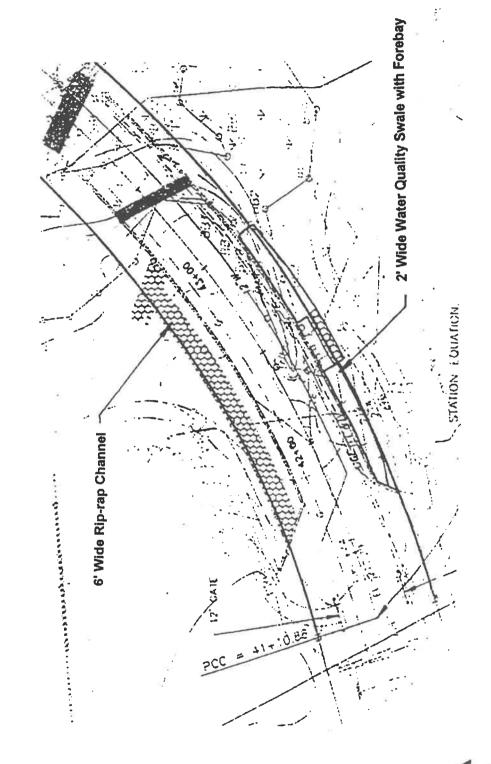



Figure 5-2. Bank Replication Areas (from NOI dated March 13, 2003 prepared by Oxbow Associates, Inc.)

The Holliston Conservation Commission determined that all proposed mitigation will protect the interests and meet the performance standards in the Town of Holliston Wetlands Bylaw.

5.5 Proposed Work Outside of Floodplain

The Certificate of the Secretary for the SEIR requested more detailed information describing the floodplain alterations and the proposed mitigation. The boundary of floodplain (Bordering Land Subject to Flooding) is defined in the Wetland Protection Act 310 CMR 10.57(2)(a)(3) as "the estimate maximum lateral extent of flood water which will theoretically result from the statistical 100-year frequency storm." Section VI of the Order of Conditions confirms that the Phase Il portion of the Hopping Brook Park project will not alter land within the 100-year floodplain boundary. The only activity that will occur in the floodplain is the placement of haybales along a portion of the existing dirt path that is located in the floodplain. The haybales define the limit of work and are used as a measure of sediment and erosion control. The existing dirt path will be used as an access way to the wetland replacement area and the turtle nesting habitat area. A total of 51,074 square feet of work is proposed within 100 feet of the floodplain boundary. The proposed work includes, 4,059 square feet of grading; 6,625 square feet of clearing; and 40,390 square feet of utility installation. Most of this work is also located in Riverfront Area. Mitigation is not proposed for this work.

6.0 REVISED ENDANGERED SPECIES

The Certificate of the Secretary for the Notice of Project Change, issued May 24, 2002, requested a description of proposed mitigation for rare species and how the proposed project will result in a long-term benefit to the conservation of rare species populations on the site. Requested in the Certificate was close coordination with the Natural Heritage and Endangered Species Program (NHESP) while developing the mitigation. As a result, a Conservation Permit Request has been prepared that includes mitigation and the long-term net benefits of the proposed project to the Spotted Turtle (Clemmys guttata) and the Four-toed Salamander (Hemidactylium scutatum) populations.

6.1 Summary of Conservation Permit Request

The proponent has worked closely with NHESP to develop the Conservation Permit Request. The original Permit Request, prepared by Oxbow Associates, Inc., was submitted on September 23, 2002 and a revised Permit Request submitted November 1, 2002. The final Conservation Permit Request, dated May 1, 2003, was submitted to NHESP on May 8, 2003. The proponent has avoided impacts, to the greatest extent possible, to the wetland and upland areas utilized by the Spotted turtle and Four-toed salamander. The mitigation measures discussed in the Conservation Permit Request will avoid long and short term adverse impacts to wetland habitat and improve and protect existing habitat areas for the Spotted turtle and Four-toed salamander. The mitigation measures to be implemented will provide a "net benefit" to the Spotted turtle and Four-toed salamander populations on the site.

Proposed elements of the Request for the Spotted turtle include the creation of a nesting habitat area, monitoring of the nesting habitat area, placing predator exclosures over turtle nests, and monitoring of the 4' x 11' box culvert to be located beneath the proposed access road. Proposed elements for the Fourtoed salamander population include a detailed migration monitoring program and a Conservation Restriction on the breeding and upland habitat this species utilizes on the site.

6.2 Impacts to Spotted Turtle Habitat

The proposed work has avoided impact to the habitat of the Spotted turtle to the greatest extent possible. Work in the upland areas used by the Spotted turtle include clearing and grading for the utility trench, installation of the utilities, and construction of a nesting habitat. Spotted turtles currently utilize the existing gravel path as a nesting habitat area. This area was cleared during previous onsite activities; which created a sandy, open area conducive for Spotted turtle nesting.

6.2.1 Mitigation and Long-Term Net Benefit for the Spotted Turtle

The proposed project has been designed to comply with the performance standards for rare and endangered species wetland habitat in the MWPA (310 CMR 10.59) and the Holliston Bylaw (Regulations Section 6.3.2.4 No Significant Adverse Impact on Wildlife Habitat). The proposed project also complies with the criteria for avoidance of "taking" as defined in the Massachusetts Endangered Species Act (MGL Ch. 131A). The proposed mitigation to provide long-term net benefits to the Spotted turtle population includes creating a nesting habitat area, maintaining corridors between feeding and aestivation areas, developing a post-construction monitoring program of the nesting area, and placing predator exclosures over nests.

The nesting habitat will eventually be lost due to natural succession if the area remains untouched. The proposed nesting habitat is designed to be maintained which will offset the eventual loss of the existing nesting habitat by revegetation. Creating a nesting habitat will also offset the minor impact of the utility trench proposed to be located in a portion of the upland area currently used as nesting habitat. An infiltration gallery for the proposed stormwater management system will be constructed underneath the proposed nesting habitat area. Impact to the upland is minimized by placing this structure underneath the nesting habitat area instead of clearing an additional area for the gallery. The proposed nesting habitat is a benefit to the Spotted turtles by providing an area that will be maintained for nesting and not be lost to natural succession. The construction proposed in this area will be restricted to October 1 to March 15 to avoid disruption of nesting, incubation, or emergence.

The monitoring program and use of the predator exclosures will provide a local benefit to the Spotted turtle population. A study is proposed during five nesting seasons. The information obtained from the monitoring activities will contribute to the conservation knowledge base of the Spotted turtle. Predator exclosures will be placed over nests during the time of the study. This method is used to increase recruitment of individuals each year. The combination of creating a nesting habitat and utilizing exclosures may potentially increase the local population of breeding Spotted turtles over the next 20 years. In addition to monitoring the nesting area, monitoring is proposed at the 4' x 11' box culvert to be located at the crossing in the southeast portion of the site. Monitoring will either confirm that Spotted turtles do not use this area or provide information on the frequency of use. Results of nest restoration and monitoring will be reported to the Natural Heritage and Endangered Species Program (NHESP) annually.

As noted in the Order of Conditions, a conservation restriction will be placed on areas identified to be utilized by Spotted turtles. The areas include wetlands and uplands surrounding certified vernal pools 2807 and 2808 as well as wetland and upland area to the north of the pools.

6.3 Impacts to Four-toed Salamander Habitat

There are no proposed impacts to the breeding habitat of the Four-toed salamander. A portion of the upland area within the 450-foot setback for the Four-toed salamander habitat is already disturbed by approximately 870 linear feet of the NStar easement. Proposed impact will also be located in the upland area. Approximately 790 linear feet of the proposed access road will pass through the 450-foot setback. Approximately 360 linear feet of the proposed access road are located within the already disturbed area of the NStar easement.

6.3.1 Mitigation and Long-Term Net Benefits to the Four-toed Salamander

The proposed mitigation to provide long-term benefit for the Four-toed salamander includes a scientifically based study and the placement of a conservation restriction on the area surrounding the identified breeding habitat. These efforts will provide a net benefit to the Four-toed salamander population on site.

The proposed stormwater management system was modified to remove and relocate all above ground facilities outside of the Four-toed salamander 450-foot setback required by NHESP. The breeding habitat identified on site will not be impacted by the proposed project. To provide a net benefit to the population, a controlled, systematic study has been designed to monitor movement trends of the Four-toed salamander. A configuration of drift nets and pitfall traps are proposed for the study. The data obtained will be essential to the conservation of the Four-toed salamander species. A systematic approach to data collection will provide more complete information about the movement of this species and an estimate of the number of individuals on the site. A Scientific Collecting Permit will be obtained from the Division of Fisheries and Wildlife. A report containing the results of the study will be submitted to NHESP.

A conservation restriction will be placed on the area within the 450-foot setback that is owned by the proponent. This includes the area to the east of the NStar easement and which lies north and south of the proposed access road. A portion of the 450-foot setback is located on the west side of the NStar easement; which is not owned by the proponent. The restriction will provide long-term protection to the wetland and upland habitat utilized by the Four-toed salamander.

7.0 REVISED STORMWATER

The Certificate of the Secretary for the Notice of Project Change, issued May 24, 2002, requested a stormwater management plan that includes all proposed impervious areas on the site.

7.1 Introduction

A stormwater management plan was developed for the construction of the access road, utilities, drainage structures, and mitigation activities. The stormwater management report was submitted to the Holliston Conservation Commission as part of the NOI, dated April 18, 2002, last revised March 13, 2003. Appendix D presents the stormwater management plan and Appendix E presents the Stormwater Pollution Prevention Plan.

As stated previously in Section 1.0, construction of the Phase II portion of the Hopping Brook Park project will be phased. The construction of the access road, utilities, drainage structures, mitigation measures, and associated activities (i.e. clearing and grading) will occur first. Construction of the buildings and infrastructure will follow at a later date. The attached stormwater management plan and Stormwater Pollution Prevention Plan have been designed for the first phase of construction. In addition to the design for the access road, the stormwater management plan also includes the construction of stormwater control structures that will be used during future development. Groundwater recharge units will be located beneath the proposed turtle nesting habitat area. These recharge units will be used when the proposed buildings are constructed. For the second phase, two additional detention basins are proposed to control stormwater runoff for the future build out of the site. These detention basins will be constructed in accordance with DEP and the Town of Holliston guidelines.

This section of the SEIR includes a summary of the revised stormwater management report. Also included in this section is correspondence with the Division of Fish and Wildlife in regards to Hopping Brook and the proposed stormwater management system design.

7.2 Revised Stormwater Management Report

The Stormwater Management Report, prepared by Saluk and Associates, dated April 2002, most recently revised March 31, 2003, has been updated from the previous report, dated February 2002, that was submitted with the Notice of Project Change. The current stormwater report is designed to meet the standards of the DEP Stormwater Management Policy (November 1996 with revisions of March 1997), the Holliston Wetlands Administration Bylaw Regulations (September 2001), and the Holliston Board of Health Stormwater and Runoff regulations (February 1999 with revisions of August 2000).

The previous stormwater management plan proposed one detention basin and an STC 7200 Precast Concrete Stormcepter® to control the runoff from the access road. The revised plan proposes three extended detention basins (with forebays and a separate infiltration area), deep-sump catch basins, and a water quality swale to control the runoff from approximately 77,500 square feet of impervious area. Groundwater recharge units will be constructed beneath the turtle nesting habitat; however they will not be used until the buildings are constructed at a later date. Since the identification of the Four-toad salamander on the site, the one detention basin that was proposed has been relocated out of the 450-foot setback to reduce impact to the upland habitat of the salamander.

Stormwater runoff calculations have been prepared to include the Holliston Board of Health Stormwater and Runoff Regulations (February 1999 with revisions of August 2000) which are based on the "Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada, Cornell University, September 1993, revised August 17, 2000." The design storm events and the amount of rainfall for each event used in the calculations include: the 1-year, 2.6"; 2-year, 3.25"; 5-year, 4.1"; 10-year 4.9"; 25-year, 6.1"; 50-year, 7.3"; and 100-year, 8.5". These standards are more stringent than the state standards. By meeting these standards, the proposed project exceeds state requirements. The calculations show that the proposed stormwater management system associated with the access road will reduce peak rate and volume of stormwater flow off site; which is a benefit to Hopping Brook.

Table 7-1. Reduction of Peak Flow Rates (cfs) Between Existing and Proposed Conditions

Storm Event	1-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Existing Conditions	12.8	24.22	41.86	60.23	90.10	121.58	154.06
Proposed Conditions	7.26	13.32	23.72	36.16	57.21	84.55	112.61
Flow Reduction	43%	45%	43%	40%	37%	30%	27%

Table 7-2. Reduction of Stormwater Runoff Volume (acre-ft) Between Existing and Proposed Conditions

Storm Event	1-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Existing Conditions	2.3	3.91	6.37	8,95	13.15	17.64	22.33
Proposed Conditions	1.66	3.35	5.92	8.59	12.91	17.50	22.26
Flow Reduction	28%	14%	7%	4%	2%	1%	0%

A Stormwater Pollution Prevention Plan has been prepared by Saluk and Associates, dated March 21, 2003, for the proposed access road work.

Construction and Post Construction Maintenance Plans have also been prepared.

7.3 Correspondence with the Division of Fisheries and Wildlife

The Division of Fisheries and Wildlife was contacted in regards to the status of Hopping Brook as a cold water resource (as defined by Massachusetts DEP Surface Water Quality Standards Regulations in 314 CMR 4.00) and the design of the proposed stormwater management system. Two letters were received from the Division of Fisheries and Wildlife and are included in Appendix F. This section provides a summary of these letters.

In a letter dated July 29, 2002 from Mr. Richard A. Hartley, Aquatic Biologist with the Division of Fisheries and Wildlife, Hopping Brook is considered a cold water resource since trout can survive in the brook during the summer months. This designation requires that any discharge into Hopping Brook must not exceed thresholds established in the Massachusetts DEP Class B Cold Water criteria in Section 314 CMR 4.05.

Mr. Hartley also reviewed the Stormwater Management Report. In a letter dated October 2, 2002, Mr. Hartley stated that the Stormwater Management Plan will not pose a significant risk to Hopping Brook's fisheries resources. Potential impacts to the brook are minimized by avoiding direct discharge into the brook and incorporating extended detention basins into the design.

8.0 REVISED WASTEWATER DISPOSAL

The Certificate of the Secretary on the Notice of Project Change, issued May 24, 2002, requested additional information regarding the following issues: (1) possible locations for the treatment facility and disposal site, (2) the disposal methodology, and (3) the feasibility of the disposal methodology.

8.1 Introduction

At a Special Town Meeting, held December 17, 2002, the zoning by-law was amended. The purpose of the amendment is as follows: "Private sewage disposal systems or treatment plants shall be allowed in Industrial Districts in conjunction with commercial or industrial development." This allows the proposed treatment plant to be constructed on the site. This amendment is presented in Appendix G.

The proponent, First Colony Development (First Colony) has been working cooperatively with the Town of Holliston (Town) and the Massachusetts Department of Environmental Protection (DEP) over the last several months on our plan to provide in-basin groundwater discharge of the wastewater effluent from an on-site treatment plant for Phase II. The decision to maintain the discharge within the basin was made in accordance with DEP's philosophy of keeping water local. Watershed associations have also enthusiastically supported this philosophy.

8.2 Potential Locations of the Treatment Facility and Disposal Site

On-site wastewater treatment and disposal is proposed for Phase II. In the preliminary planning, there are three potential locations for the wastewater treatment facility (WWTF) and two potential locations for the disposal site (See Figure 8-1). The potential use of the disposal area located in the NStar easement is reserved for the Town of Holliston.

Once the final locations for the WWTF and disposal site are determined, the proponent will submit an NOI to the Holliston Conservation Commission if any of the locations are within Buffer Zone. The NOI will include an alternatives analysis to support the reasons for selecting the final locations.

8.3 Field Investigations and Feasibility of Disposal

The proponent has met with representatives of the Town's Wastewater Committee on several occasions to keep them abreast of the ongoing site investigation and the resulting groundwater discharge capacity. The field investigation included the excavation of 19 test pits, the advancement of nine borings, and the installation of eight monitoring wells. A soil scientist certified by

Figure 8-1. Proposed Locations for the WWTF and Disposal Site Wastewater Treatment Facility 199 ACRES 3 STORIES
3 STORIES STORIES STORIES PHASE II DEVELOPMENT 605,500 GSF 589,000 GSF 589,000 GSF 432,000 GSF 2,215,500 GSF 8,667,907 sF M Disposal Site BUILDING "A"
BUILDING "B"
BUILDING "C"
TOTAL SITE ARFA Washington St. West, Rt. 16 Holliston, Massachusetts HOPPING BROOK PARK

the DEP in accordance with 310 CMR 15.017 evaluated the test pits. The estimated seasonal high groundwater level was determined at each test pit primarily by the presence of redoximorphic features. The test pits were advanced to depths between 96 inches (8 feet) to 124 inches (10 feet). Redoximorphic features were observed at greater than 96 inches in over 50% of the test pits. Fourteen of the 16 percolation tests resulted in rates of less than two minutes. In addition, a 10 day loading test was conducted and the results support the areas applicability as a groundwater disposal site for the discharge of the 225,000 gpd.

As iterated to the Holliston Board of Selectmen and in meetings with the Wastewater Committee, First Colony has provided the Town of Holliston with the first right of refusal for the available discharge capacity in excess to the needs of the Phase II portion of Hopping Brook Park. This commitment is to assist the Town in responding to the Wastewater Committee's ongoing progress in the preparation of a wastewater management plan.

8.4 Wastewater Treatment Facility Design and Methodology of Disposal

First Colony expects to submit a Major Groundwater Discharge Permit (GWDP) this fall for the discharge capacity of the site. The design parameters of the WWTF will be contingent on the DEP's requirements for the groundwater discharge permit. The project design is intended to incorporate effluent re-use for irrigation and toilet flushing as water conservation measures. The opportunity for this technology will be somewhat dependent on the ultimate tenants(s) The disposal methodology for the WWTF effluent is expected to utilize CULTEC distribution galleries.

9.0 RESPONSE TO COMMENTS

	Page No.
Mary Gardner, DEP, CERO	9-2
Christine Kirby, DEP, Boston	9-6
Margaret Van Deusen, Charles River Watershed Association	9-10
Pat Huckery, Natural Heritage and Endangered Species Program	9-20

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION Central Regional Office, 627 Main Street, Worcester, MA 01608

BOB DURAND Secretary LAUREN A. LISS Commissioner

May 15, 2002

Secretary Robert Durand Executive Office of Environmental Affairs 251 Causeway Street, Suite 900 Boston, MA 02114

Attention: MEPA Unit - Richard Foster

RE: Notice of Project Change

Hopping Brook Industrial Park

Route 16, Holliston

EOEA #4411

Dear Secretary Durand,

The Department of Environmental Protection (the Department), Central Regional Office offers the following comments on the Notice of Project Change (NPC) submitted for the Hopping Brook Industrial Park, located on Route 16 in Holliston, MA. The project dates back to 1983, when the Secretary issued a certificate for the Final Environmental Impact Report.

The changes to the project include: an increase in total site acreage of 85 acres; a reduction of 45 acres of land to be altered; a reduction of 43 acres of impervious area to be created; a reduction of 1,391,110 square feet of bordering vegetated wetland (BVW) to be altered; an increase in building height of 10 feet; an increase of 2.56 miles of water main; a change in the internal roadway pattern to prevent impact to the spotted turtle habitat; a change in the proposed wastewater disposal method from subsurface leaching systems to a centralized on-site treatment plant; and the relocation of a proposed detention basin.

This project is being constructed in two (2) phases. Phase I began in 1983 and is still on-going. Phase II will presumably begin when Phase I is completed. The proposed completion date is in 2005.

The Department has reviewed the NPC and recommends additional MEPA review be required. The following comments are offered for your consideration:

Mary Gardner, DEP, CERO

No comments are required for comments on this page.

1

Q

3

4

- To date, 558,000 square feet of office, manufacturing and warehouse space has been constructed in sixteen buildings on 100+ acres. Of the nineteen lots in Phase 1, three (3) of the lots have not undergone construction, and six (6) of the lots will be expanded. The total build out will be 750,000 square feet. Each lot allegedly has its own septic system. If each building is individually owned, this situation is acceptable. However, if the owner of Hopping Brook Industrial Park leases the buildings to tenants, then the septic system flows should be added together to determine if a groundwater discharge permit is needed.
- Phase II of the construction will add another 2,215,500 square feet of office space, bringing the total building space to just under 3 million square feet. At 75 gallons per day (GPD)/1000 square feet, Phase II would equal a design wastewater flow of 166,162.5 GPD. The NPC predicts a wastewater generation of 225,000 GPD for the entire project. The proponent should state whether all the existing buildings will be sewered, or the existing buildings will continue to use septic systems.
- There was reference in the NPC that sewer and water lines will travel through the habitat of the spotted turtle. Construction activities should be altered to prevent disturbance of this habitat.
- The wastewater treatment facility should be designed for toilet water reuse in the Phase II buildings. This design will minimize the amount of water needed and reduce the amount of water discharging to the ground.

The Department, Central Regional Office, appreciates the opportunity to comment on the proposed project. If you have any questions regarding these comments, please do not hesitate to contact me at (508) 849-4033.

Sincerely,

Mary Gardner Acting Deputy Regional Director

cc: Robert W. Golledge, Jr., Regional Director, CERO
Paul Anderson, Municipal Coordinator, CERO
Eric Worrall, DEP, Boston

Mary Gardner, DEP, CERO

- 1. Currently, each building in Hopping Brook Park has separate ownership and individual septic systems. A groundwater discharge permit is not needed.
- 2. The existing buildings will continue to use septic systems.
- 3. Utility trenching will occur within the habit of Spotted turtle. A detailed mitigation plan has been developed in coordination with Natural Heritage to minimize the work required and limiting the construction time to occur from October 1 to March 15. The utilities will be placed in a trench and when complete will be surfaced with gravel. In addition, the haybale line will contain critter gaps to avoid disturbing potential movement of wildlife.
- 4. Effluent re-use for irrigation and toilet flushing will be incorporated into the design of the wastewater treatment facility.

JANE SWIFT Governor

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION

ONE WINTER STREET, BOSTON, MA 02108 617-292-5500

RECEIVED

BOB DURAN Secreta LAUREN A. LI.

Commission

HEPA

MEMORANDUM

TO:

Secretary Durand, Executive Office of Environmental Affairs

ATTN:

Dick Foster, MEPA Unit

FROM:

Christine Kirby, DEP

DATE:

May 14, 2002

SUBJECT:

EOEA No. 4411 - Review of the Notice of Project Change for Hopping Brook

Park in Holliston

The Department of Environmental Protection (DEP) has reviewed the Notice of Project Change (NPC) submitted for Hopping Brook Park in Holliston. In exercising its responsibility to review projects for potential air quality impacts due to changes in traffic within the project area, DEP offers the following comments.

New Hopping Brook Realty Trust prepared the NPC for the review of an on site change to the stormwater management system. This project, originally reviewed by MEPA in 1983, included a 3,000,000 square foot office and research and development space on a 218 acre site located on Hopping Brook Road in Holliston. The proponent plans to develop the remaining 2,215,000 square feet in Phase II of the project on a site expanded to 366 acres. The project, when completed in 2005, will have 9,864 parking spaces to accommodate an average daily traffic of 15,110. Therefore, in order for this project to be consistent with the State Implementation Plan (SIP), it will be necessary for the project proponent to conduct an air quality mesoscale analysis to be presented in a Draft Environmental Impact Report.

A proposed indirect source project may have impacts on area traffic characteristics, such as volume and speed of roadway segments. An area which includes all of the project impacted roadway segments is defined as the mesoscale area. The analysis area should include the area within a 0.3 to 16 km radius and include the indirect source project; the exact geographical area depends on local conditions and the impact of a project on area travel patterns. The area should be large enough to include all roadway links that will potentially experience an increase of 10%

This information is available in alternate format by calling our ADA Coordinator at (617) 574-6872.

DEP on the World Wide Web: http://www.state.ma.us/dep

Page 9-6

1

Christine Kirby, DEP, Boston

- 1. An air quality mesoscale analysis was conducted by Epsilon Associates and is included in Appendix B. See Section 4.0 for more details of the analysis.
- 2. The methodology for the mesoscale analysis model was developed in accordance with MADEP guidelines. The modeling protocol for the mesoscale analysis was approved by Keith Grillo on April 3, 2003. See Section 4.0 and Appendix B for more details of the analysis.

in traffic due to the project and currently operate at level of service (LOS) D or lower or will be degraded to LOS D or lower. A mesoscale analysis should be performed for volatile organic compounds (VOC). The total amount of the pollutant expected from each of the project alternatives, including "No Build" in the base and future years should be selected in consultation with the Massachusetts Environmental Policy Act (MEPA) staff and the DEP staff as well as the input parameters to the Mobile5ah emissions factor model.

VOC emissions for the base case can be calculated using existing characteristics on the roadway segments. Emissions for the estimated time of completion can be calculated by changing the traffic characteristics on the roadway segments to those that are expected to occur when the indirect source project is completed. VOC emissions for the build and no build cases for future years can be similarly calculated.

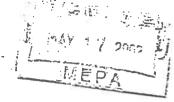
Once the analysis has been completed it can be determined if the project will result in an increase or decrease in emissions of VOC. Emissions will increase or decrease based upon the effects of traffic volumes and on speeds on the roadway segments in the project area as a result of the indirect source project. If the project is shown to result in an emissions increase, mitigation measures should be presented to offset the increase.

In addition to the requirements for an air quality analysis, every facility located on this site which employs 250 or more daytime employees at any time over the course of one year will be required to comply with DEP's Ridesharing Regulation (310 CMR 7.16).

Should you have any questions regarding this memorandum please contact Keith Grillo of the DEP at 292-5773.

Christine Kirby, DEP

- 3. Results of the mesoscale analysis demonstrate that the Build condition will have higher emissions than the No-Build condition as shown on Table 4-1. The focus of the mitigation measures will be implementation of services on-site rather than a travel demand management consisting of local transit services. See Section 4.0 and the Travel Demand Management section of the Revised Traffic Analysis for more details.
- 4. The proponent will comply with DEP's Ridesharing Regulation (310 CMR 7.16) if 250 or more daytime employees are working at each building.



DF

Charles River Watershed Association

BY FAX AND MAIL

May 14, 2002

Robert Durand, Secretary Executive Office of Environmental Affairs 251 Causeway Street Boston, MA 02114

05-17-02 P03:26 IN

Attn: Richard Foster, MEPA Unit

Re: Notice of Project Change Hopping Brook Park, Holliston, MA, EOEA

#: 4411

Dear Secretary Durand:

The Charles River Watershed Association (CRWA) has reviewed the notice of project change (NPC) for this project that will alter over 100 acres of land, create well over 50 acres of impervious area, involve work in the riverfront area, fill two isolated wetlands and a portion of a rare species inhabited wetland system, and impact spotted turtle habitat. This NPC was filed for an industrial park project that received final environmental impact report approval 19 years ago. There is no question, as discussed below, that this project -- of which less than 20% was built in the intervening years since the Secretary's certificate on the FEIR issued in June, 1983 -- will have significant environmental consequences. The undeveloped portion of the site is largely forested and contains an important wetland system and both Hopping Brook and a tributary to Chicken Brook, which feed into the Charles River.

The proponent has not provided any information in the NPC from which it can be found that the lapse of time <u>does not</u> require the filing of a new environmental notification form. Pursuant to 301 CMR 11.10(3) "the Secretary shall deem MEPA review of a Project closed if more than five years have elapsed between:

- (a) the publication of the notice of the availability of the single or final EIR; and
- (b) the earlier of:
 - 1. notification of Commencement of Construction in accordance with 301 CMR 11.0S(9), provided that the Proponent has not thereafter suspended or abandoned construction for more than three years; and
 - 2. commencement of non-construction related work or activity, including expenditure of funds for final design, property acquisition, or marketing, provided

¹ The NPC does not state how many acres of imperviousness will be created in Phase II of the project. However, the buildings alone will encompass 2,215,500 s.f. Surficial parking may double this figure.

Margaret Van Deusen, Charles River Watershed Association

No responses are required for comments on this page.

that the Proponent has continued to take major steps in a continuous sequence to advance the Project.

The Proponent shall file a new ENF to open a new MEPA review, provided that the new Project meets or exceeds one or more review thresholds. In the certificate on the new ENF, the Secretary shall ordinarily make specific findings regarding segmentation. (Emphasis added).

The NPC states only that "Construction of the Project began in 1983 and has continued gradually to the present time. The completion date has been extended from 1993 to 2005." NPC at 4.

CRWA believes that it would set an extraordinarily bad precedent if a development requiring a mandatory EIR in the ordinary course if submitted today, were allowed to proceed without careful review and determination of whether the lapse of time requires a new ENF under 301 CMR 11.10(3). The proponent should be required to submit documentation as required by MEPA (see 301 CMR 11.06(5)) to support a factual finding that the construction was not suspended or abandoned for more than three years after commencement of construction. If in fact this lapse occurred, the proponent should be required to submit a new ENF. We note that the businesses located in "Phase I" of the project -- the 18.6% of the project that was completed -- are now nearly a decade later seeking to expand. See NPC at Attachment 3.

MEPA review has become increasingly sophisticated and public participation in the MEPA process has grown over the last 20 years as our knowledge of the impacts of development on land and water resources and habitat has increased by quantum leaps. The project today could not alter 32 acres of important wetlands as was apparently approved in 1983. And major environmental statutory and regulatory changes have occurred since then: the Massachusetts Rivers Protection Act, the Endangered Species Act and the Department of Environmental Protection's (DEP) Stormwater Guidance. The MEPA regulations were also overhauled.

Impairment of water quality caused by stormwater runoff and construction activities has become a critical issue. Groundwater quantity and stream flow, both in Holliston and throughout the Upper Charles Watershed, are now issues of serious and

² It is not even clear that this project was subject to the 1983 regulations that contained standards for work affecting inland wetlands.

³ We note that according to the NPC at Attachment 2, only the Secretary of Environmental Affairs was sent a copy of the NPC. Therefore, presumably, no agency or person received or commented on the original ENF. See 301 CMR 11.10(7). An explicit finding should be made as to whether the NPC has been circulated in compliance with section 11.10(7).

⁴ In the original project two stormwater detention basins were proposed to be located <u>in</u> the wetlands themselves.

Margaret Van Deusen, Charles River Watershed Association

No responses are required for comments on this page.

permanent concern and the watershed is experiencing significant stress. The Town of Holliston is located in the rapidly growing I-495 region. Holliston's growth has resulted in the proliferation of impervious surfaces and increased water demand. Its water demand exceeds its registered withdrawal volume and the town is currently seeking a water withdrawal permit for a new well. The town is also exploring localized treatment—and discharge of its wastewater through comprehensive wastewater management planning in an effort to keep its "water local."

Sidestepping the lapse of time issue, the proponent argues in the NPC that because another 85.4 acres of land has now been added to the project, this will result in only 28% of the land being developed, as opposed to 52% of the land that was to be developed. The NPC does not identify the location of the additional 85.4 acres except to say it is in the "northern portion of the Phase II area," NPC at 2, and we could not discern its precise location. In fact, the NPC states that "a portion of the proposed buildings will be located on this lot." NPC at 2. The only plan of the proposed Phase II development is contained in Figure 4 of the NPC. Contrary to the assertion in the NPC that the addition of this lot will result in more open space and reduce the density of the building layout, NPC at 2, an examination of Figure 4 shows that almost all of the buildable space in the now delineated Phase II portion of the project will be utilized for buildings, surface parking and a detention basin. The overall reduction in density appears to us to be based instead on the relatively low density of the "current" Phase I development. See NPC at Figure 3.

The regulations at 301 CMR 11.10 (6) (a)-(g) provide factors the Secretary should consider in determining whether a project change or lapse of time "might significantly increase environmental consequences." While section 11.10(6)(a) states that a change in a Project is ordinarily insignificant "if it results solely in an increase in square footage... or other relevant measures of the physical dimensions of the Project of less than 10% over estimates previously reviewed; provided the increase does not meet or exceed any review thresholds. here, the project is adding 85 acres of land and some portion of the project's buildings to this area. The area of the entire project has increased by over 10%; it is unknown whether the increase will exceed any review threshold for say, impervious area. In the ENF for the Phase II development, the proponent should be required to delineate clearly and to describe the existing conditions of this additional 85 acres, and the alterations planned for this area. This is also a change in the project site, which is another factor for the Secretary's consideration pursuant to 301 CMR 11.10(6)(d).

Additionally, during the lapse of time there have been changes to the ambient environment or information concerning the ambient environment. See 301 CMR 11.10(g). For instance, the spotted turtle habitat on the project site (and some 40 spotted turtles identified by the consultant during field observations) was discovered in 2001.⁶

⁵The NPC references the "Index Sheet in the Plan Set, dated March 4, 2002;" however, the Index sheet does not show the additional lot and we are still uncertain about its boundaries or the buildings planned for it.

⁶ While the proponent proposes creating 25,410 s.f. of turtle nesting habitat, its consultant admits that there is little information known about the effectiveness of creating such habitat.

Margaret Van Deusen, Charles River Watershed Association

1. The Index Sheet provided in the Plan Set dated March 4, 2002, submitted with the Notice of Project Change, shows a parcel in the northern portion of the site labeled "Parcel II, Area = 85.4 +/- acres." This parcel is also shown on the enclosed Proposed Conditions Plan. This area is forested with wetland areas in the far northwestern portion and far northeastern portion of the parcel. No work will occur on this parcel under the currently proposed phase of the project. Future development, though still in conceptual phase, could include buildings, parking, and stormwater detention basins, as shown on Figure 1-3 of this report. No additional impact will occur in wetland areas.

6

7

8

The Hopping Brook wetland is also an important over-wintering habitat for turtles. Water and sewer pipes are proposed to be placed in the area identified as spotted turtle habitat. We note that because Oxbow Associates, Inc.'s report contained no maps identifying the spotted turtle habitat, it was extremely difficult to locate and evaluate the project's impacts to this habitat. The ENF should clearly delineate the habitat area and the gravel road. The effectiveness of box culverts underneath the proposed construction of Hopping Brook Road to preserve turtle migratory function should be discussed. The statement in the Oxbow report that if the old gravel road is used only for emergencies, the mortality probability is near zero should also be explained. The ENF should make it clear whether this gravel road will be the only emergency access road to the site. Measures should also be discussed to eliminate any use of this road during nesting season. The richness of the project's eastern area containing wetlands, three certified vernal pools, and streams for habitat is underscored by the recent discovery of another species of special concern, four-toed salamanders, which were found nesting in the southernmost wetland on the site.

It is unclear whether the two isolated wetlands comprising 26,122 s.f. that are proposed to be filled were identified or even existed⁸ at the time of the original MEPA filing.

Additionally, water supply issues -- increased demand and reduced aquifer recharge and streamflow are changes in the ambient environment since 1983. Both the original MEPA filing and the NPC state that water use will be 250,000 gallons per day (gpd). While CRWA does not know how much water is being consumed by Phase I of the project, 250,000 gpd demand will place a significant burden on an already hard-pressed municipal water supply system. The proponent should discuss the project in relation to the ability of the town to supply this water and incorporate water conservation measures such as reuse of grey water, and landscaping requiring minimal irrigation. Stormwater should be infiltrated to the greatest degree possible.

The proponent asserts that there will be no generation of further impacts, which is another of the factors in 301 CMR 11.10(6)(b) for the Secretary to consider. The problem with this argument is that the proponent, in essence, is asking you to turn back the clock to 1983 and to compare impacts with what was permissible then. For instance, the proponent argues that stormwater management will be improved because stormwater will not discharge directly to two wetland areas -- a scenario that clearly would not be permitted today. While catch basins, a stormceptor system and a large detention basin are proposed for controlling stormwater runoff from the extension of Hopping Brook Road, there is no discussion of the increased runoff associated with the huge amount of impervious surface that will be created by the buildings and parking areas in Phase II or how it will be handled.

⁷ Telephone conversation with Jane Pierce, Holliston Conservation Agent. May 14, 2002.

⁸ According to Attachment C to the NPC, the two isolated wetlands were "created or embellished" by clearing that took place some 20 years ago.

Margaret Van Deusen, Charles River Watershed Association

- 2. The location of the proposed utility trench and associated gravel road is shown on Plan Sheets C7 and 8 of the Plan Set dated March 4, 2002 submitted with the Notice of Project Change. The Spotted turtle habitat is located in the wetlands and uplands to the north and south of the proposed utility trench.
- 3. Two box culverts are proposed to be located beneath the proposed access road as mitigation for the impact to the Bank resource in this area. The proponent has worked closely with the NHESP to develop a comprehensive Conservation Plan to protect the habitat of the Spotted turtle. At the request of the Natural Heritage and Endangered Species Program, the size of one box culvert has been increased to 4' x 11', the other will remain 4' x 6'. The box culverts will allow unrestricted movement of wildlife, between the wetlands, in the area of the wetland crossing.
- 4. The utility corridor that will be cleared during this phase of work will also be used as the emergency access for the site. The probability of mortality is low because there will be no regular traffic on the gravel road and no migratory barriers will result from the construction of the work.
- 5. In addition to the gravel road within the utility corridor, there will be two additional locations for limited emergency access to the site. These locations are on the east side of the site. Carriage House Way and Summit Road are within the Claybrook I and Claybrook II developments in Medway. These roads were approved to be used only for residential access and not an option as a primary access to an industrial park. However, use of these roads only as an emergency access for Hopping Brook Park is acceptable.
- 6. The gravel road will be the only emergency access, and its use cannot be predicted. A turtle nesting habitat is proposed to be constructed as mitigation for work in the habitat of the Spotted turtle by creating and maintaining a nesting area conducive to the Spotted turtle.
- 7. For the future development, the proponent will incorporate low flow fixtures and low flow toilets into the design of the buildings. In addition, the effluent will be reused for irrigation and toilet flushing. The proponent has been working cooperatively with the Town of Holliston and the MA DEP concerning the design of the wastewater treatment facility.
- 8. The revised stormwater management system is designed in accordance with DEP Stormwater Management Policy, the Holliston Wetlands Administrative Bylaw Regulations, and the Holliston Board of Health Stormwater and Runoff regulations. The stormwater detention basins have been designed to reduce peak rate and volume off site. See Section 7.0 and Appendix D of the SEIR for more details.

CRWA is concerned about the cumulative impacts of stormwater runoff on wetland water quality and aquifer recharge. While the proponent may assert that compliance with DEP's stormwater management policy is only required for areas under the jurisdiction of the Wetlands Protection Act, it is important to note that almost without exception, every significant development project in the upper watershed in the past several years has agreed to site-wide compliance with the DEP policy. Moreover, U.S. Environmental Protection Agency's Phase II stormwater regulations which take effect next year require towns like Holliston to adopt comprehensive stormwater management bylaws for development projects over one acre. A comprehensive stormwater management plan for Phase II should be developed based on drainage patterns and runoff rates throughout the project area, and discussed in the MEPA process. The plan should include a discussion of stormwater runoff to the east of the site and any impacts to the wetland in this northeast portion of the site. Grading activities that will alter drainage patterns should also be discussed and infiltration of stormwater should be maximized.

The project will also alter 5,630 s.f of riverfront area where a proposed utility easement will cross Hopping Brook. In addition over 300,000 s.f. of grading and clearing work is proposed in the wetland resource buffer zone.

Additionally, the traffic study in the NPC appears to have been conducted only at the exit of the site onto Route 16. While the NPC asserts that there will be no traffic impacts because the number of vehicle trips was overestimated in the original MEPA filing, this fails to take into account increased traffic on Route 16 and I-495 that has occurred in the past decade.

Lastly, while the proponent has not yet filed a new application for a permit, see 301 CMR 11.10(6)(e), the project will require a groundwater discharge permit for on-site wastewater treatment. Almost no information is provided in the NPC with respect to the wastewater system, including its location, capacity or potential environmental impacts. The wastewater treatment system should be analyzed and discussed in the context of Holliston's comprehensive wastewater management planning.

In sum, CRWA believes that the lapse of time and the environmental consequences of this project require that a new ENF be filed and that the project undergo full environmental impact review. We believe that the proponent is a responsible developer willing to work through the MEPA process to create a project that will avoid, minimize or mitigate damage to the environment.

Muscoper Bulleum Margaret Van Deusen

Deputy Director and General Counsel

cc: Jay Wickersham Patricia Huckery Jane Pierce

9

10

11

12 -

Margaret Van Deusen, Charles River Watershed Association

- 9. A comprehensive stormwater management plan has been developed for the proposed construction of the access road, utilities, stormwater drainage for the access road, and mitigation. Stormwater management for the future development has been taken into account in the current stormwater management plan. In addition, two additional stormwater detention basins are proposed to control stormwater for the future development. See Section 7.0 and Appendix D of the SEIR for additional information.
- 10. No wetland resources are proposed to be impacted by the future development. All wetland impacts are proposed to be mitigated during the current phase of the proposed work. A separate stormwater management plan will be developed in accordance DEP Stormwater Management Policy, the Holliston Wetlands Administrative Bylaw Regulations, and the Holliston Board of Health Stormwater and Runoff regulations for the future development. In addition, any work within Buffer Zone to a regulated resource will require submission of a separate NOI to the Holliston Conservation Commission (See Order #19 of the Order of Conditions).
- 11.A revised Traffic Study has been conducted. See Section 4.0 and Appendix A of the SEIR for detailed information.
- 12. The proponent has been working cooperatively with the Town of Holliston and the MA DEP concerning the design of the wastewater treatment facility. The proponent is prepared to work with the Holliston Wastewater Committee towards their preparation of a wastewater management plan. See Section 8.0 for more information.

zavolas, nicholas (ENV)

From:

Huckery, Pat (FWE)

Sent:

Wednesday, May 15, 2002 5:48 PM

To:

Zavolas, Nicholas (DEP)

Subject:

EOEA#4411 Hopping Brook Park, Holliston

Richard Foster was assigned this project according to the MEPA Monitor, but he is no longer on the state's e-mail list. Please make sure that the appropriate MEPA analyst receives this e-mail. Thank you very much.

Two recently discovered, rare wildlife populations of spotted turtles and four-toed salamanders, have been documented to occur at the Hopping Brook Park site. The project as currently proposed will result in the "take" of these species under the Massachusetts Endangered Species Act. The proponent should continue working with the NHESP to avoid, minimize and mitigate the impacts from the proposed business park. They must show that the proposed activities will result in a long-term net benefit to the conservation of the populations of these species.

Pat Huckery, Natural Heritage and Endangered Species Program

- The proponent has had several meetings with Natural Heritage to modify the proposed project and develop a Conservation Plan that will avoid, minimize and mitigate impacts to and protect the habitat of the rare species. A final Conservation Permit Request was submitted to Natural Heritage on May 8, 2003. See Section 6.0 of the SEIR for more details.
- 2. The mitigation measures proposed will provide a long-term net benefit to the conservation of the rare species populations. See Section 6.0 of the SEIR for more details.

.

APPENDIX A

Revised Traffic Impact Assessment

TRAFFIC APPENDIX

INTRODUCTION/PURPOSE

This traffic impact assessment has been prepared to evaluate the Notice of Project Change filed for the Hopping Brook Business Park in Holliston, Massachusetts. The project change related strictly to non-traffic related features of the proposal and will not affect the land use mix or the overall square footage originally proposed for development. Therefore, the proposed project change will not alter the traffic impact originally projected for the site. This having been said, however, it is acknowledged that the underlying traffic conditions along local streets and the nearby regional highways have changed significantly since the original project was approved. Therefore, this analysis, as per the Secretary's scope for the Supplemental Environmental Impact Report (SEIR) combined with input from MassHighway Department, evaluates the as-yet-undeveloped portion of the project as though it were a new project. This "new project" consists of 2.4 million square feet. The study area for the analysis was developed at the direction of the MassHighway Department District 3 Office. Information on trip generation relies on ITE data as well as information available at the already built 558,000 square foot park on the site.

This assessment follows the standard methodologies established for environmental impact reports including an evaluation of existing conditions in the vicinity of the site, estimation of future no build conditions, an estimation of peak hour and daily traffic flows associated with the project, an evaluation of the level of service for the existing, future no build and future build conditions, recommendations as to what roadway and intersection improvements are necessary to bring study area locations up to acceptable operating standards, and finally recommends mitigating measures. In most cases, the proponent will contribute towards or construct the recommended improvements.

Exhibit 1 is a general location map showing the site in relation to the local roadway and regional highway network. This analysis has the benefit of the fact that the project already has an access roadway that has been in operation for a number of years. Monitoring of the traffic in and out of this roadway (Hopping Brook Road) provides information on trip generation and directional distribution that would not otherwise be so conveniently available or as relevant. In addition, information from the existing business park allows us to better estimate the mix of land uses that can be expected at the site used in estimating the trip generation for the project.

GENERAL LOCATION MAP

Hopping Brook Business Park
Holliston, Massachusetts
Abend Associates

Exhibit

EXISTING CONDITIONS

Study Area

The study area for this project was established in order to assess the impacts of the project at key locations. To the east of the site, what was considered one of the most critical locations within the center of town, Central Street, was selected as were the two intersections of Route 16 and Route 126 (Concord Street to the north and Summer Street to the south). While there are one or two intersections east of the site that might have warranted inclusion in the study area, the discussions with MassHighway indicated that there were already plans in the works at some of these locations to address existing deficiencies and it was believed that further study of them as part of this analysis would not shed any more light on those improvement plans. To the west of the site, the study area network was developed to include access to Route 495, the major regional highway in the area. Because Route 16 does not interchange with Route 495 both the Route 85 and Route 109 interchanges have been evaluated; it is expected that traffic to and from the north will use the Route 85 interchange and traffic to and from the south will use the Route 109 interchange. Finally, the intersection west of the interchange area, Route 16 at Route 109, was also included in the analysis.

Roadways

Hopping Brook Business Park is located on Hopping Brook Road, a two-way, two-lane private roadway that has a single access along Route 16, Washington Street. Hopping Brook Road was proposed as part of the original development and is complete in the vicinity of Route 16. It includes an overall width of approximately 40 feet with curbing and dirt/grass shoulders with no sidewalks. This roadway generally operates as a single lane in each direction with the pavement width at Route 16 wide enough to accommodate left and right turns out of the site. The intersection at Hopping Brook Road is controlled by a stop sign for the Hopping Brook Road approach.

Route 16, Washington Street, is a two-way, two-lane roadway that traverses through Holliston. To the east it travels through Sherborn, toward the Wellesley area. To the southwest it connects through downtown Milford as well as the commercial areas in the vicinity of the Route 495 corridor. The roadway has a double yellow centerline and edge lines with a posted speed limit varying between 30 and 45 miles per hour. Observed speeds seem to be generally consistent with normal operating speeds, i.e., between 5 miles per hour below and 5 miles per hour above posted speed limits. The roadway traverses gently rolling terrain including level areas and gentle curves. Land uses along Route 16 through the study area include a mix between commercial, retail, industrial, and residential purposes. Hopping Brook Road is approximately halfway between Holliston Center and the Route 495 corridor. The roadway is under state jurisdiction. The roadway is approximately 26 feet wide with no curbs and no sidewalks in the vicinity of the site. There are sidewalks farther east and farther west, once Route 16 enters Holliston Center and the commercial district west of Route 495.

Route 85 (Cedar Street) at Route 495 Ramps, Milford – This diamond-shaped interchange is unsignalized. Route 85 is straight and flat through the interchange with a single travel lane and a wide shoulder in each direction, with raised curbs and no sidewalks. The pavement width is sufficient to allow for through traffic to bypass vehicles waiting to turn left onto either the northbound or southbound on-ramp. There are also short, right-turn lanes onto both ramps from each direction along Route 85. Traffic along the ramps is controlled by stop signs for the left-turn movement and by yield signs for the right-turn movements.

Route 85 (Cedar Street) at Dilla Street/Fortune Boulevard, Milford — The four-way signalized intersection is located just south of the Route 495 interchange with Route 85. The traffic signal here is actuated and has multi-lane approaches on all four-legs. Northbound on Route 85 there is a left-turn lane and a through/right turn lane, southbound on Route 85 there is a double left turn lane, a through lane, a through lane, and a right-turn lane. Westbound on Fortune Boulevard there is a left/through lane and a right-turn lane, while eastbound on Dilla Street there is a left-turn lane and a left/through/right-turn lane. The Dilla Street approach is on a slight upgrade, while the Fortune Boulevard approach is on a slight downgrade. The actuated signal allows for a variety of phases to accommodate the various turning movements.

Route 16 (East Main Street) at Fortune Boulevard/Beaver Street, Milford — At this four-way signalized intersection, Route 16 eastbound has a left/through lane and a through/right lane; Route 16 westbound has a left/through lane, a through lane, and a right-turn-only lane. Northbound on Beaver Street there is a left/through lane and a through/right lane; southbound on Fortune Boulevard there is a left/through lane, a through lane, and a right-turn lane separated by an island and operating under yield control. This right-turn lane, however, is relatively short so that more than two vehicles queued in the queue lane block access to this right-turn lane. The signal is actuated and there is a lead-green phase to facilitate the southbound left turns from Fortune Boulevard onto Route 16 east. The intersection is generally flat on all approaches.

Route 16 (East Washington Street) at Route 109 (Medway Street/Prairie Street), Milford — This is a four-way, signalized intersection; although Prairie Street is a very low volume roadway it has volumes consistent with a small commercial driveway. Route 109 east of the intersection intersects Route 16 at a shallow angle, so that the right turn from Route 16 eastbound to Route 109 eastbound operates almost as a straight through movement. Similarly, the left turn from

Route 16 westbound onto Route 109 eastbound is a sharper than ninety-degree turn. Eastbound on Route 16 there is a left/through lane, a through lane, and a right-turn lane. The right-turn lane operates under yield control and is channelized with a raised traffic island. Westbound on Route 16 there is a left-turn lane and a through/right lane. Westbound on Route 109 there is a left/through lane and a right-turn only lane. While out of Prairie Street there is one approach lane shared by all movements. There are vertical granite curbs throughout the intersection. The layout of the intersection is generally flat and there are several phases to the intersection signal cycle including a lead green for left turns from Route 16 westbound onto Route 109 eastbound. Prairie Street and Route 109 westbound have separate phases even though they are "opposite" approaches.

Route 109 (Medway Street) at Beaver Street/Beaver Street Extension, Milford — This signalized intersection adjacent to the Route 495 interchange. All approaching roadways are at ninety-degrees and the grades are flat. The intersection has multi-lane approaches on all legs and Beaver Street Extension is one-way entering the intersection. Eastbound on Route 109 there is a left/through lane and a through lane; westbound there are two through lanes and a right-turn lane onto Beaver Street north. South along Beaver Street there is a double left-turn lane and a right-turn lane; northbound on Beaver Street Extension this is a left-turn lane, a through lane, and a right lane. The signal generally works on three phases with Route 109 on one phase and Beaver Street and Beaver Street Extension each having their own phase. There are vertical curbs throughout the intersection.

Route 109 (Medway Street) at Route 495 Ramps, Milford – This diamond-shaped interchange were recently upgraded and signalized. Through the interchange Route 109 has two through lanes and a dedicated turn lane at each ramp intersection – a left-turn lane or a right-turn lane depending on the ramp movements. Each of the ramps has two left turn lanes controlled by the signal and right turns separated by a traffic island. Yield signs control the right-turn movements. Each of the approaches is flat and the roadways are generally straight. There are curbs but no sidewalks.

Route 16 (Washington Street) at Route 126 north (Concord Street) — This intersection was upgraded within the last few years by the MassHighway Department. The upgrade included signalization and formalization of approach lanes. Also included was the reconstruction of the access to the adjacent businesses across from Concord Street. There are sidewalks and curbs throughout the intersection. Each of the approaches has excellent visibility and is generally flat. Westbound on Route 16 there is a single lane, while there are two lanes along the other approaches; although the storage length of the southbound left turn lane on Concord Street is quite short, only one or two vehicles long. The signal is actuated.

Route 16 (Washington Street) at Central Street – This unsignalized T intersection is located in the downtown business district of Holliston. Central Street has a single approach lane shared by left and right turning traffic with a stop sign controlling movements. An overhead flasher reinforces the stop sign with a red flasher facing Central Street and a yellow flasher facing the Route 16 approaches. Route 16 is exceptionally wide in this area, accommodating a through lane and a turn lane in each direction as well as parking along both sides for the adjacent businesses. The roadways are both flat and straight through the intersection with excellent visibility even with the presence of parking. There are vertical curbs and sidewalks through the intersection, which represents the central crossroads of the small business district.

Route 16 (Washington Street) at Route 126 South (Summer Street) — This intersection is an unsignalized T intersection controlled by stop signs along the Route 126 northbound approach. Both roadways have a two-way, two-lane layout although Summer Street splits as it intersects with Route 16 so that left and right turns queue separately. Left turns outs of Route 16 travel to the left of a triangular island with sufficient queuing capacity to accommodate about two vehicles waiting to turn left onto Route 16 before they might block right turning traffic. One of the most noteworthy features of the intersection is that it sits at a small crest along Route 16. Because of this crest, traffic approaching from the east cannot see oncoming traffic along Route 16 until they reach the intersection itself. This is a notable safety concern when a driver traveling west is taking the left turn into Route 126. These left turning drivers cannot anticipate a gap in opposing traffic because of this limited visibility and, therefore, must come to almost a complete stop before proceeding left into Route 126 south (Holliston Street). Combined with this vertical alignment is the proximity of the adjacent homes, which create a feeling of congestion at this location. Traffic waiting to turn left or right out of Route 126 has good visibility because of the crest and the straight alignment of Route 16.

Route 16 at Hopping Brook Road — This unsignalized T intersection has one lane approaches along Route 16 and two lanes approaching along Hopping Brook Road, one for left turns and one for right turns; this approach is controlled by a stop sign. There is a small median separating inbound and outbound lanes on Hopping Brook Road. All approaches are flat and straight, with excellent visibility.

Traffic Volumes

As a basis for the technical analysis, turning movement counts were conducted on weekdays between 7:00 and 9:00 AM and between 4:00 and 6:00 PM for the study area intersections. The four consecutive fifteen-minute periods with the highest approach volume is designated as the peak hour for this analysis. A review of data for seasonality from the MassHighway website

indicates that December, when the counts for this study were collected, is three percent below the annual average (adjustment factor of 0.97). This adjustment has been made to the existing data to develop an average condition as a base for this analysis. These base volumes are shown in Exhibits 2 and 3 for the morning and evening peak hours, respectively.

In addition to these counts, an automatic traffic recorder (ATR) count was done along Route 16 in front of the site. This indicates that there were a total of about 16,000 vehicles per day passing the site. During the morning peak hour there were a total of about 1,200 vehicles with approximately 58 percent eastbound and 42 percent westbound. In the evening the volumes were about 1,400 vehicles with about 34 percent eastbound and 66 percent westbound. All of the count data is included in the appendix.

Accident History

Data on traffic accidents for the study area intersections was collected from MassHighway Department records. The MassHighway Department records are compiled from the accident reports filed with the Registry of Motor Vehicles, as per state law. The data used includes information for the most recent three-year period available, 1998 through 2000. Summaries and accident listings are included in the appendix. Each intersection is discussed below:

Route 85 (Cedar Street) at Route 495, Milford – Due to the fact that the accident records are not clear as to which ramp an accident occurred at, all the accidents at the interchange are combined. In total, there were 55 accidents at this interchange, generally evenly divided among the three years. Eighty percent occurred on weekdays with sixty percent occurring during the peak morning or evening weekday peak hours. Two-thirds were property damage only and there was one fatality. Of those that listed a specific type of accident, seventy percent were rear-end collisions and thirteen percent were angle collisions; the rest were single-vehicle accidents with vehicles running off the road. The visibility at the intersection appears to be excellent for all approaches and many of the accidents occur under good weather conditions. With this in mind, it appears that there are no specific design features that are specifically contributing to the accidents. With so many accidents occurring during the peak hours, it may be that traffic conditions are a contributing factor, either due to queuing or driver impatience. Because the data reflects a combination of both intersections, a crash rate has not been calculated.

Route 85 (Cedar Street) at Dilla Street/Fortune Boulevard, Milford – This four-way intersection had 24 accidents between 1998 and 2000 with a generally even distribution over the three-year period. Interestingly, only one of the 24 accidents occurred during the morning peak hour, while half of the accidents occurred during the evening peak hour. Two-thirds of the accidents involved property-damage only, with one-third involving injury. Just over half were angle-type accidents with the rest of the others with a type listed as being rear-end collisions.

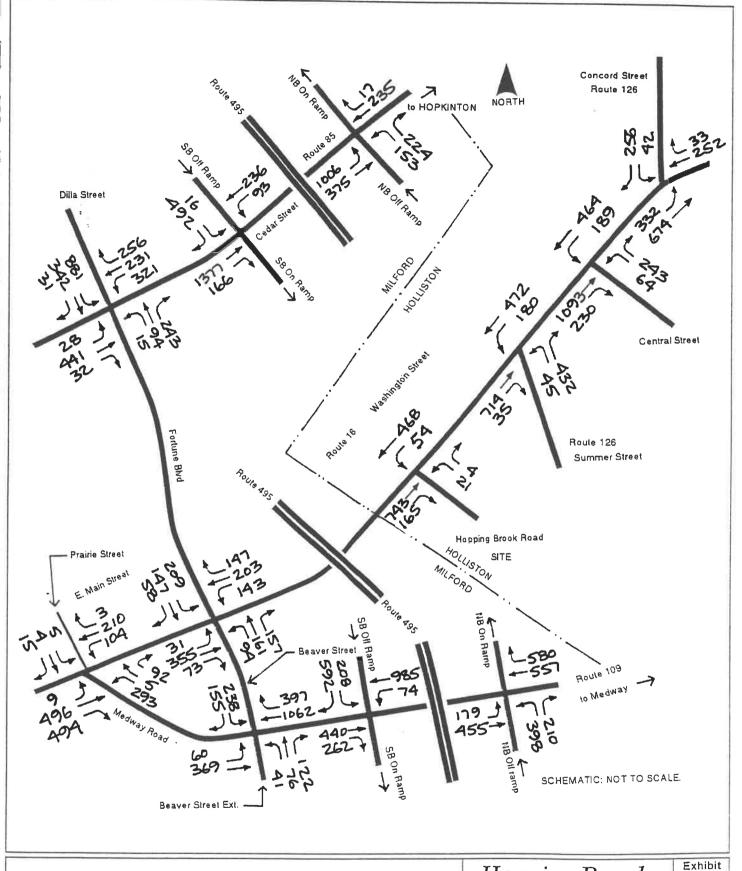
Approximately two-thirds occurred during the daytime and/or under dry conditions. This intersection was recently improved and expanded in relation to local commercial development. It is not know whether or not those improvements addressed previous safety concerns or not; however, the layout of the intersection appears to be properly designed. There may be some issues having to do with the double left-turn from Dilla Street and the northbound merge into Dilla Street; however, this is speculation.

Route 16 (East Main Street) at Fortune Boulevard/Beaver Street, Milford – This four-way signalized intersection had a total of 29 accidents in the three-year period. Approximately forty percent occurred during the peak hours, while approximately forty percent occurred at night or on weekends. Approximately sixty percent involved property damage only. It is noteworthy that approximately eighty percent of the accidents were either angle-type or head-on collisions. It is not clear why this might have been the case since the intersection appears to be well laid out. Ice and snow were factors in only one accident. This intersection is currently being upgraded as part of the Dunkin' Donuts project on the corner. It is likely that the high number of angle and head-on accidents may be do to the predominantly permissive left turns with two-lane approaches.

Route 16 (East Washington Street) at Route 109 (Medway Street)/Prairie Street, Milford — This signalized intersection had a total of 23 accidents, although more than half occurred in 1998 with fewer in the last couple of years. Given the heavy commercial activity in the area, it is not surprising that twenty-five percent of the accident occurred during the weekday evening peak hour with only two occurring during the morning peak hour. About eighty percent were property damage only with the remaining being injury accidents. About one-third involved angle-type collisions, another third involved rear-end accidents, and the remaining incidents involved vehicles going off the road or were unknown. A higher percentage of accidents occurred at night but rain and snow were cited in only one-third of the incidents. This intersection is relatively constrained and includes an awkward intersection angle along Route 109. This along with the proximity of many commercial driveways may be contributing to the accidents here.

Route 109 (Medway Street) at Beaver Street/Beaver Street Extension, Milford — This intersection had 38 incidents over the three-year period. Less than half occurred during the peak hours with a significant number of them occurring during the middle of the day and on weekends (just over fifty percent). Almost two-thirds of those were property-damage only with the remaining third involving personal injury. Most of the accidents occurred during daylight hours and/or under clear/dry conditions. This intersection was recently upgraded as part of the interchange improvements. It is not clear whether or not safety improvements were included. It is noteworthy that eastbound left turns along Route 109 into Beaver Street share a lane with through traffic and have only a permitted phase. It is possible that this type of phasing contributes to accidents at this location.

Route 109 (Medway Street) at Route 495 Ramps, Milford — This interchange had 70 accidents associated with it for the three-year period between 1998 and 2000. Half the accidents occurred during the peak hours and about two-thirds were property-damage only, with the remaining involving personal injury. Approximately forty percent were angle-type accidents, forty-five percent were rear-end collisions, and fifteen percent were single vehicle accidents. About three-quarters occurred during daylight hours or under clear/dry conditions. It is likely that congestion contributed significantly to these accidents, given that the alignment of the intersections at the ramps is excellent and visibility is also excellent. It is also likely that the signalization of these two ramps, which was recently completed, will address many of the safety issues at this interchange.


Route 16 (Washington Street) at Route 126 north (Concord Street), Holliston — This signalized T intersections had a total of 11 accidents over three years. Five of the 11 incidents occurred during the weekday peak hours and a total of six involved personal injury. This is a majority of the accidents, which is unusual. This intersection also had five angle accidents and four that occurred in wet conditions. While this intersection was improved several years ago, the overall configuration has narrow lanes, tight radii on the corners, and adjacent businesses close to the intersection, resulting in a lot of visual distractions. These factors may be contributing to the accidents here, although the overall number of accidents is not considerable.

Route 16 (Washington Street) at Route 126 South (Summer Street), Holliston — This unsignalized T intersection had a total of 13 accidents, although the last year for which data is compiled only had a single accident. It is noteworthy that 8 of the 13 (about 60%) occurred during the weekday peak hours; 9 of the 13 involved property damage only with the remaining 4 involving personal injury. Nine of the 13 were rear-end collision (many of them being southbound/westbound on Route 16). This may be the result of sudden stops associated with vehicles not knowing if they have a large enough gap to make the left turn onto Summer Street southbound until the last second. Most occurred during the daylight hours under dry conditions.

Route 16 (Washington Street) at Route 126, Holliston – There were 11 other incidents listed at "Route 16/Route 126" that did not provide enough information to determine whether or not they occurred at one junction or the other. Five of the 11 occurred during weekday peak hours and 10 of the 11 involved property-damage only. Of these, five involved rear-end collisions, two angle-types accidents, one head-on collision, and the remaining were off-road/unknown. Most occurred during the day and under dry conditions.

Route 16 (Washington Street) at Central Street, Holliston – This intersection had a total of 15 accidents in the three-year period. Only four occurred during the weekday peak hours, while 7 occurred between 10:00 AM and 3:00 PM. This may be an indication that the accidents were related to the general "clutter" of this area associated with the local businesses and the on-street parking. Ten of the 15 accidents involved property-damage only and 12 of the accidents were angle-type accidents with the remaining listed as either pedestrian related or unknown. Most occurred during the daylight hours and almost all occurred under dry conditions.

Route 16 (Washington Street) of Hopping Brook Road, Holliston – This intersection had a total of two accidents over the three-year period, both angle-type accidents during the middle part of the day.

2003 EXISTING VOLUMES MORNING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts

2

Abend Associates

2003 EXISTING VOLUMES EVENING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts

3

Abend Associates

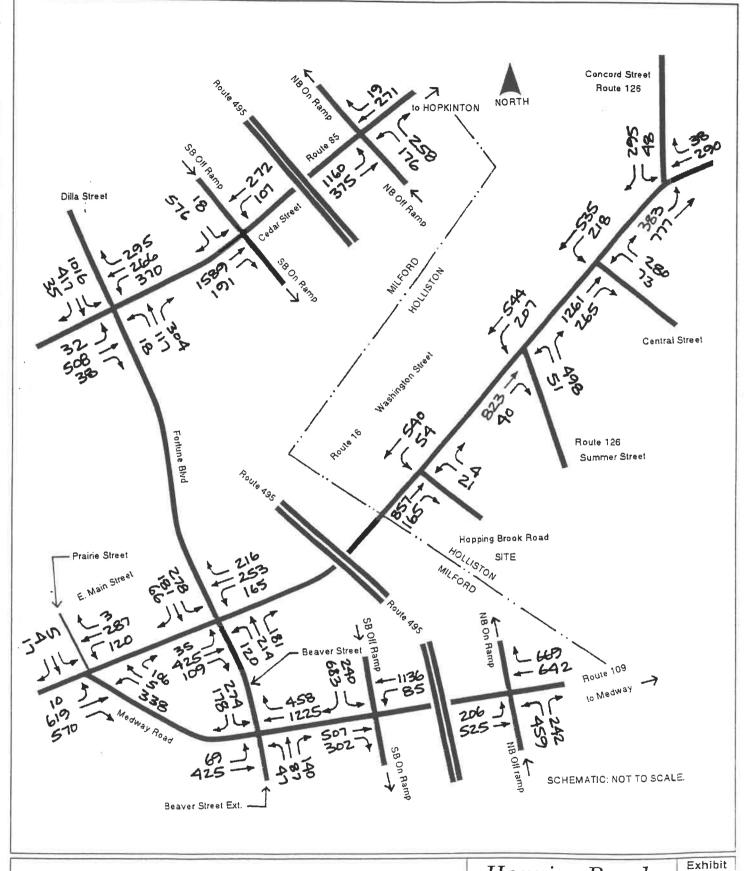
FUTURE NO BUILD CONDITIONS

In evaluating the impacts of the project, future conditions without the project must be developed. A five-year horizon, to the year 2008, has been used. Three components are incorporated into the development of this no build condition: general traffic growth trends, traffic growth associated with specific development in the local area, and planned roadway improvements within the study area. Each of these is considered below:

General Traffic Growth – In order to estimate traffic growth trends for this no build condition, information from the MassHighway Department's database is used, which includes information from continuous count stations throughout the state that allow for year-to-year comparisons. Holliston falls within MHD District 3. Based on the most recent data from the MassHighway web page, District 3's traffic volumes increased 2.9 percent from 1999 to 2000. While this is not specifically intended to be a "growth rate", it does serve this purpose. This regional growth is being fueled by developments such as those within the study area, particularly along Route 16 west of Route 495, and along Fortune Boulevard.

Generally, economic activity in the region has slowed over the last several years since 2000. Because of this, it is believed that these numbers reflect a conservative (i.e., high) estimate of traffic growth trends. In this case, however, it is considered appropriate due to the fact that many of the specific developments that were planned several years ago that still have not yet been completed within the study area are not specifically included in this analysis but are accounted for by this general growth rate. Thus, as a first step in developing the future no build conditions, existing volumes are increased by 15.4 percent to reflect conditions in 2008 (2.9% compounded over five years).

<u>Site-Specific Growth</u> – Two specific projects have been incorporated into the analysis. The first is the Target Store along Fortune Boulevard that was not quite open when the counts were done. Information from that project was collected from traffic studies done related to that project. The second project is a proposed Dunkin' Donuts and additional commercial development at the corner of Route 16 and Fortune Boulevard. That project is currently under construction and expected to open this summer. Both of these projects have been incorporated based on the traffic generation data included in the traffic studies for those projects.


Future no build volumes are presented in Exhibits 4 and 5 for the morning and evening peak hours, respectively. These volumes apply a 2.9 percent growth factor for a five-year period to the existing volumes and then add the site-specific development discussed above.

Roadway/Intersection Improvements — There are several roadway improvements that are currently underway or expected to be completed during the current construction season. Each of these is discuss below. They include locations such as the interchanges along Route 495 at Route 85 and at Route 109 and the intersection of Route 16 at Beaver Street/Fortune Boulevard. Route 495 at Route 109 is in the process of being signalized. These signals are operating, although the construction has not been completed yet. The improvements included creating double left-turn lanes off each ramp and dedicated left-turn lanes on Route 109 onto each ramp. These improvements are already operational even though the construction is not complete; as such, the new configuration has been used in the evaluation of existing, future no build, and future build conditions.

At Route 495 and Route 85, the northbound ramp intersection is currently in the process of being designed for signals. Only the northbound ramp intersection is planned for signalization since the left turns off of the southbound ramp are relatively low. The improvement will include a southbound right-turn lane along Route 85 and the addition of a northbound left-turn lane along Route 85. This information was obtained from VHB who are currently preparing the plans on behalf of the MassHighway Department. These design plans for this improvement are currently being finalized and so they have been incorporated into the future no build and future build conditions of this analysis.

In conjunction with the Dunkin' Donuts project, the Route 16/Fortune Boulevard/Beaver Street intersection is being redesigned slightly to better accommodate approach flow patterns. The Fortune Boulevard approach is being redesigned to accommodate a dedicated left-turn lane and a through/right lane along with a pedestrian crossing signal across the north and east legs of the intersection. These improvements are currently being constructed and have been incorporated into the future no build and future build conditions of this analysis.

Besides these specific improvements, there are several other improvements currently being considered for study area intersections in both Holliston and Milford. For these locations, however, the improvements are only in the discussion stage and have not been specifically included in any development plans or tied to any specific development projects. Consistent with standard procedures, those improvements are not included in this assessment.

2008 NO BUILD VOLUMES MORNING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts

4

Abend Associates

2008 NO BUILD VOLUMES EVENING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit

5

PROJECT-RELATED TRAFFIC

Trip Generation

In estimating the number of vehicle trips associated with the proposed completion of the Hopping Brook Business Park, information the Institute of Transportation Engineers (ITE) and data collected at the site are useful. A detailed trip generation comparison was included in the Notice of Project Change that was filed with MEPA. That memorandum by Abend Associates, dated March 28, 2002, is included in the appendix to this report.

Information from counts done at the site (prior to preparation of that memorandum) were compared with the original projections from the traffic study done as part of the EIR process in 1982 and also compared to the latest edition of the ITE publication Trip Generation (6th edition, 1997). Five hundred and fifty-eight thousand square feet (558,000 SF) of the park has already been built, including a mix of office, research and development (R&D), manufacturing, and warehouse space. The current park includes approximately 31 percent office space, 14 percent R&D space, 18 percent manufacturing space, and 37 percent warehouse space. The primary conclusions of the March 28, 2002 memorandum was that the existing business park generates traffic at a rate significantly below what would be expected if the latest ITE rates were applied to the various land uses that exist at the park now.

There are many possible reasons for this lower than "average" trip rate but one of the most likely, in our opinion, is that this park is not located along a major highway corridor such as Route 495, which would provide excellent and direct access for employees and visitors. Therefore, businesses that would more likely be catering to the convenience of a high number of employees and/or customers (i.e., those that rely on such convenient access for success in their business) would tend not to locate here, but instead would choose locations closer to the interstate highway system. Conversely, there would be a tendency for businesses with less demand for convenient access to locate here, where rents and/or land costs are lower.

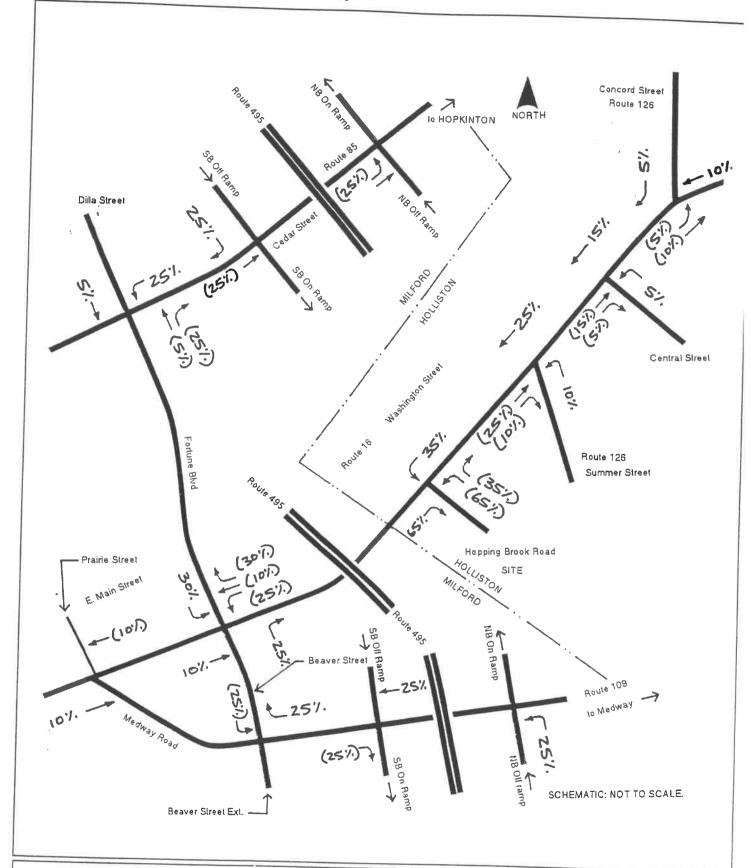
Prior to preparing this SEIR traffic study, Abend Associates met with MassHighway personnel to discuss the appropriate trip generation methodology. After the discussion it was determined that trip generation for the business park should be done by the following procedure:

1. Estimate the vehicle trips to the over 3,000,000 square foot business park based on the current ITE data and the expected land use mix. Based on discussions with the proponent, the current mix of land uses mirrors the expected full build-out of the park.

- 2. Adjust the ITE projections from step one above by an adjustment factor, determined by comparing the existing trips to what would be expected for the existing 558,000 square feet already developed. This is done independently for the morning peak hour (inbound/outbound) trips, evening peak hour (inbound/outbound) trips, and daily trips.
- 3. Subtract out the existing volumes at the site. This results in the additional trips expected from the completion of the park.

Exhibit 6 summarizes the results of this methodology. Included in the exhibit are the projected trips associated with the entire park, as well as those associated with that part of the park that is already built. It is important to note that subsequent to filing the Notice of Project Change (and the preparation of our March 22, 2002 memorandum), traffic counts were retaken at the site as part of the counts done throughout the entire study area for this analysis. The results of this second count indicated higher volumes at the site than previously documented. Those higher volumes have been used in this analysis. That is, a higher, more conservative estimate is used than was initially suggested by MassHighway when this method was accepted.

Directional Distribution

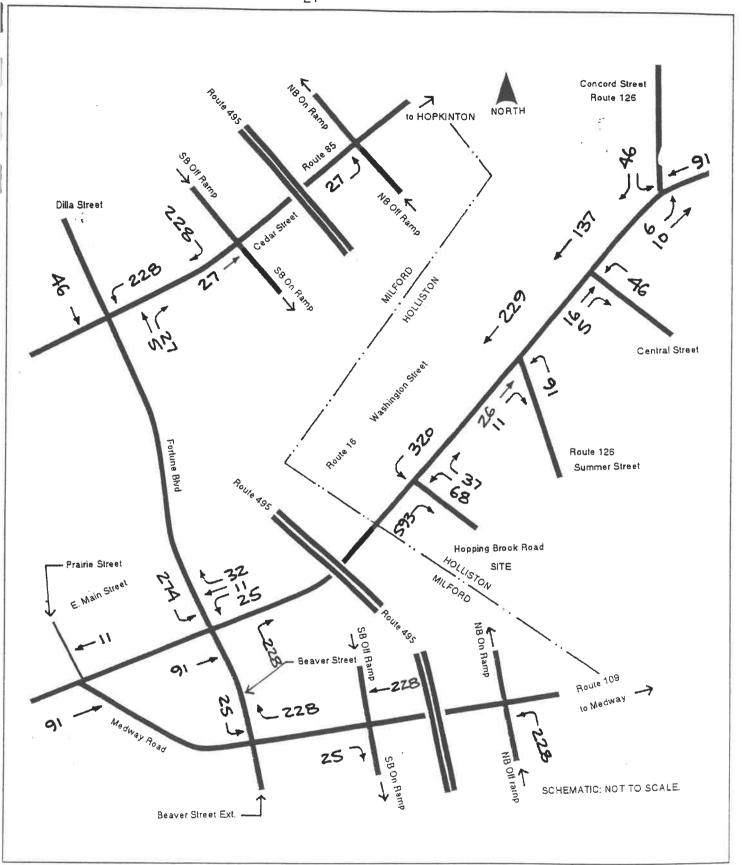

The distribution of site trips is primarily based on the existing volumes at the site driveway documented in the traffic counts. The data indicates that almost two-thirds of the traffic is oriented toward the southwest along Route 16 with one-third oriented to and from the northeast on Route 16. From this point trips are distributed based on our familiarity with the area, common commuter trends, and a likely route to reach certain population areas. About fifty percent of the traffic is expected to be oriented to Route 495 with half of this to and from the north and half to and from the south. Of the thirty-five percent expected to be oriented to the east along Route 16, various percentages are expected to use the many local routes that serve commuters throughout the region such as Route 126 to the north and south, Central Street to the east and Route 16 to the east. The trips in this direction are distributed throughout these various sub-regional commuter routes. Exhibit 7 presents a directional distribution for the site-related trips associated with the full build-out of this project.

Based on the trip generation projections and the distribution percentages documented above, the site trips along the street network can be estimated. This information is presented in Exhibits 8 and 9, respectively, for the morning and evening peak hours.

	Peak Hour Volumes				Average Daily	
	Morning		Evening		Volumes	
	<u>In</u>	Out	<u>In</u>	Out	<u>ln</u>	Out
<u>Step 1:</u>						
Trips to/from 558,000 SF existing based on ITE rates:	462	85	110	415	1,990	1,991
Step 2:						
A: Trips to/from 558,000 SF existing based on actual counts:	219	25	23	229	1,212	1,212
B: Actuals as a Percentage of ITE:	47.4%	29.4%	20.9%	55.2%	60.9%	60.9%
Step 3:						
A: Projected trips to/from 3,000,000 SF						
full build out, based on ITE rates:	2,389	442	572	2,288	8,952	8,952
B: Apply Percentage from Step 2B:	1,132	130	120	1,263	5,452	5,452
C: Subtract existing, actual trips from Step 2A:	(219)	(25)	(23)	(229)	(1,212)	(1,212)
D: Additional trips related to full build out:	<u>913</u>	<u>105</u>	<u>97</u>	1,034	<u>4,240</u>	<u>4.240</u>

See appendix for detailed calculations for Steps 1 and 3A.

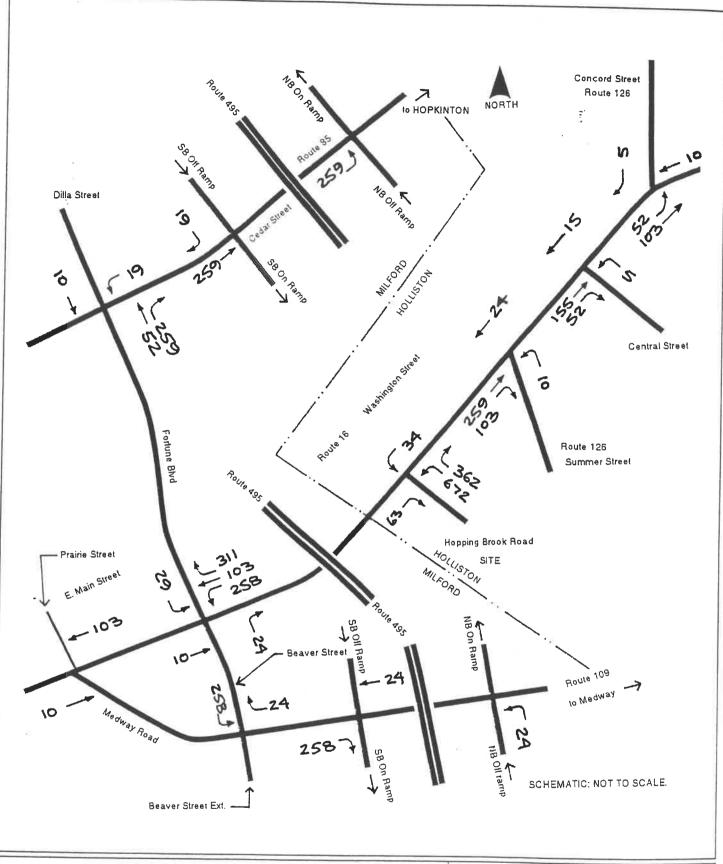
TRIP GENERATION SUMMARY	Hopping Brook Business Park Holliston, Massachusetts	Exhibi		
	Abend Associates			



DIRECTIONAL DISTRIBUTION

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit


7

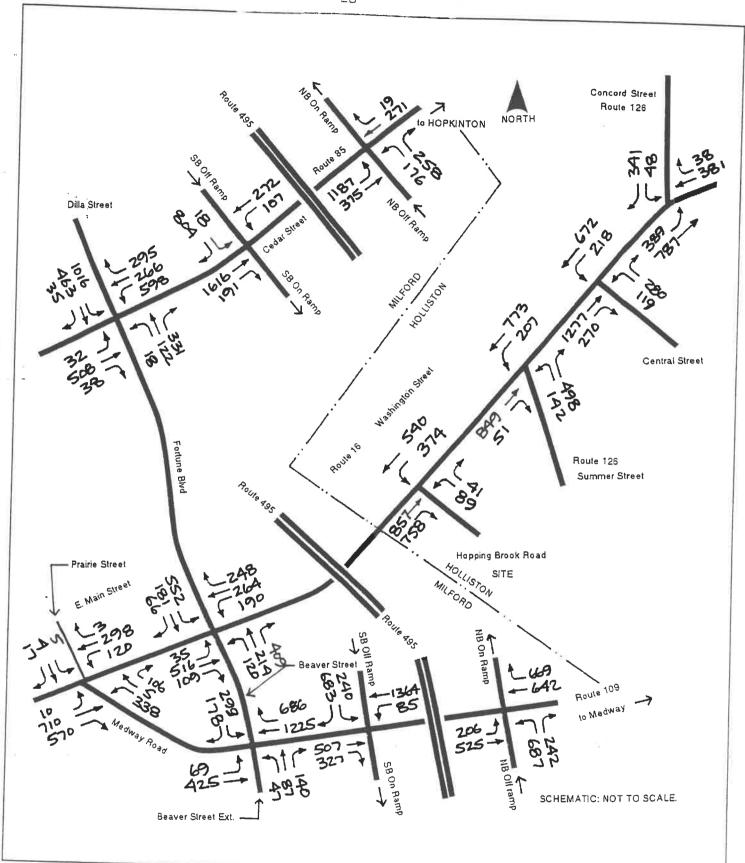
PROJECT-RELATED VOLUMES MORNING PEAK HOUR

Hopping Brook Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 8

PROJECT-RELATED VOLUMES EVENING PEAK HOUR

Hopping Brook Business Park Holliston, Massachusetts Exhibit 9


Abend Associates

SITE ACCESS DESIGN

Access to the Hopping Brook Business Park already exists as Hopping Brook Road. This roadway intersects Route 16 at a ninety-degree angle; generally halfway along a one-quarter mile stretch that is both straight and flat. A review of the accident data presented previously indicates that there are only two accidents at this location. A review of field conditions does not indicate any design concerns that might cause safety problems. This intersection will be signalization and additional lanes are added as part of the full build-out of the park. These are discussed later in this report.

FUTURE BUILD CONDITIONS

Combining the future 2008 No Build traffic volumes with the project-related traffic volumes provides the turning movement volumes expected once the project is in place. These volumes for the weekday morning and evening peak hours are presented in Exhibits 10 and 11. Evaluating the traffic operations of the intersections for the various conditions provides an assessment of the impacts of the project. This analysis is conducted in the *Impact Analysis* section.

2008 BUILD VOLUMES MORNING PEAK HOUR

Hopping Brook Business Park Holliston, Massachusetts Exhibit

10

Abend Associates

2008 BUILD VOLUMES EVENING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts

EXHIBIT

11

Abend Associates

IMPACT ANALYSIS

The study area intersections have been evaluated based on the 2000 Highway Capacity Manual using Synchro5 software. The methodology incorporates the geometric and volume related data at an intersection and computes a Level of Service, which provides a "grade" for the intersection's operations. The Level of Service grade is based on the average delay per vehicle entering along each approach or entering the intersection as a whole. Grades range from A, representing free-flow conditions, to F, representing over-capacity conditions where long delays occur. A grade of E represents close to capacity conditions where flows are unstable and congestion could likely occur. An overall intersection Level of Service grade of E or better is considered by traffic engineering professionals to be acceptable for peak hour conditions.

At unsignalized intersections, the Level of Service for each critical movement is calculated; a critical movement is one that must yield to another movement at the intersection. Typically, the left turns along the major street and all movements from the minor street must yield to other movements and are designated as critical movements. The methodology provides an estimate of delay for each of these critical movements.

At signalized intersections, the Level of Service for each group of lanes is calculated. The methodology provides an estimate of delay for each approach. Levels of Service of D or better are acceptable for normal operations. Average delays of ten seconds or less are designated as Level of Service A; average delays greater than 55 seconds are designated as Level of Service E; average delays greater than 80 seconds are Level of Service F.

Descriptions of Level of Service are included in the appendix of this report. The results for each intersection are discussed below. The Level of Service results are presented in Exhibits 12 for unsignalized locations and Exhibit 13 for signalized locations. The *Synchro5* computer printouts from the calculations are also included in the appendix.

Route 85 at Route 495 northbound Ramps, Milford — This ramp intersection is currently unsignalized and operates at level of service F during both the morning and evening peak hours with the left turn from the ramp being the most delayed approach. Route 85 flows are at levels of service B or C. As noted under the no build discussion, the signalization of this intersection will include creating a double left turn from the ramp onto Route 85 as well as a northbound left-turn lane on Route 85 onto the Route 495 ramp. In the future no build condition the level of service is at D with average delays are 40 and 50 seconds for the morning and evening peak hours, respectively. Under build conditions, the added traffic related to the project, only involving left turns onto Route 495 northbound. This leads to a level of service D during the morning peak hour and level of service E during the evening peak hour.

Route 85 at Route 495 southbound Ramps, Milford — This unsignalized intersection operates at level of service A during the morning peak hour and level of service F during the evening peak hour. Unlike the northbound ramps, there are no plans to signalize this intersection, primarily because the critical left turn from the ramp onto Route 85 northbound is made by only about 15-to-20 vehicles during the peak hours. Under the no build conditions, the overall level of service is at A during the morning and F during the evening. With the project traffic included, the morning peak hour drops to level of service F while the evening peak hour remains at level of service F.

Route 85 at Dilla Street/Fortune Boulevard, Milford — This intersection was recently upgraded as part of mitigation associated with other projects in the area. Under existing conditions it operates at level of service D during the morning peak hour and C during the evening peak hour. As traffic growth occurs, the no build condition is at level of service E during the morning and C in the evening with average delay of approximately 70 and 35 seconds, respectively. With project-related traffic added, the level of service drops to E in the morning and to E0 in the evening with average delay of approximately 95 and 40 seconds, respectively.

Route 16 at Fortune Boulevard/Beaver Street, Milford – This intersection operates at level of service A under existing conditions during both the morning and evening peak hours. Under future conditions the level of service remains at A during the morning peak hour and drops to B during the evening peak hour with delays between 10 and 15 seconds. Under no build and build conditions the intersection will have been improved associated with the adjacent retail project discussed previously. With project-related traffic included through this intersection the level of service is at C for both peak hours, with an average delay of about 25 seconds during the morning peak hour and 35 seconds during the evening peak hour.

Route 16 at Route 109, Milford – This intersection currently operates at level of service D during the morning peak hour and level of service F during the evening peak hour with average delays of 50 and 85 seconds, respectively. Under no build conditions, level of service is expected to be at E during the morning peak hour and F during the evening peak hour with average delays of approximately 65 and 90 seconds, respectively. With project-related traffic added, the level of service remains unchanged; the volumes associated with the project are complementary to the existing flows through the intersection and therefore do not add to the overall delay here.

Route 109 at Beaver Street/Beaver Street Extension, Milford – This intersection operates at level of service C under existing conditions with average delays of about 20 seconds during the morning peak hour and 35 seconds during the evening peak hour. Under future no build conditions the morning peak hour remains at C while the evening peak hour drops to level of service E with average delays of about 20 and 60 seconds, respectively. With project-related

traffic incorporated, the intersection remains at C with an average delay of about 20 seconds during the morning peak hour. Virtually all the traffic associated with the project during the morning peak hour is comprised of westbound right turns that are complementary to other flows at the intersection and therefore result in no change in the overall operations here. During the evening the southbound left turn will increase as a result of the project and increase the average delay to about 70 seconds per vehicle. The level of service will remain at E, however.

Route 109 at Route 495 southbound Ramps, Milford – This intersection currently operates at level of service B during the morning peak hour and level of service C during the evening peak hour with average delays of 15-to-20 seconds per vehicle. Under no build conditions the level of service is at C with average delays of about 20 seconds in the morning and about 35 seconds in the evening. Under build conditions with project-related traffic, average delays at this intersection are at about 25 seconds per vehicle during the morning and 35 seconds per vehicle during the evening peak hour with the level of service at C for both peak hours.

Route 109 at Route 495 northbound Ramps, Milford – This intersection operates at level of service B under existing conditions with the newly installed signal. Average delays are 10-to-15 seconds per vehicle. Under no build conditions the level of service remains at B with average delays of about 15-to-20 seconds per vehicle. With the project-related traffic included, the level of service remains at B for both peak hours and the average delays remain between 15 and 20 seconds per vehicle.

Route 16 at Route 126 (North), Holliston — This intersection operates at level of service A during the morning peak hour and B during the evening peak hour with average delays of about 5 and 15 seconds, respectively. Under future no build conditions the average delay remains the same during the morning peak hour with the level of service remaining at A. During the evening the level of service remains at B but the average delay increases to about 20 seconds per vehicle. Under future build conditions with project-related traffic, the average delay during the morning increases to about 10 seconds per vehicle while in the evening the average delay increases by about two seconds per vehicle. The level of service drops to B during the morning peak hour and C during the evening peak hour as a result of these increases.

Route 16 at Central Street, Holliston – The level of service at this unsignalized intersection is at F during both peak hours with considerable delays for Central Street traffic. The level of service will remain at F in the future, with excessive delays for Central Street, regardless of the impact of this project.

Route 16 at Route 126 (South), Holliston — This unsignalized intersection operates at level of service D in the morning, level of service F in the evening. Under future no build conditions the level of service is at F for both peak hours. This level of service remains at F, with the delays becoming greater, as a result of this project.

Route 16 at Hopping Brook Road, Holliston – This unsignalized intersection currently operates at level of service A with average delays of five seconds or less in the morning and level of service C in the evening with average delays of about 15 seconds. Under no build conditions the traffic will increase along Route 16 but no traffic is added to Hopping Brook Road. The level of service remains at A in the morning with average delays continuing at less than five seconds. In the evening the traffic increases along Route 16 and drivers the overall level of service here to D with an average delay of 30 seconds. Under future build conditions the project will add significantly to the volumes in and out of Hopping Brook Road and this would result in a significant delay for the Hopping Brook Road traffic, if the intersection were not being improved. However, under build conditions the proponent proposes to signalize the intersection and add dedicated turn lanes in each direction along Route 16. This will result in a level of service B in the morning and level of service D in the evening with average delays of 20 and 55 seconds, respectively.

					Mornina	8			
	20(2003 Existing	ing	200	2008 No Build	nild		2008 Build	P
Route 85 at Route 495 Northbound	LOS ¹	S1 Delay V/C3	V/C ³	10S	Delay	V/C3	LOS	Delay ²	V/C3
	F F	**	n						
Route 85 EB LT	O	17	0.79						
Route 495 NB LT	ட	*	*			SFF STGNA! 17FD	U IZED		
Route 495 NB RT	Ω	13	0.35						
Route 85 at Route 495 Southbo	Southbound Ramps, Milford	mps, M	ilford						
Overall	¥	, ,	ļ	V	ø	1	U	25	;
٧B	U	16	0.23	υ	21	0.33	U	22	0.34
Route 495 SB LT	ш	119	0.35	L	290	0.70	ıL	315	0.74
Route 495 SB RT	U	17	0.64	U	24	0.78	ш.	82	1.09
Route 16 at Central Street, Holliston	liston								
	Ľ	109	1	щ	*	ł	u.	*	ł
	U	17	0.38	U	23	0.53	U	24	0.54
Central St NB LT/RT	LL.	803	2.61	ш	*	*	ш	*	*
South	Summer	Street	(Summer Street), Holliston	uo					
Overall	Δ	27	9	ш	64	ŀ	Ŀ	621	ł
Route 16 WB LT/TH	V	2	0.22	۷	7	0.28	⋖	8	0.29
	ш.	82	0.52	щ	203	06.0	ட	*	3.73
Route 126 NB RT	tL.	101	1.08	Œ	249	1.46	ш	270	1.52
Route 16 at Hopping Brook Road,	ad, Holliston	ton							
Overall	۵	=	1	ш	2	!			
Route 16 WB LT/TH	4	2	0.08	A	2	0.00			
	۵	34	0.15	ш	43	0.20	SEE	SEE SIGNALIZED	ED
Hopping Brook Rd RT	В	14	0.01	O	16	0.01		*	

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 12A

1 of 2

1 1	m 1																								
pli								ł	0.44	1,85	2.86		ł	0.50	*		1	0.96	*	0.98				IZED	<i>1</i> '
308 Bu	Delay							234	17	*	871		*	16	*		*	82	*	83				SIGNAL	
2(LOS1			JALIZED				ш.	U	ட	ш		ıL	Ų	Ľ		ш	ட	Ľ	LL.				SEE	
nild				SEE SIGN				!	0.35	1.07	2.80		į	0.42	*		ľ	0.70	*	0.64		ŧ	0.01	1.49	0.16
8 No B	Delay ²							237	14	464	843		*	13	*	on	*	22	*	25		30	> 1	336	14
200	LOS	ford					ford	ш.	80	ഥ	Ŀ		Ľ.	83	ட	, Hollist	ட	O	ட	۵		O	4	ഥ	80
ting		nps, Mil	;	0.59	*	0.18	nps, Mil	. }	0.27	0.53	2.05		ł	0.33	*	Street),	;	0.56	*	0.50	ton	;	0.01	1.10	0.14
3 Exist	Delay ²	nd Rar	*	15	*	10	าd Ran	141	12	172	504	ton	*	11	*	mmer	*	13	*	18	Hollis	17	^	166	13
200	10S1	orthbou	ш.	В	ட	82	uthbour	ш	В	ட	ட	t, Hollis	щ	8	ш	outh (Su	щ	В	Ŀ	U	ok Road,	S	A	u.	В
		Route 495	Overall	Route 85 EB LT	Route 495 NB LT	Route 495 NB RT	Route 85 at Route 495 So	Overall	Route 85 WB LT	Route 495 SB LT	Route 495 SB RT	Route 16 at Central Stree	Overall	Route 16 EB LT	Central St NB LT/RT	Route 16 at Route 126 So	Overall	Route 16 WB LT/TH	Route 126 NB LT	Route 126 NB RT	Route 16 at Hopping Broo	Overall	Route 16 WB LT/TH	Hopping Brook Rd LT	Hopping Brook Rd RT
	03 Existing 2008 No Build 2008 Build	C3 LOS ¹ Delay ² V/C ³ LOS ³	2003 Existing 2008 No Build 2008 Build 2008 Build 2005 LOS ¹ Delay ² V/C ³ LOS ¹ Delay ² Northbound Ramps, Milford	2003 Existing 2008 No Build 2008 Build 2008 Build 2008 Build 2008 No Suild 2008 Build 20	2003 Existing 2008 No Build 2008 Build LOS¹ Delay² V/C³ LOS¹ Delay² V/C³ LOS¹ Delay² LOS¹ Delay² LOS¹ Delay² Route 495 Northbound Ramps, Milford Milford Overall r te 85 EB LT B 15 0.59 SEE SIGNALIZED	2003 Existing 2008 No Build 2008 Build LOS¹ Delay² V/C³ LOS¹ Delay² V/C³ LOS¹ Delay² Route 495 Northbound Ramps, Milford Milford Overall F * e 85 EB LT B 15 0.59 s 495 NB LT F *	Route 495 Northbound Ramps, Milford LOS¹ LOS¹ LOS¹ LOS¹ LOS¹ LOS¹ LOS¹ LOS¹ LOS¹ Delay² V/C³ LOS¹ Delay² LOS¹ Delay² LOS¹ Delay² LOS¹ Delay² Delay²	2008 No Build 2008 Build S. Delay. V/C. LOS. Delay.	Route 495 Northbound Ramps, MIFord LOS¹ Delay² V/C³ LOS¹ Delay² V/C³ LOS¹ Delay² LOS¹ Delay² V/C³ LOS¹ Delay² V/C³ LOS¹ Delay² Route 495 Northbound Ramps, MIFord SEE SIGNALIZED 495 NB LT F * * * * 495 NB RT F * * * * 8 10 0.18 Route 495 Southbound Ramps, Milford Overall F 141 - F 237 - F 234	2008 No Build 2008 2008 2008 2008 2008 2008 2008 200	2008 No Build 2008 Build See SIGNALIZED See SIGNALIZED 3 14 0.35 C 17 464 1.07 F *	2008 No Build 2008 Build See Signalized See Signalized 237 F 234 464 1.07 F * 843 2.80 F 871	2008 No Build 2008 Build See Signalized See Signalized 237 F 234 464 1.07 F * 843 2.80 F 871	2008 No Build 2008 Bui	2008 No Build 2008 Build SEE SIGNALIZED SEE SIGNALIZED 464 1.07 F * 4843 2.80 F 871 8 * ** ** ** ** ** ** ** ** *	2008 No Build 2008 Build State	2008 No Build 2008 Build Sublished State	2008 No Build 2008 Build Selection 2008 Build Selection 2008 Build See Signalized 237 F 234 843 2.80 F 871 871 8871 8871 8871 8871 8871 8871	See Signalid 2008 Build 2008 Build 2008 Build 2008 Build 2008 Build 231 234 234 234 234 234 234 234 234 234 234 234 234 234 234 236 23	2008 No Build 2008 Build SEE SIGNALIZED SEE	2008 No Build 2008 Build Selection 2008 From 17	2008 No Build 2008 Build SEE SIGNALIZED SEE	2008 No Build 2008 Build SEE SIGNALIZED SEE	2008 No Build 2008 Build Selection	2008 No Build 2008 Build Selection Selection Selection See Signalized See See See See See See See See See S

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 12B

2 of 2

	lid	2 V/C ³	ł	1.01	0.24	0.90	0.59	69.0		:	170	7.7	1.17	0.10	0.37	0.53	0.85	1.16		;	0.69	1.01	0.23	0.97	20:0	0.16	0.07		ŀ	0.83	0.68	0.56	0.43	2.74	0.52	0.15
	2008 Build	Delay ²	44	49	100	202	64	7		96	ά	3,5	137	3.5	, w	64	26	119		7.0	2,5	25.	- i	40	3 .	7	2		64	26	ر د د	14	14	328	ω (15
		10S1	٥	٥	∢ π	- U	ш	⋖		ш	. Ц	ј Ц	. ц	ن .	Α (: ш	U	ш		ر) C	O) ∢	. C	۵ ۵	<	⋖		ш	ı) ∢	В	В	ш	. ∢	: с о
0	nild	2 V/C ³	1	0.99	0.24	0.08	0.59	0.69		ł	0.41	1.06	1.06	0.39	0.39	0.52	0.94	1.04		1	0.53	0,62	0.22	0.65	0.59	0.19	0.08		i i	0.75	0.69	0.56	0,43	2,69	0.52	0.15
Morning	2008 No Build	Delay ²	40	43	100	20	64	7		71	89	98	114	35	4	64	32	79		10	12	14	-		6	7	2		65	22	2	14	14	333	8	15
	20	<u>105</u> 1	Q	Ω <	ζĽ.	ں.	ш	A		ш	ш	LL.	ட	Δ	∀	ш	U	Щ		4	В	8	A	В	¥	∀	∢		ш	U	⋖	В	മ	ட	A	Θ
	sting	ν² <u>ν/C³</u> d			alized				þ	;	0.32	0.94	0.97	0.35	0.36	0.40	0.74	0.94	Milford	;	0.36	0.42	0.23	0.40	0.46	0.46	0.10		!	0.89	0.72	0.70	0.44	1.33	0.59	0.48
	8	LOS ¹ Delay ² Ramps, Milford			see unsignalized	ı			1, Milfor	45	53	28	81	28	4	49	17	48	Street, Mil	9	5	∞	7	N	∞	8	m		48	47	4	41	28	153	13	44
		LOS ¹ Ramps,			S				Boulevard, Milford	۵	Ω	щ	ш.	U	V	Δ	B	Ω	1	V	⋖	٧	V	⋖	V	٧	⋖		۵	Ω	V	۵	ပ	ட	Ω	Ω
	•	pur	Overall	Route 85 EB TH	Route 85 WB TH	Route 85 WB RT	Route 495 NB LT		Route 85 at Dilla Street/Fortune Bo	Overall	Route 85 EB LT	Route 85 EB TH/RT	Route 85 WB LT	Route 85 WB TH	Route 85 WB RT	Fortune NB LT/TH	Fortune NB RT	Dilla SB LTR	Route 16 at Fortune Boulevard/Beaver	Overall	Route 16 EB LT/TH/RT	Route 16 WB LT/TH	Route 16 WB RT	Beaver St NB LT/TH/RT	Fortune Blvd SB LT	Fortune Blvd SB TH	Fortune Blvd SB RT	Route 16 at Route 109, Milford	Overall	Route 16 EB LT/TH	Route 16 EB RT	Route 16 WB LT	Route 16 WB 1H/RT	Koute 109 NB LT/TH	Route 109 NB RT	Prairie St SB LT/TH/RT

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 13A

1 of 4

	707	2003 Existing	ng	2008	8 No Build	plid	7	2008 Build	О
		Delay ²	V/C³	LOS ¹	Delay ²	V/C³	LOS	Delay ²	V/C ³
Koute 109 at Beaver Street/Beaver		ctensio	Street Extension, Milford	•			(2) 2:		
Overall	، ر	77	; (، ن	71	: ;	U i	20	ŀ
Roule 109 EB LI/IH	<u>n</u> (FT 6	0.65	Ω (19	0.67	ma ·	19	0.67
Koure 109 WB IH	ر	33	0.95	ن	3.7	0.95	U	32	0.95
Route 109 WB RT	⋖		0.38	⋖		0.41	⋖	-	0.57
Beaver St Ext. NB LT	В	17	0.07	U	21	0.10	U	21	0.10
Beaver St Ext. NB TH	В	18	0.13	U	21	0.17	U	22	0.18
Beaver St Ext. NB RT	⋖	Ŋ	0.21	٧	2	0.26	<	<u>ر</u>	0.27
Beaver St SB LT	U	23	0.41	U	25	0.46	: C	24	0.46
Beaver St SB RT	4	4	0.39	(₹	3 4	0.42	> ∢	4	0.4
Route 109 at Route 495 Southbound	d Ramps,	Milford	-						
Overall		17	t	O	21	ł	U	27	į
Route 109 EB TH	Ω	18	0.50	ω	10	0.57	ď	20	0.48
Route 109 WB LT	U	28	0.58		7	0.74	۵ ۵	47	2.0
Route 109 WB TH	α	16	0.77	α	0	7 X C	7 ر	1 C	10.0
Route 495 SB 1T	ا ⊲) o	0 13	۵ ۵	ζ σ	7,00) α	0 7	15
Doube 105 CR DT		, 0	27.0	((, 6	9.5	ם נ	2 5	7.0
Route 109 at Boute 405 Northbound Damns Milford	Dampe	Milford							
are toy at nowice 455 Not tilbouil	a namps, B	1201		٥	7		2	•	
Overall Handon 400 rp 14	a 6	7 7		a (210	! '	2	1	!
Koule 109 EB Li	<u>n</u> <	13	0.60	، ر	77	0.65	ე,	2 5	0.69
Route 109 ED 11	()	ρ !	0.29	₹.	\	0.29	∢	χ	0.30
Koute 109 WB IH	'nί	18	0.66	ග 1	18	0.71	Ω.	18	0.71
Koute 495 NB LI	2	14	0.29	m	15	0.40	В	16	0.59
Route 495 NB RT	⋖	m	0.28	A	m	0.35	V	m	0.35
Route 16 at Route 126 North (Concord		Street), Holliston	iston						
Overall	∢	7	!	4	7	1	82	10	ł
Route 16 EB LT	⋖	Ŋ	0.56	∢	2	0.62	82	13	0.70
Route 16 EB TH	⋖	9	0.63	V	9	0.67	A	۷ ا	0.66
Route 16 WB TH/RT	8	13	0.50	α	Ť.	0.65	. ر	, C	0.75
Route 126 SB LT	Ω.	16	0.13	ıα	2 2	0.17) α	2 4	7.0
Route 126 SB RT	(<	m	0.52	Δ) m	0.59	0 4	۲ ۲	0.17
					•)	- - -
Route 16 at Hopping Brook Road, H	Holliston						£	Ç	
טעפומון היינו							20 (22	1
Route 16 EB TH							ပ	27	0.91
Route 16 EB RT							⋖	5	0.78
Route 16 WB LT			SEE UNSIGNALIZED	NALIZED			0	46	0.9
Route 16 WB TH							۷	· ~	35.0
Hopping Brook MR 1							: (, 70	200
Topping block the El							، ر	† '	0.40

Hopping Brook Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 13B

	V/C ³	ł	1.1	0.16 1.09	0.03	0.94	0.52		ł	92.0	0.79	0.59	0.93	0.93	0.89	0.95	96.0		ł	0.38	1.25	0.63	0.93	0.94	0.47	0.08		1	0.52	0.71	0.64	0.85	3.32	0.54	60.0	
2008 Build	Delay ²	92	91	93	18	98	œ		40	77	38	34	49	23	40	27	64		34	16	46	8	20	22	25	12		84	19	7	17	23	356	æ	18	
	1007	ш	ш.	∢ ٰ⊔	. Ω	щ	4		۵	ш	۵ ۵	ر	Δ,	، ن	ο (ا ر	ш		ပ	8	۵	∢	Ω	ш	ر ا	Ω		щ	80	A	Ф	U	ட	Þ	В	
Pli	V/C ³	i	1.00	0.16 1.00	0.03	0.79	0.48		;	0.72	0.64	0.76	0.94	0.92	0.87	0.63	0.92		1	0.40	06.0	0.37	0.81	0.67	0.40	0.07		t I	0.54	0.75	0.74	0.82	3.41	0.55	0.12	
Evening 8 No Build		20	70	₂ س	11	51	^		32	75	30	40	47	19	88,	¦ م	20		13	10	22	7	17	13	10	m		91	22	m	24	22	368	6	21	
Ev	LOS	Δ	ш.	∢ ш	1 80	۵	A		O	ш	U í	۵	۵ ۵	2	Δ,	∢ :	Δ		8	V	U	A	8	മ	A	A		ш	U	V	U	U	ഥ	V	U	
Du	V/C ³		ized						1	0.55	0.58	0.60	0.83	0.80	0.74	0.51	0.85								n/a			î î	0.56	0.76	0.83	0.86	2.07	0.63	0.15	
2003 Existing	Delay ²	see	unsignalized					Iford	25	25	26	32	32	9	29	4 ;	39	Street, Milford	7	4	6	7	7	6	n/a	4		82	35	4	44	38	294	17	29	
20	10S ¹	iips, riii						vard, Mi	·U	۵	U	J	υ·	∢ '	υ,	∢ :	۵	Street,	¥	∢	۷	V	∀	⋖	n/a	∢		щ	U	V	Δ	Ω	ц.	В	U	
-	LOS ¹ De Marthamad Barrier Millond	Notice 65 at Notice 455 Not the bound Agi	Route 85 EB LT	Route 85 EB TH Route 85 WB TH	Route 85 WB RT	Route 495 NB LT	Route 495 NB RT	Route 85 at Dilla Street/Fortune Boulevard, Milford	Overall	Route 85 EB LT	Route 85 EB TH/RT	Route 85 WB LI	Route 85 WB TH	Route 85 WB RT	Fortune NB LT/TH	Fortune NB KI	Dilla SB LTR	Route 16 at Fortune Boulevard/Beaver	verall		LT/TH				Fortune Blvd SB TH		Route 16 at Route 109, Milford	Overall	Route 16 EB LT/TH	Route 16 EB RT	Route 16 WB LT	Route 16 WB TH/RT	Route 109 NB LT/TH	Route 109 NB RT	Prairie St SB LT/TH/RT	

Hopping Brook Business Park
Holliston, Massachusetts
Abend Associates

Exhibit 13C

	100	5			Evening					
	201	ZUUS EXISTING	ing	2008	8 No Build	Plir		2008 Build	7	
Route 109 at Beaver Street/Beaver St	LOS ¹	Delay ²	Z V/C³	LOS	Delay ²	V/C3-	LOS	Delay ²	/2 V//C3	
verall	C 32	1510E), 22	HITOPO	1	,					
Route 109 EB LT/TH) () (1 0	ш	09	;	ш	69	!	
Route 109 WB TH	ے د	ָרָרָ בְּרָרָ	76.0	. (87	1.10	ш	65	1.04	
Route 109 WB RT) <	۲۰	0.52 75.0	υ·	56	0.54	U	24	0.51	
Beaver St Ext. NB I T	(ر	→ 10	0.35	∢ 1	7	0.47	V	; -	0.31	
Beaver St Evt NR TH) ر	C7	0.13	۵	36	0.15		47	70.0	
Beaver St Ext. NB RT	ے ر	70	0.26	Ω	38	0.30	۵ ۵) <u>(</u>	0.24	
	۵ د	ֆ Ն լ	0.94	L.	97	1.10	<u> </u>	730	1 77	
SB	⊃ ∢	53 5	0.94	ш. •	100	1.09	- ш	76	1.00	
	ζ	7	0.44	∢	9	0.48	4	' ∞	0.40	
Route 109 at Route 495 Southbound Ramps,		Milford						ı	5	
Overall		20	;	Ç						_
Route 109 EB TH	Ú	24	000	ے د	m c	1	O	33	!	
Route 109 WB LT	Ü	34	0.50	ם ה	36	0.95	Ω	36	0.95	
Route 109 WB TH	Θ	5	380	L C	81	0.93	ഥ	81	0.93	
Route 495 SB LT	· cc	17	0.00	ם נ	14	0.43	В	14	0.44	_
Route 495 SB RT	۵ (77	0.24	ဘာ (19	0.25	В	19	0.25	
)	7	0.87	2	45	0.97	۵	48	0.98	_
Route 109 at Route 495 Northbound Ra	Ramps, Milford	ord							•	
		7		ŧ	,					_
Route 109 EB LT	200	17	200	20 (19	!	8	19	;	_
Route 109 EB TH	c cc	- 1	0.00	, ر		0.90	U	32	0.90	
Route 109 WB TH	ı C	21	0.40	∢ (0.53	∢	∞	0.53	
Route 495 NR LT) с	1 t	0.73	، ر		0.88	U	30	0.88	_
Route 405 NB ET	٥ •	<u> </u>	0.24	B		0.30	ď	0	0000	_
IN ON CAL STORY	¥	/	0.34	В	12	0.43	о с о	12	0.52	
Route 16 at Route 126 North (Concord Street) Halling	Stroot) U							1		
Overall	Street), H	OIIISTOI	_							
Route 16 FR IT	a a	7 7	; ,	m ·		1	U	22	1	_
Route 16 FR TH	> د	۲,	0.70	U		0.80	۵	36	0.84	
Route 16 WB TH/PT	τ (4 6	0.20	A		0.22	V	4	0.00	
Route 126 CB 17	، ر	70	0.85	U		0.91	C	. 4	0.00	_
IT 95 757 IT UND IT TO SEE IT	U	22	0.13	U		17) ر	7 .	26.0	
Koute 126 SB RT	⋖	4	0.74	√ ≪	} α	0.10	, ر	۲ د	0.16	
				:		0.0	₹	∞.	0.85	
Route 16 at Hopping Brook Road, Holliston	ton									
Overall							4			
Route 16 EB TH									;	
Route 16 EB RT									0.89	
Route 16 WB LT		S	SEE UNSIGNALIZED	ALIZED			∢ 0	7 8	0.06	
Route 16 WB TH									0.41	
Hopping Brook NB LT									1.06	
Hopping Brook NB RT									1.06	

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

13[4 of 4

Exhibi

POSSIBLE STUDY AREA INTERSECTION IMPROVEMENTS

A review of the level of service results and the project's traffic flows suggest that the impact of the project on the intersections in Milford will not result in significant degradation of traffic operations. The multiple ongoing traffic improvements are addressing the traffic impacts of several other development projects in this area and further improvements do not appear warranted by this project. Along Route 16 in Holliston, however, there are two locations besides the entrance to Hopping Brook Road that might be improved. These are noted below and the level of service results for these improvements are shown in Exhibit 14.

Route 16 at Central Street, Holliston – This intersection operates at level of service F now with significant delays along the Central Street approach. Signalizing the intersection and adding turn lanes in both directions along Route 16 will result in a level of service improvement to D during the morning peak hour and C during the evening peak hour. There appears to be sufficient widths to provide these added lanes without changing the edge of pavement here. The proponent is prepared to participate in funding this improvement.

Route 16 at Route 126 (South), Holliston – This unsignalized intersection currently operates at poor levels of service, particularly during the evening peak hour when there is a high volume of left turns off of Route 16 that blocks the westbound through flow. Creating a left-turn lane westbound along Route 16 and signalizing the intersection would result in a level of service B during the morning peak hour and level of service E during the evening peak hour. A more significant level of service improvement would probably require landtakings and significant roadway widening. The proponent is prepared to participate in funding this improvement.

The proponent is prepared to participate in the improvements noted above, working with the state and town to develop an appropriate design and level of contribution. In addition to these locations, we make recommendations for changes to one other location, as noted below.

Route 85 at Dilla Street/Fortune Boulevard, Milford – The level of service at this intersection has the potential to be improved by reassigning lanes. Northbound on Fortune Boulevard, the left-turn lane is designated for left and through movements, while southbound there is a left-turn lane and a left/through/right lane. Considering the flows on the various approaches, it appears that converting the northbound approach to a left-turn lane, a through lane, and a right-turn lane and the southbound approach to a double left-turn lane and a through/right-turn lane, the level of service could be improved overall. This configuration and a rephrasing of the signal would

result in level of service *D* during both peak hours with average delays of about 55 and 45 seconds, respectively. Note that this lane change would result in an increase in average delay for the evening peak hour. Although it is not known for sure, it is speculated that the design of this intersection was developed as part of improvements to accommodate the retail projects along Fortune Boulevard, which would not have specifically considered the morning peak hour traffic conditions, hence the poor level of service during the morning under future conditions. It is not recommended that this intersection be adjusted at all at this point but that consideration be given in the future to revising the lane assignments as traffic volumes grow. The proponent is not proposed to participate in any changes here.

	AM	AM Peak Hour	our	P	PM Peak Hour	ıır
	LOS	Delay ²	V/C³	LOS	Delay ²	V/C ³
Route 85 at Dilla Street/Fortune Boulevard, Milford	vard, Mil	ford				
Overall	Ω	54	;	۵	43	;
Route 85 EB LT	ш	71	0.46	ïL	125	0.92
Route 85 EB TH/RT	ட	91	1.02		37	0.59
Route 85 WB LT	ш	29	0.92	Ω	44	0.70
Route 85 WB TH	U	56	0.31	۵	40	0.87
Route 85 WB RT	V	m	0.34	۵	49	1.02
Fortune NB LT	ᄔ	163	0.76	۵	46	0.52
Fortune NB TH	ட	127	96.0	Ш	69	1.01
Fortune NB RT	Δ	39	0.68	9	16	0.77
Dilla SB LTR	Ω	48	0.91	Ω	51	0.84
Dilla SB TH/RT	Ω	38	0.71	O	29	0.56
Route 16 at Route 126 (South), Holliston	u c					
Overall		13	7	ш	20	ŀ
Route 16 EB TH/RT	ပ	19	0.70	I LL.	32	0.80
Route 16 WB LT	ပ	4	0.20	. Ц	4	0.22
Route 16 WB TH	∢	20	0.85	⋖	27	0.91
Route 126 NB LT	U	22	0.13	ш	30	0.15
Route 126 NB RT	U	4	0.74	В	∞	0.85
Route 16 at Central Street, Holliston						
Overall	۵	53	;	U	24	1
Route 16 EB TH	ш	72	1.11	· U	32	0.95
Route 16 EB RT	∀	7	0.25	⋖	7	0.27
Route 16 WB LT	ш.	125	1.23	O	33	0.88
Koute 16 WB TH	∢ 1	9	0.50	В	16	0.89
Central NB L1/K1	ш	70	1.02	U	34	0.89

LEVEL OF SERVICE SUMMARY WITH IMPROVEMENTS

Hopping Brook
Business Park
Holliston, Massachusetts

14

Exhibit

Abend Associates

÷

TRAVEL DEMAND MANAGEMENT

While the proponent is committed to providing measures to minimize vehicle trips to and from the site, the opportunities for Travel Demand Management (TDM) measures is limited. The site is not located in a place that is conducive to such measures nor is the type of use conducive to such measures.

The effectiveness of TDM programs is dependant on a critical mass of employees and/or customers that will find alternative travel mode options convenient and/or less expensive than driving themselves to and from the site. These sorts of programs are not likely to be effective at this site for several reasons. First, there is no specific transit service in the area that could be connected to the site conveniently. The project is not close enough to the Route 9 corridor to be included in any programs in the Metro West area, nor is it close enough to the Route 495 corridor to be included in any measures along that area. Further, there is no transportation node that the project could link with. Second, the types of uses at the site not only vary in terms of land use category but also within the various categories the types of businesses vary in terms of their schedules and business types. That is, manufacturing and distribution uses tend to have less standard 9-to-5 operations than office/employee intensive uses might have. Even if some type of shuttle service were to be developed between the site and the commercial areas in Milford, there is no central location within that commercial area that would serve as a focal point for such a service. Basically, the various trips to and from the site are so varied that creating enough of a concentration of one type or another to support a TDM program of that sort does not seem realistic.

This having been said, the proponent is still prepared to provide services on-site to encourage ridesharing as much as possible to comply with DEP regulations related to air quality as well as to reduce vehicle trips for congestion/delay reasons. A transportation coordinator will be designated on-site and will work with the various businesses to encourage carpooling and ridesharing between employees of the various companies on the site. This will include coordinating carpools (including setting up a guarantee ride home program within the park), providing information on the limited transit service available in the area and provide other information related to typical TDM programs. In addition, the proponent is prepared to encourage developers of individual parcels within the park to create on-site concessions that will cater to employees to minimize ancillary trips. Such services might include a coffee shop or on-site café, ATMs. etc. In addition, more centralized services such as an ATM or a cafeteria that is open to non-company personnel might also reduce overall trips along Route 16. All these options will be considered since not only will these services reduce vehicle trips but they will also enhance the marketability of the park for the proponent.

To a very large extent the land use mix will help mitigate the impacts of the project. As noted in the trip generation discussion, the types of tenants that are already located here tend to be less traffic intensive. The reason for this is possibly due to the location of the site as well as the types of tenants (i.e., not employee intensive 9-to-5 type operations) who tend to have less strict 9-to-5 operations.

While this section does not provide a specific TDM program, the proponent is prepared to develop one and submit it to the MassHighway Department prior to their issuance of a Section 61 Finding.

SUMMARY CONCLUSIONS

This traffic analysis has presented the impacts of the proposed completion of the Hopping Brook Business Park in Holliston, Massachusetts. The project includes a variety of land uses including office, R&D, warehousing, and manufacturing. Currently about 560,000 square feet of space has been built out with the total build out to reach 3,000,000 square feet. The current mix of the various land uses is expected to be mirrored by the overall development. This study has evaluated a total of twelve intersections within the towns of Milford and Holliston including the interchanges along Route 495 at Route 85 and Route 109. There is considerable commercial development in Milford along the Route 495 corridor and improvements to many of the intersections along that corridor have been made in recent years and are currently ongoing to accommodate the development in the area.

Generally, those intersections will be able to accommodate the additional traffic associated with this project without needing further traffic improvements. In one particular case, Route 85 at Dilla Street/Fortune Boulevard, the current layout appears to favor a retail land use mix since it appears to work fine during the evening peak hour but not during the morning peak hour. With this in mind, recommendations have been included in the analysis that might better accommodate all traffic flows.

With full development of the site it will be necessary to improve the intersection of Route 16 and Hopping Brook Road, which serves as the entrance to the project. These improvements will include creating turn lanes for traffic approaching the site in both direction as well as signalization of the intersection. The proponent is prepared to provide the design and construction of this improvement as part of his development work. In addition, the Route 16 intersections at Route 126 (Summer Street) and at Central Street currently suffer significant delays a peak times. The proponent is prepared to work with the state and the town of Holliston to development solutions for both of these intersections. Further, he is prepared to contribute to the improvements themselves at a level to be determined among the parties. Beyond these physical improvements, the proponent is prepared to designate a Transportation Coordinator for the park to serve as manager of the TDM programs that would be practical for this type of facility and that are consistent with state regulations regarding ridesharing. In addition, to the extent that the Holliston Zoning Bylaws allow, he is prepared to consider developing on-site complementary services (i.e., cafeterias, bank ATMs, etc.) that accommodate on-site employees and businesses to minimize the number of vehicle trips as much as practical.

: **Count Data**

Page 2 Site Code: 20144001

Location: Route 16 West of Location: Hopping Brook Road

City/State: Holliston, MA

Counter: 2377 Start 10-Dec-0 WB Hour Totals Time Tue EΒ Morning Afternoon Morning Hour Totals Afternoon Combined Totals 12:00 Morning Afternoon Morning Afternoon Morning 12:15 Afternoon 12:30 12:45 01:00 01:15 01:30 01:45 2 5 02:00 02:15 02:30 02:45 03:00 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00 05:15 05:30 05:45 06:00 06:15 06:30 06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 Total Percent 31.3% 68.7%

50.7%

49.3%

40.2%

59.8%

Accurate Counts 978-664-2565

Page 3 20144001 Site Code: 20144001

Location: Route 16 West of Location: Hopping Brook Road City/State: Holliston, MA Counter: 2377

	11011151011,	IVIA									
Counter :											
Start	11-Dec-0	W		Hour	Totals	E	B	Hour	Totals	Combine	ed Totals
Time	Wed	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00		21	160		1	9	107	5		····orining	7 III GITTOOTI
12:15		20	138			5	96				
12:30		8	122			7	112				
12:45		4	129	53	549	3	124	24	439	77	988
01:00		7	139			7	118		.00		300
01:15		5	133			4	113				
01:30		2	127			3	119				
01:45	-	2	126	16	525	5	117	19	467	35	992
02:00		1	154			1	114			00	552
02:15		3	145			3	81				
02:30		5	144			2	113		1		
02:45		9	159	18	602	8	109	14	417	32	1019
03:00		11	171			3	113			02	1015
03:15		5	160			6	104				
03:30		3	228			3	128				
03:45		9	209	28	768	8	103	20	448	48	1216
04:00		5	202			8	117	20	770	+0	1210
04:15		6	179			13	122		1		
04:30		3	227			23	96				
04:45		8	208	22	816	19	121	63	456	85	1272
05:00		13	266		0.0	31	117	00	400	00	1212
05:15		19	233		1	48	135				
05:30		34	216			91	127				
05:45		23	176	89	891	127	104	297	483	386	1374
06:00		33	166	-	90	129	94	201	400	300	1374
06:15		61	116			175	95				
06:30		64	116		1	216	77				
06:45		75	74	233	472	187	75	707	341	940	813
07:00		71	110	200	., _	194	59	707	541	340	013
07:15		99	93			200	63				
07:30		123	91			206	70				
07:45		104	75	397	369	211	55	811	247	1208	616
08:00		131	55	55,	000	177	51	011	271	1200	010
08:15		133	56			188	52				
08:30		93	68			186	58				
08:45		126	52	483	231	141	53	692	214	1175	445
09:00		87	51			125	47	202	2.17	1175	770
09:15		106	45			96	34		- 1		
09:30		108	44			91	32				
09:45		90	58	391	198	95	40	407	153	798	351
10:00		96	36			92	35		100	700	001
10:15		101	28			93	27				
10:30		98	43			95	23				
10:45		105	25	400	132	86	20	366	105	766	237
11:00		100	19			87	17	000	100	700	201
11:15		104	33			101	16		1		
11:30		123	25			95	17				
11:45		119	23	446	100	107	6	390	56	836	156
Total .		2576	5653		1001	3810	3826	0.00		6386	9479
Percent		31.3%	68.7%			49.9%	50.1%			40.3%	59.7%
Grand						-					
Total		5358	11751			7574	7481			12932	19232
Percent		31.3%	68.7%			50.3%	49.7%			40.2%	59.8%
											00.070

ADT Not Calculated

Hopping Brook Road Holliston, Massachusetts Counted by Traffic Counting Unlimited Box #734

ADTs

JAMAR Technologies, Inc. TAS for Windows Copyright 1998

Site Code: 734 Start Date: 08/13/2001 File I.D.: C:\PROGRAM FI

Begin	Page							,								
12:00 am	We				Sat.		Fri.		Thur.		Wed.		Tues.	08/13	Mon.	Begin
01:00				NB					SB	NB						
02:00	*	*	*		*		*	*	*		0	В		*		
03:00	*	*	*	*	*	*	*	*	*	6	1	2	0	*	*	
04:00	*	*	*	*	*	*	*	*	*	2	0	1	1	*	*	
05:00	*	*	*	+	*	*	*	*	*	0	1	2	2	*	*	03:00
06:00	*	*	*	*	*	*	*	*	*	2	4	0	3	*	*	04:00
07:00	*	*	*	*	*	*	*	*.	*	2	23	3	26	*	*	05:00
08:00	* 1	*	*	*	*	*	*	*	*	13	121	24	141	*	*	06:00
09:00	* 1	*	*	*	*	*	*	*	*	34	189	56	166	*	*	07:00
10:00	* 1	*	*	*	*	*	*	*	+	50	184	39	197	*	*	00:80
11:00 65 75 56 70 50 76 * * * * * * * * * * * * * * * * * *	*	*	*	*	*	*	*	*	*	33	60	60	114	*	*	09:00
11:00 65 75 56 70 50 76 * * * * * * * * * * * * * * * * * *	*	*	*	*	*	+	*	*	*					*	*	
01:00	*	*	*	*	*	*	*	*	*			70	56	75	65	
01:00	* 1	*	*	*	*	*	*	*	*	138	98	156	101	131	104	12:00 pm
02:00	* 1	*	*	*	*	*	*	*	*	72	114	80	142	62	85	
03:00	*	*	*	*	*	*	*	*	*							
05:00 61 124 43 146 57 142	*	*	*	*	*	*	*	*	*	113	63	90	62	75	57	03:00
06:00 10 39 5 49 * * * * * * * * * * * * * * * * * *	*	*	*	*	*	*	*	*	*	142	57	148	43	124	64	04:00
06:00	*	*	*	*	*	*	*	*	*		*					
07:00 9 25 13 22 * * * * * * * * * * * * * * * * * *	*	*	*	*	*	*	*	*	*	*	*					
08:00 6 15 5 6 * * * * * * * * * * * * * * * * *	*	*	*	*	*	*	*	*	*	*	*		13			
09:00 3 5 1 4 * * * * * * * * * * * * * * * * * 10:00 5 2 5 7 * * * * * * * * * * * * * * * * * *	*	*	*	*	*	*	*	*	*	*	*				6	
10:00	*	*	*	*	*	*	*	*	*	*	*		1		3	
11:00	*	*	*	*	*	*	*	*	*	*	*	7	5			
Totals 524 792 1263 1162 1061 778 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1316 2425 1839 0 0 0 0 0 0 0		*	*	*	*	*	*	*	*	*	*	5	5		2	
1316 2425 1839 0 0 0 0	0 12	0	0	0	0	0	0	0	0	778	1061	1162	1263	792	524	
Avg. Day 43.4% 73.8% 104.7% 108.2% 87.9% 72.5% .0% .0% .0% .0% .0% .0% .0%	F	0		0		0		0		1839						
	10%	0% 10	.0%	.0%	.0%	.0%	.0%	.0%	.0%	72.5%	87.9%	108.2%	104.7%	73.8%	43.4%	Avg. Day
AM Peaks 11:00 11:00 08:00 11:00 07:00 11:00	08:									11.00	07.00	11.00	00.80	11.00	11.00	AM Peaks
Volume 65 75 197 70 189 76	1															
PM Peaks 12:00 05:00 01:00 05:00 01:00 04:00 Volume 104 157 142 190 114 142	01:															

JAMAR Technologies, Inc. TAS for Windows Copyright 1998

Site Code: 734
Start Date: 08/13/2001
File I.D.: C:\PROGRAP
Page: 1

Begin	08/13	Mon.	A.M.		Combine	>						
Time	SB		NB		Total	>	08/13	Mon.	P.M.	C	ombine~	>
12:00	*		*		*		SB		NB		Total	
12:15	*		*		*		22		45		67	
12:30	*		*		*		23		28		51	
12:45	*	*	*	*	*	*	21		27		48	
01:00	*		*		*	•	38	104	31	131	69	235
01:15	*		*		*		28		24		52	200
01:30	*		*		*		19		11		30	
01:45	*	*	*	*	*		16		14		30	
02:00	*		*		*	*	22	85	13	62	35	147
02:15	*		*		*		11		24		35	-11
02:30	*		*		*		10		23		33	
02:45	*	*	*	*	*	*	18		15		33	
03:00	*		*		*	*	14	53	14	76	28	129
03:15	*		*		*		15		12		27	127
03:30	*		*		*		15		21		36	
03:45	*	*	*	*	*		13		28		41	
04:00	*		*		*	*	14	57	14	75	28	132
04:15	*		*		*		18		54		72	132
04:30	*		*		*		12		26		38	
04:45	*	*	*	*	*		17		27		44	
05:00	*		*		*	*	17	64	17	124	34	188
05:15	*		*		*		24		71	•	95	100
05:30	*		*		*		17		28		45	
05:45	*	*	*	*	*		14		32		46	
06:00	*		*	^		*	6	61	26	157	32	218
06:15	*		*		*		0		9		9	210
06:30	*		*		*		7		17		24	
06:45	*	*	*	*	*		2		11		13	
07:00	*		*	•		*	1	10	2	39	3	49
07:15	*		*		*		3		9		12	4.5
07:30	*		*				4		1		5	
07:45	*	*	*	*	*		1		8		9	
08:00	*		*	*	*	*	1	9	7	25	8	34
08:15	*		*		*		3		8		11	34
08:30	*		*		*		1		2		3	
08:45	*	*	*	*	*		1		2		3	
09:00	*		*	*	*	*	1	6	3	15	4	21
09:15	*		*		*		2		ō		2	21
09:30	*		*		*		0		1		1	
09:45	*	*	*	*	*		1		3		4	
10:00	*		*	*	*	*	0	3	ī	5	1	8
10:15	*		*		*		0		ī	•	1	0
10:30	*		*		*		2		ō		2	
10:45	*	*	*	*	*		1		1		2	
11:00	18		15	*	*	*	2	5	Ö	2	2	7
11:15	20				33		1		2	4	3	,
11:30	14		18		38		0		3		3	
11:45	13	65	15 27		29		0		1		1	
Totals	65	-03	75	75	40	140	1	2	ō	6	1	8
Split %	46.4%				140		459		717		1176	0
Peak Hour	11:00		53.5%				39.0%	- 60).9%		1110	
Volume	65		11:00	1	1:00		12:15		:00	1 1	2:00	
P.H.F.	.81		75		140		110		157	1.4	235	
	.01		.69		.87		.72		.55		-85	
									340		.00	

Hopping Brook Road Holliston, Massachusetts Counted by Traffic Counting Unlimited Box #734

JAMAR Technologies, Inc. TAS for Windows Copyright 1998

Site Code: 734 Start Date: 08/13/2001 File I.D.: C:\PROGRAM FI Fage: 2

													Page	: 2
Begin	08/14	Tues.	A.M.	C	enidmc	>	08/14	Tues.	P.M.	Co	ombine	>		
Time	SB		NB		Total		SB		NB		Total			
12:00	D		6 2 0		6		15		72		87			
12:15	0		. 2		2		23		27		50			
12:30	0		0		0		29 34		28		57			
12:45	Đ	*	0	8	0	8	3.4	101	29	156	63	257		
01:00	0		0		O		62		20 25		82			
01:15	0		0		0		62 25		25		50			
01:30	ō		2		2		29		18		47			
01:45	0	*	ō	2	ō	2	26	142	17	80	43	222		
02:00	0		ō	_	ő	2	21	142	29	00	50	224		
02:00	0		0		0		22		18		40			
	0						44							
02:30		_	1		1	_	10		15		25	1.45		
02:45	1	1	0	1	1	2	17	70	13	75	30	145		
03:00	0		1		1		11		14		25			
03:15	0		0		0		18		28		46			
03:30	1		1		2		19		29		48			
03:45	1	2	0	2	1	4	14	62	19	90	33	152		
04:00	0	_	0		0		15		53		68			
04:15	0		O.		ō		11		28		39			
04:30	2		Ö		2		9		38		47			
04:45	1	3	0	*	ĩ	3	В	43	29	148	37	191		
05:00	Ô	3	a		ō	J	14	43	80	140	94	171		
					3		10		41		51			
05:15	3		0		3		9				49			
05:30	9		3	_	12			2.7	40	100	49	007		
05:45	14	26	0	3	14	29	4	37	29	190	33	227		
06:00	18		2		20		3		19		22			
06:15	20		3		23		1		14		1.5			
06:30	41		5		46		0		14		14			
06:45	62	141	1.4	24	76	165	1	5	2 7	49	3	54		
07:00	12		18		30		1		7		8			
07:15	54		14		68		6		8		14			
07:30	46		15		61		2		5		7			
07:45	54	166	9	56	63	222	4	13	2	22	6	35		
08:00	51	100	11	50	62	242	3	10	3		6			
	66		8		74		Ď		ő		ő			
08:15							1		1					
08:30	42		1.4	7.6	56			_		6	2	11		
08:45	38	197	6	39	44	236	1	5	2	ю		ŤΤ		
09:00	31		12		43		0		2		2			
09:15	31		18		49		0		2		2			
09:30	25		18		43		0		0		0	_		
09:45	27	114	1.2	60	39	174	1	1	0	4	1	5		
10:00	22		13 9 26 17		35		0		1		1			
10:15	14		9		23		3		3		6			
10:30	17		26		43		0		0		0			
10:45	15	68	17	65	32	133	2	5	3	7	5	12		
11.00	13	00	18	0.0	31	100	0	_	3		3			
11:00	13				23				2		4			
11:15			14				2		0		0			
11:30	17		1.4		31		ū	-		-		10		
11:45	17	56	24	70	41	126	3	55	0	5	3	10		
Totals	774		330		1104		489		832		1321			
Split %	70.1%		29.8%				37.0%		62.9%					
Peak Hour	07:30		10:30		07:30		12;30		04:45		12:00			
Volume	217		10:30 75		260		150		190		257			
P.H.F.	.82		.72		.87		.60		.59		.73			

Hopping Brook Road Holliston, Massachusetts Counted by Traffic Counting Unlimited Box #734

JAMAR Technologies, Inc. TAS for Windows Copyright 1998

Site Code: 734 Start Date: 08/13/: File I.D.: C:\PROPERS : 3

Begin	08/15	Wed.	A.M.		ombine-		201	-				
Time	SB		NB		Total	>	08/15	Wed.	P.M.	Co	ombine-	>
12:00	0		4	_	4		SB		NB		Total	
12:15	0		ō		0		19		58		77	
12:30	0		ī		1		30		36		66	
12:45	0	*	Õ	5	Ō	5	22		28		50	
01:00	1		3		4	Э	27	98	16	138	43	236
01:15	0		3		3		40		24		64	
01:30	0		ŏ		0		28		15		4.3	
01:45	0	1		6	ő	7	29		22		51	
02:00	0		i	•	1	,	17	114	11	72	28	186
02:15	0		ō		ō		11		14		25	
02:30	0		0		ő		13		10		23	
02:45	0	*	1	2	1	2	6		17		23	
03:00	0		ō	_	Ō	2	11	41	11	52	22	93
03:15	0		0		ő		14		18		32	
03:30	0		0		ŏ		14		25		39	
03:45	1	1	Ó	*	1	1	16		30		46	
04:00	2		ō		2	1	19	63	40	113	59	176
04:15	0		ō		ō		24		43		67	
04:30	0		0		ő		11		29		40	
04:45	2	4	2	2	4	6	11		35		46	
05:00	2		0	_	2	0	*	*	*	*	*	153
05:15	3		1		4		*		*		*	
05:30	9		1		10		*		*		*	
05:45	9	23	0	2	9	25	*	*	*		*	
06:00	15		2		17	2.9	*	~	*	*	*	*
06:15	22		6		28		^ *				*	
06:30	30		4		34		*		*		*	
06:45	54	121	1	13	55	134	*	*	*		*	
07:00	35		7		42		*		*	*	*	*
07:15	55		10		65		*		*		*	
07:30	43		10		53		*		*		*	
07:45	56	189	7	34	63	223	*	*	*		*	
08:00	48		15		63		*			*	*	*
08:15	60		6		66		*		*		*	
08:30	49		12		61		*		*		*	
08:45	27	184	17	50	44	234	*	*	*		*	
09:00	26		8		34	-0.	*	^	*	*	*	*
09:15	16		2		18		*		*		*	
09:30	9		11		20		*		*		*	
09:45	9	60	12	33	21	93	*	*	*	*	*	
10:00	9		9		18		*	.,	*	*	*	*
10:15	12		4		16		*		*		*	
10:30	19		10		29		*		*			
10:45	15	55	15	38	30	93	*	*	*	*	*	
11:00	14		16		30		*		*	*	*	*
11:15	17		17		34		*		*			
11:30	8		17		25		*		*		*	
11:45	11	50	26	76	37	126	*	*	*	*		
Totals	688		261		949		362		482	*	*	*
Split %	72.5%		27.5%				42.8%	E *	7.1%		844	
Peak Hour	07:45		11:00	0	7:45		12:45		3:45			
Volume	213		76		253		124	0.3	147	12	2:00	
P.H.F.	.88		. 73		.95		.77		.85		236	
							• • •				.76	

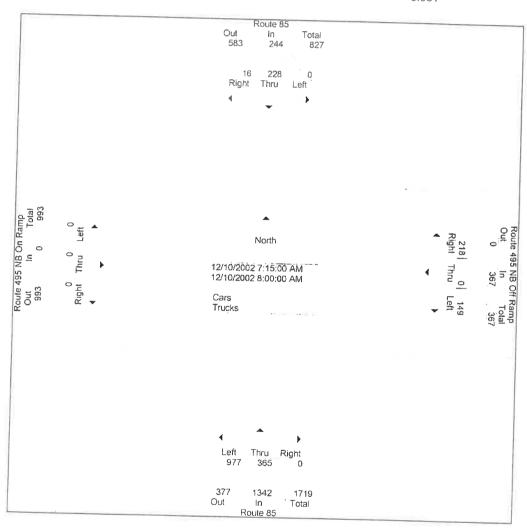
/S Street: Route 85 W Street: Route 495 NB Ramps y/State: Milford, MA eather: Clear

Accurate Counts 978-664-2565

File Name : 20144001 Site Code : 20144001 Start Date : 12/10/2002 Page No : 1

301	ilei . Cieai											Pag	e No : 1	
						Groups F	rinted- Cars	- Trucks				_	•	
1			Route 85 om North			95 NB Öff F rom East	Ramp		Route 85 om South			95 NB On From West		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right .	Int. Total
	07:00	0	42	1	29	0	33	224	94	0	0	Ö	0	423
	07:15	0	55	4	34	0	43	270	79	0	0	0	o '	485
	07:30	0	63	3	47	0	51	234	103	0	0	0	0	501
	07:45	0	57	8	34	0	69	227	108	0	0	0	0	503
B	Total	0	217	16	144	0	196	955	384	0	0	0	0	1912
1	08:00	0	53	1	34	0	55	246	75	0	0	0	0	464
	08:15	0	56	0	26	0	41	230	99	0	0	0	0	452
	08:30	0	71	1	46	0	33	204	81	0	0	0	0	436
	08:45	0	60	1	57	1	31	175	78	0	0	0	0:	403
1	Total	0	240	3	163	1	160	855	333	0	0	0	0	1755
	Grand Total	0	457	19	307	1	356	1810	717	0	0	0	0	3667
	Apprch %	0.0	96.0	4.0	46.2	0.2	53.6	71.6	28.4	0.0	0.0	0.0	0.0	
	Total %	0.0	12.5	0.5	8.4	0.0	9.7	49.4	19.6	0.0	0.0	0.0	0.0	

310			ite 85 n North		Ro		NB Off Ri n East	amp			ute 85 South		Ro		NB On Ra 1 West	mp	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
ak Hour Fron	n 07:00	to 08:45	5 - Peak	1 of 1													
Intersection	07:15																
Volume	0	228	16	244	149	0	218	367	977	365	0	1342	0	0	0	0	1953
Percent	0.0	93.4	6.6		40.6	0.0	59.4		72.8	27.2	0.0		0.0	0.0	0.0		
Volume	0	228	16	244	149	0	218	367	977	365	0	1342	0	0	0	0	1953
Volume	0	57	8	65	34	0	69	103	227	108	0	335	0	0	0	0	503
Peak Factor																1	0.971
High Int.	07:30				07:45				07:15				6:45:00	AM			
Volume	0	63	3	66	34	0	69	103	270	79	0	349				:	
Peak Factor				0.924				0.891				0.961				:	
ak Hour Fron	n 07:00	to 08:45	- Peak	1 of 1													
y Approach	07:45				07:15				07:15				07:00			:	
Volume	0	237	10	247	149	0	218	367	977	365	0	1342	0	0	0	0	
Percent	0.0	96.0	4.0		40.6	0.0	59.4		72.8	27.2	0.0		-	-	-	1	
լ High Int.	08:30				07:45				07:15				-			}	
Volume	0	71	1	72	34	0	69	103	270	79	0	349	-	-	-	- !	
Peak Factor				0.858				0.891				0.961				- !	


N/S Street: Route 85

E/W Street: Route 495 NB Ramps
City/State: Milford, MA
Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144 Site Code : 20144 Start Date : 12/10 Page No : 1

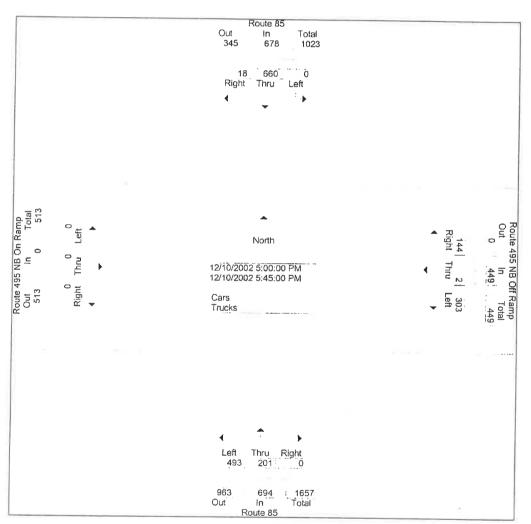
Start Time	l oft	Fron	ute 85 North	Арр.	Ro	ute 495 Fror	NB Off R n East	`.			ute 85 1 South		Ro	ute 495 From	NB On Ra	ımp	
Peak Hour Fro		Thru to 08:4 <i>5</i>	Right	Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App.	
Intersection Volume	07:15															Total	T
Percent	0.0	228 93.4	16 6.6	244	149 40.6	0.0	218 59.4	367	977	365	0	1342	0	0	0	0	15
Volume Volume	0	228 57	16 8	244 65	149	0	218	367	72.8 977	27.2 365	0.0	1342	0.0 0	0.0	0.0		
Peak Factor High Int.		01	0	00	34	0	6 9	103	227	108	0	335	Ō	0	0	0	19 5
Volume Peak Factor	07:30 0	63	3	66 0.924	07:45 34	0	69	103 0.891	07:15 270	79	0	349 0.961	6:45:00	AM			0.97

N/S Street : Route 85 E/W Street : Route 495 NB Ramps City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

File Name : 2014 Site Code : 2014 Start Date : 12/10 Page No : 1

Route From N	85	Route	430 MP O	s Printed- ff Ramo	- Cars - 7	frucks					ŀ	Start Date Page No	: 12/10. : 1
Start time Left Tr	nru Right	Left	From Eas Thru	t	ht	Fro Left	Route 85 om South Thru			Froi	NB On I		
16:15 0 1:	23 2 23 5	75 78	1			122	40	Right 0		.eft 0	Thru 0	Right	Int. To
16.45	55 0	66	0	3 2		117	34	0		0	0	0	5.
Total	35 5 36 12	85	Õ	. 3		117 103	42 53	0		0	Ö	0	3 4
	36 12	304	1	116	<u> </u>	459	169	0		0	0	0	4
17:00 0 15	58 3	79	1		_		.00	U		0	0	0	15
17:15 0 17 17:30 0 17	72 5	65	0	38 39		138	49	0		0	0	0	
17:30 0 17 17:45 0 15		72	ō	42	_	131 115	56 45	0		0	0	0	4: 4:
Total 0 66		87 303	1.	25	5	109	51	0		0	0	0	4:
0	10	303	2	144	2	193	201	0		0	0	0	4:
Grand Total 0 119 Apprch % 0.0 97 6		607	3	260) (52	0==			Ü	U	0 :	182
Total % 0.0 97.0 7.0 0.0 35.0		69.8	0.3	29.9		2.0	370 28.0	0		0	0	0 !	341
5.5	0 0.9	17.8	0.1	7.6		7.9	10.8	0.0 0.0	0. 0.		0.0	0.0	
								0.0	U.	U	0.0	0.0	
Route 85 From North	R	oute 495	NB Off Ra	mp		Do.	ıte 85						
C++ T'	Арр.	Fror	n East				Ne 85 South		Ro	ute 495	NB On F	Ramp	~
Tind Kignt	- I ATT	Thru	Right	App.	Left	Thru	Right	Арр.		-	n West		
Peak Hour From 16:00 to 17:45 - Peak 1 Intersection 17:00	1 of 1			Total		11110	Right	Total	Left	Thru	Right	App. Total	Int
Volume 0 660 18	070											TOLAT	Tota
Percent 0.0 97.3 2.7	678 303	2	144	449	493	201	0	694	0				
Volume 0 660 18	67.5 678 303	0.4 2	32.1 144	4.45	71.0	29.0	0.0	054	0 0.0	0 0.0	0.0	0	1821
Volume 0 172 5 Peak Factor	177 65	0	39	449 104	493	201	0	694	0.0	0.0	0.0	0	1821
High Int. 17:30			00	104	131	56	0	187	0	0	Ö	0	468
Volume 0 175 7	17:00 182 79			1	17:00							_	0.973
Peak Factor	182 79 0.931	1	38	118	138	49	0	187					V-7
				0.951				0.928					
Peak Hour From 16:00 to 17:45 - Peak 1 By Approach 17:00													
Volume 0 660 18	16:45 678 301			1	7:00			-	6.00				
Percent 0.0 97.3 27	678 301 66.6	1 0.2	150	452	493	201	0	694	6:00	0	0	•	
High Int. 17:30 Volume 0 175 7	17:00	0.2	33.2			29.0	0.0		-	-	0	0	
Peak Factor	182 79	1	38		7:00 138	49	0	-					
(0.931		C	0.958	. 00	73	_	1 87 0.928	-	-	-	- ,	


N/S Street: Route 85 E/W Street: Route 495 NB Ramps

City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

File Name : 2014400 Site Code : 2014400 Start Date : 12/10/20 Page No : 1

ı			te 85 North		Ro		NB Off R n East	amp			ute 85		Ro		NB On Ra	mp	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru		App.	Int.
Peak Hour Fron	n 16:00	to 17:45	- Peak	1 of 1				, 5151				rotai			l	Total	Total
Intersection																	
Volume	0	660	18	678	303	2	144	449	493	201	0	694	0	0	0	•	- 5%
Percent	0.0	97.3	2.7		67.5	0.4	32.1		71.0	29.0	0.0	034	0.0	0.0	0	U	1821
Volume	0	660	18	678	303	2	144	449	493	201	0.0	604			0.0	_	11 - 4276. 5
Volume	0	172	5	177	65	0	39				_	694	0	0	0	0	1821
Peak Factor			Ŭ	111	00	U	39	104	131	56	0	187	0	0	0	0	468
High Int.	17:30				17:00				17:00							C	0.973
Volume Peak Factor	0	175	7	182 0.931	79	1	38	118 0.951	138	49	0	187 0.928					

Street: Route 85

// Street: Route 495 SB Ramps
//State: Milford, MA
eather: Clear

Peak Factor

Accurate Counts 978-664-2565

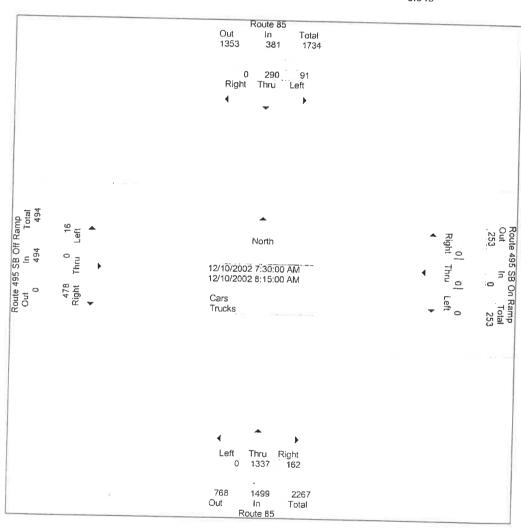
File Name: 20144002 Site Code : 20144002 Start Date : 12/10/2002

Page No : 1

Route 495 SB Off Ramp

Groups Printed- Cars - Trucks Route 85 Route 85 Route 495 SB On Ramp

0.828


				Route oo	_	IN.		m East	Namp		From	South			From V	Vest		
	314 T			rom North Thru	Righ		Left	Thru	Right	1 4		Thru	Right	Left		าาน	Right	Int. Total
5	Start Ti		Left	49	_	0	0	0	1 XIGIT		0	319	48	2		1	85	523
363		:00	19	49 67		0	0	0	0		0	351	34	1		Ò	86	564
1	_	:15	25	91		0	0	0	0		0	349	46	4		Ō	109	620
		:30	21	78			0	0	0		0	341	39	4		Õ	121	602
		:45	19			0 0	0	0	0			1360	167	11		1	401	2309
	10	otal	84	285		U	U	U	U		U	1300	101			•		
	0.0	.00	20	60		0	0	0	0		0	322	39	3		0	123	575
		:00	26	62 59		0	0	0	0	÷	0	325	38	5		Ō	125	577
1		:15	25			0		0	0		0	270	38	11		0	100	529
		:30	29	81		0	0	0	0		0	237	48	6		Ö	94	507
1		:45	24	98		0	0	0	0			1154	163	25		o i	442	2188
	Te	otal	104	300		0	0	U	U		U	1134	103	20		•	, [
5		1						0			0	2514	330	36		1	843	4497
_	rand T		188	585		0	0	0	0	_	0.0	88.4	11.6	4.1		0.1	95.8	. ,
	Approl		24.3	75.7	0.		0.0	0.0	0.0		0.0	55.9	7.3	0.8		0.0	18.7	
	Tota	ıl %	4.2	13.0	0.	.0	0.0	0.0	0.0	·).0	55.9	7.5	0.0		0.0	10.7	
						_					Day	ıte 85		Pou	te 495	SB Off	Ramn	
				te 85		Rou		SB On R	amp			South		Nou		ı West		
			From	North			Fron	n East			FIOII		۸۰۰				App	Int.
Start	Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App. Total	Left	Thru	Right	Total	
					Total	_			Total				TOtal				1	
			to 08:45	- Peak 1	of 1													
Interse							_			0	4007	162	1499	16	0	478	494	2374
Vo	lume	91	290	0	381	0	0	0	0	0	1337		1499	3.2	0.0	96.8		201 .
Pe	rcent	23.9	76.1	0.0		0.0	0.0	0.0	_	0.0	89.2	10.8	4400	3.Z 16	0.0	478		2374
Vo	lume	91	290	0	381	0	0	0	0	0	1337	162	1499		0	109		
Vo	iume	21	91	0	112	0	0	0	0	0	349	46	395	4	U	108	110	0.957
Peak F	actor													00.15				0.557
Hig	h Int.	07:30				6:45:00				07:30		4.0	005	08:15	0	125	130	1
Vc	olume	21	91	0	112	0	0	0	0	0	349	46	395	5	U	125	0.950	
⊃eak F	actor				0.850								0.949				0.930	,
ak Hou	ur Fron	n 07:00	to 08:45	- Peak 1	of 1													
By Appr	roach	08:00				07:00				07:00				07:30		470	3 494	
	olume	104	300	0	404	0	0	0	0	0	1360	167	1527	16	0	478		11
	ercent	25.7	74.3	0.0		-	-	-		0.0	89.1	10.9		3.2	0.0	96.8	5	
	gh Int.	08:45				-				07:30				08:15	_		. 400	. 1
	olume	24	98	0	122	-	-	-	-	0	349	46	395	5	0	125		
Peak F		_ +	55	·	0.828				-				0.966				0.950	J

N/S Street : Route 85 E/W Street : Route 495 SB Ramps City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

File Name : 2 Site Code : 2 Start Date : 1 Page No : 1

:		_	ute 85 1 North		Rou		SB On R	amp			ute 85 South		Rot	ite 495	SB Off R	amp
Start Time	Left	Thru	Right	App.	Left	Thru	Right	Арр.				Ann		FIOIT	n West	
Peak Hour From Intersection	m 07:00 07:30	to 08:45		Total 1 of 1	LOIL	THU	Rigili	Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total
Volume Percent	91	290 76.1	0 0.0	381	0.0	0.0	0	0	0	1337	162	1499	16	0	478	494
Volume	91	290	0	381	0.0	0.0	0.0	0	0.0	89.2	10.8		3.2	0.0	96.8	737
Volume	21	91	Ö	112	0	0	0	0	0	1337	162	1499	16	0	478	494
Peak Factor					Ü	U	U	0	0	349	46	395	4	0	109	113
High Int.	07:30				6:45:00	AM			07:30							1820
Volume Peak Factor	21	91	0	112 0.850	0	0	0	0	07.30	349	46	395 0.949	08:15 5	0	125	130 0.950

et: Route 85 eet: Route 495 SB Ramps

0

0

0

0

0.0

239

248

966

248

0.974

0.974

783

179

215

783

81.1

215

Hour From 16:00 to 17:45 - Peak 1 of 1

183

17:30

60

33

183

33

18.9

Volume

Volume

k Factor

High Int.

Volume

Volume

Percent

Volume

ak Factor

Approach 17:00

High Int. 17:30

ak Factor

Accurate Counts 978-664-2565

File Name : 20144002 Site Code : 20144002 Start Date : 12/10/2002

Page No

190

716

97.3

190

0

0

0

0.0

5

17:45

17:00

17:45

20

2.7

ite : Milford,	MA											ï	Page N	10 : 1	
r : Clear	Fre	oute 85 om North	B:	Route 495	roups Prin SB On Ra m East Thru	nted- Cars amp Right		Route From S		Right	Left	rom We Thr	est u F		t. Total 568
Start Time 16:00 16:15 16:30 16:45	Left 46 26 40 31 143	Thru 156 175 159 184 674	Right	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		162 154 161 159 636	37 38 47 35 157	4 1 2 6 13		0 0 0 0	185 149 181 678	579 558 596 2301
Total 17:00 17:15 17:30 17:45	48 60 33 42 183	188 179 215 201 783	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	. — ()	189 192 149 153 683	52 56 46 54 208	2 4 9 5 20		0 0 0 0	188 183 155 190 716	667 674 607 645 2593
Total Grand Total Apprch % Total %	326 18.3 6.7	1457 81.7 29.8	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0 0.0 0.0	0.9 0.1	Š	1319 78.3 27.0	365 21.7 7.5	33 2.3 0.7	-	0 0.0 0.0	1394 97.7 28.5	4894
1		te 85 North		Route 495 From	SB On Ra n East				ite 85 South	App.			West	App.	lnt.
art Time Lef	t Thru	Right	Total	Left Thru	Right	App. Total	Left	Thru	Right	Total	Left	ınru	Right	Total	Total
Hour From 16:0 resection 17:00 Volume 18: Percent 18:	783 9 81.1	0 0 0.0 0	of 1 966 966	0 0 0.0 0.0 0 0	_	0	0 0.0 0	683 76.7 683	208 23.3 208 56	891 891 248	20 2.7 20 4	0 0.0 0 0	716 97.3 716 183	736	2593 2593 674

56

56

190

21.3

56

192

192

701

78.7

192

0

0

17:15

16:30

17:15

0

0.0

0

0

0

0

0

0

0

0

0

0

0

0

16:00

0

248

891

248

0.898

0.898

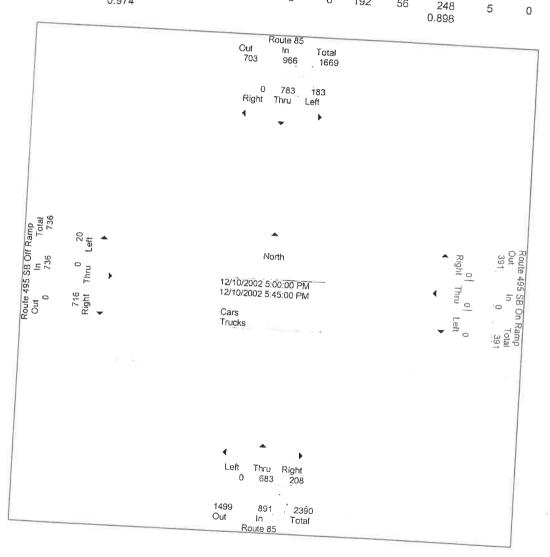
0.962

195

736

195

0.944


0.944

N/S Street: Route 85 E/W Street: Route 495 SB Ramps

City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

City/State : (Weather : (Milford Clear	, MA	ramp	S			!	978-664.	-2565	3					Site	Name : 20 Code : 20 t Date : 12
		Rou	ite 85 North		Ro	ıte 495	SB On R	amn							-3	₹No :1
Start Time	Left			Арр.		Fron	n East	апр		Ro	ute 85 1 South		Rou	Jte 495	SB Off	Pame =
Peak Hour From Intersection		1111U	Right	Total	Left	Thru	Right	Арр.	Left	Thru		Арр.		Fron	West	тапір
Intersection Volume	17:00 183		- Реак	1 of 1				Total	-5/1	mu	Right	Total	Left	Thru	Right	App. Total
Percent Volume	18.9	783 81.1	0 0.0	966	0.0	0	0	0	0	683	208				-	iotar
Volume	183 60	783 179	0	966 239	0	0.0	0.0 0	0	0.0	76.7 683	23.3	891	20 2.7	0 0.0	716 97.3	736
Peak Factor High Int. 1 Volume	7:30		_	233	0	0	0	0	Ö	192	208 56	891 248	20 4	0	716 183	736 187
Peak Factor	33	215	0	248	0	0	0		7:15				17:45			.0.
¢				0.974			J	0	0	192	56	248 0.898	5	0	190	195 0.944
		1						Route 85								0.074

Accurate Counts 978-664-2565

et: Route 85

et : Fortune Blvd / Dilla St

81

07:30

247

0.830

4

76

40.5

Percent

Volume

Peak Factor

High Int. 07:45

File Name : 20144003 Site Code : 20144003 Start Date : 12/11/2002 Page No : 1

	BIVO / Dilla	Ų.											1 0	9		
le : Milford, l	MA				Crou	ne Print	ed- Cars -	Trucks				Di	illa St			
: Clear				F	ortune i	Blvd			oute 85 om South			Froi	m West	Righ	it Int.	Total
	Rou	te 85 North			From E	ast	Right	Left	Thru	Rig	grit	Left 276	Thru 63	.,	9	608
Start Time	Left	Thru	Right	Left 2		12	37	4	86 117			235	74		6 9 :	661 706
07:00	36	29 32	53 64	1		22	56 69	5 4	136		6	213 216	67 92		8	759
07:15 07:30	46 70	51	58	4		19 28	53	6	94		10 20	940	296	= -3	32	2734
07:45	90	76 188	81 256	12		81	215	19	433		_	044	91		10 ;	700
Total	242	100				24	56	9	106		6 10	211 216	83		4	673 673
08:00	81	56	47 63		3 3	21	58	9 11	93 83		8	201	78 66	,	12 18	673
08:15	71 90	42 55	68		5	13	49 63	4	86		3 27	178 806	318		44	2719
08:30 08:45	88	52	85 263		2 3	28 86	226	33	368		21		614	4	76	5453
Total	330	205	203			407	441	52	801		47	1746 71.7	25.		3.1	
Grand Total	572	393	519		.9	167 26.4	69.7	5.8	89.0 14.7		5.2 0.9	32.0	11.		1.4	
Approh %	38.5	26.5 7.2	35.0 9.5		.5	3.1	8.1	1.0	1-7.1							
Total %	10.5	7.2							Route 8	.5			Dilla	St		
	- 1	- o.E			Fortune	Blvd			From So				From '		App.	Int. Total
1	Route From	North			From		App.	Left	Thru Ri	ght	App. Total	Left	Thru	Right	Total	TOtal
li (Timo 16		Right	App. Total	Left	Thru	Right	Total									2838
tart Time Le	U1.	- Peak 1							400	32	489	856	333	31	1220	
tersection 07:	30		786	15	92	236	343	28 5.7	429 87.7	6.5		70.2 856	27.3 333	2.5 31	1220	2838 759
Volume 3	312 225 9.7 28.6	249 31.7		4.4	26.8 92	68.8 236	343	28	429	32 10	489 110	216	92	8	316	0.935
	312 225	249	786 247	15 5	28	53	86	6	94	10		07.45				1
Volume	90 76	81	271					07:30	2	6	146	07:45 216	92	8	316 0.965	1
eak Factor High Int. 07	':45		247	07:30	19	69	92	4	136	0	0.837				0.905	
Volume	90 76	81	0.796				0.932									
eak Factor			4 -6 1					07:15				07:00	296	32	1268	
ak Hour From 0	7:00 to 08:4	5 - Peak	7 01 1	07:30	20	236	343	24	453	25	502	940 74.1	23.3	_		
ly Approach 0	7:45 332 229	259	820	15 4.4	92 26.8			4.8	90.2	5.0		07:00		. 9	348	3
Percent	40.5 27.9	31.6		07:30			0.0	07:30	136	6	146	276	, 63	, ,	0.911	1 \

0.932

69

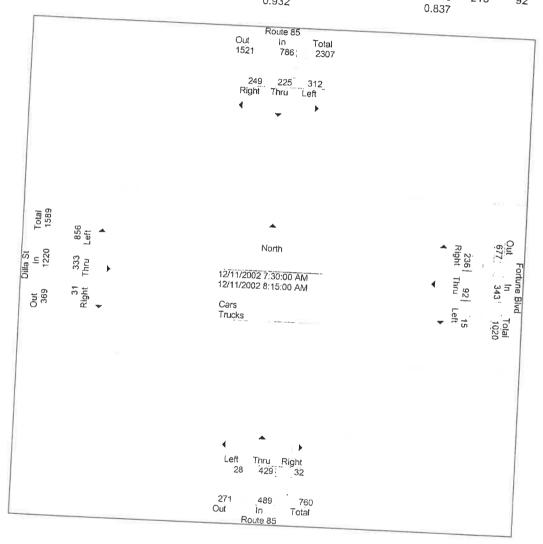
19

4

136

0.911

0.860


N/S Street : Route 85

E/W Street: Fortune Blvd / Dilla St City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name: 20 Site Code : 20 Start Date : 12 Page No : 1

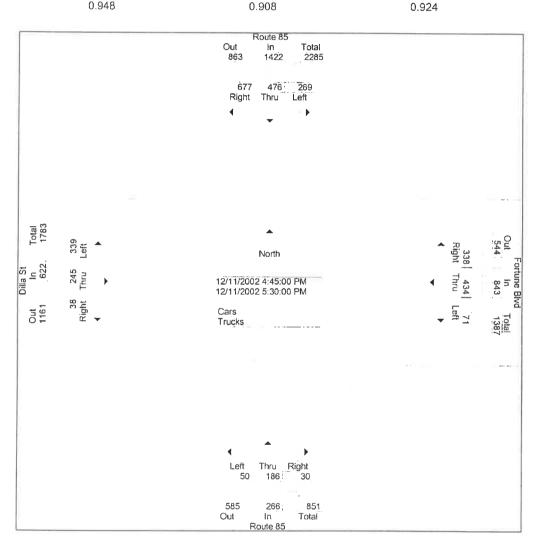
•		Ro	ute 85												Page	PNo :†	E. Garage
01			n North			Fortu	ine Blvd m East			Ro	ute 85			n.i			ľ
Start Time		Thru	Right	App.		Thru		Арр.			n South			Fron	lla St n West		_
Peak Hour Fron Intersection Volume	01.30	to 08:45	; - Peak	Total 1 of 1		HIII	Right	Total	Left -	Thru	Right	App. Total	Left			7.00	
Percent Volume	312 39.7 312	225 28.6 225	249 31.7	786	15 4.4	92 26,8	236 68.8	343	28	429	32	489	856	333	0.4		
Volume Peak Factor	90	76	249 81	786 247	15 5	92 28	236 53	343 86	5.7 28 6	87.7 429	6.5 32	489	70.2 856	27.3 333	31 2.5 31	1220	
Volume	07:45 90	76	2.4		07:30			_		94	10	110	216	92	8	1220 316	
Peak Factor	50	70	81	247 0.796	4	19	69	92	97:30 4	136	6	146	07:45 216	00	_	į.	0.5
								0.932				0.837	210	92	8	316 0.965	
								Route 85									

Street: Route 85 V Street: Fortune Blvd / Dilla St y/State: Milford, MA eather: Clear

Accurate Counts 978-664-2565

File Name : 20144003 Site Code : 20144003 Start Date : 12/11/2002

not . Olcai											ı ay	CINO .	i .
					Groups P	rinted- Cars	s - Trucks				_		
	F	Route 85		For						1	Dilla St		
	Fr	om North		Fr	om East		Fro	om South		Fre	om West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru:	Right	Int. Total
16:00	56	79	173	18	124	70	27	54	7	58	55	13	734
16:15	66	115	160	20	110	71	21	39	8	72	48	11	741
16:30	62	80	166	22	118	73	12	58	5	69	35	7	707
16:45	63	110	186	18	99	59	14	39	9	93	60	7	757
Total	247	384	685	78	451	273	74	190	29	292	198	38	2939
17:00	68	109	136	21	115	95	12	46	7	73	59	14	75 5
17:15	77	124	174	16	118	98 :	11	52	4	98	69	7	848
17:30	61	133	181	16	102	86	13	49	10	75	57	10	793
17:45	75	90	187	15	88	70	23	35	5	82	62	15	747
Total	281	456	678	68	423	349	59	182	26	328	247	46 .	3143
Grand Total	528	840	1363	146	874	622	133	372	55	620	445	84	6082
Apprch %	19.3	30.8	49.9	8.9	53.2	37.9	23.8	66.4	9.8	54.0	38.7	7.3	
Total %	8.7	13.8	22.4	2.4	14.4	10.2	2.2	6.1	0.9	10.2	7.3	1.4	
	Start Time	Start Time Left 16:00 56 16:15 66 16:30 62 16:45 63 Total 247 17:00 68 17:15 77 17:30 61 17:45 75 Total 281 Grand Total 528 Apprich % 19:3	Route 85 From North Start Time Left Thru 16:00 56 79 16:15 66 115 16:30 62 80 16:45 63 110 Total 247 384 17:00 68 109 17:15 77 124 17:30 61 133 17:45 75 90 Total 281 456 Grand Total 528 840 Apprich % 19.3 30.8	Route 85 From North Start Time Left Thru Right 16:00 56 79 173 16:15 66 115 160 16:30 62 80 166 16:45 63 110 186 Total 247 384 685 17:00 68 109 136 17:15 77 124 174 17:30 61 133 181 17:45 75 90 187 Total 281 456 678 Grand Total 528 840 1363 Apprich % 19:3 30.8 49.9	Route 85 For North From North From North From From North Start Time Left Thru Right Left 16:00 56 79 173 18 16:15 66 115 160 20 16:30 62 80 166 22 16:45 63 110 186 18 Total 247 384 685 78 17:00 68 109 136 21 17:15 77 124 174 16 17:30 61 133 181 16 17:45 75 90 187 15 Total 281 456 678 68 Grand Total 528 840 1363 146 Apprich % 19.3 30.8 49.9 8.9	Groups P Fortune Blvd From North Start Time Left Thru Right Left Thru 16:00 56 79 173 18 124 16:15 66 115 160 20 110 16:30 62 80 166 22 118 16:45 63 110 186 18 99 Total 247 384 685 78 451 17:00 68 109 136 21 115 17:15 77 124 174 16 118 17:30 61 133 181 16 102 17:45 75 90 187 15 88 Total 281 456 678 68 423 Grand Total 528 840 1363 146 874 Apprich % 19.3 30.8 49.9 8.9 53.2	Route 85	Route 85	Route 85	Route 85	Route 85	Route 85 From North From East Fortune Blvd Route 85 From South From West	Route 85 From North From East From South From South From West


			ite 85 North				ne Blvd n East			-	ite 85 South				a St West		== 151
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
ak Hour Fron	n 16:00	to 17:45	- Peak	1 of 1													
ntersection	16:45																
Volume	269	476	677	1422	71	434	338	843	50	186	30	266	339	245	38	622	3153
Percent	18.9	33.5	47.6		8.4	51.5	40.1		18.8	69.9	11.3		54.5	39.4	6.1		
Volume	269	476	677	1422	71	434	338	843	50	186	30	266	339	245	38	622	3153
Volume	77	124	174	375	16	118	98	232	11	52	4	67	98	69	7	174	848
'eak Factor																	0.930
High Int.	17:15				17:15				17:30				17:15				
Volume	77	124	174	375	16	118	98	232	13	49	10	72	98	69	7	174	
'eak Factor				0.948				0.908				0.924				0.894	
₃k Hour Fror	n 16:00 i	to 17:45	- Peak	1 of 1													
y Approach	16:45				16:30				16:00				16:45				
Volume	269	476	677	1422	77	450	325	852	74	190	29	293	339	245	38	622	
Percent	18.9	33.5	47.6		9.0	52.8	38.1		25.3	64.8	9.9		54.5	39.4	6.1		
High Int.	17:15				17:15				16:00				17:15			1	
Volume	77	124	174	375	16	118	98	232	27	54	7	88	98	69	7	174	
'eak Factor				0.948				0.918				0.832				0.894	

N/S Street: Route 85 E/W Street: Fortune Blvd / Dilla St City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144003 Site Code : 20144003 Start Date : 12/11/200 Page No : 1

			ite 85 North	_			ne Blvd n East				ute 85 n South				la St West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. ⁻ Total ⁻	Left	Thru	Right	App. Total	Left	Thru	Right	App.	Int.
Peak Hour Fron	n 16:00	to 17:45	- Peak	1 of 1	-			Total				TOLA		i		Total	Total
Intersection	16:45																
Volume	269	476	677	1422	71	434	338	843	50	186	30	266	339	245	38	622	3153
Percent	18.9	33.5	47.6		8.4	51.5	40.1		18.8	69.9	11.3		54.5	39.4	6.1	UZZ	3133
Volume	269	476	677	1422	71	434	338	843	50	186	30	266	339	245	38	622	3153
Volume	77	124	174	375	16	118	98	232	11	52	4	67	98	69	7	174	848
Peak Factor																	0.930
High Int.	17:15				17:15				17:30				17:15				0.000
Volume	77	124	174	375	16	118	98	232	13	49	10	72	98	69	7	174	
Peak Factor				0.948				0.908				0.924				0.894	

eet : Fortune Blvd / Beaver St feet : Route 16

ak Hour From 07:00 to 08:45 - Peak 1 of 1

200

48.5

62

164

39.8

43

48

10

11.7

y Approach 08:00

High Int. 08:15

Volume

Percent

Volume

Peak Factor

07:30

412

115

0.896

136

27.6

34

08:00

Accurate Counts 978-664-2565

File Name : 20144013 Site Code : 20144013 Start Date : 12/10/2002 Page No : 1

477

131

0.910

70

14

14.7

375

78.6

106

07:30

412

111

0.928

32

6.7

11

07:45

a

	te : Milford, MA														Page N	10 . 1	
P						G	roups Prii	nted- Cars	- Truck	s Beaver	St		F	Route 16			
J		Fro	une Blvd m North	Diabt	L		East Thru	Right	Left	From S	nru	Right	Left 8	rom Wes Thru 97	Rig	ght Int	t. Total 323
1	07:00	Left 37	Thru 18	Right 3 5		26 26	37 30	25 32	17 15	i	23 34	22 30	6 4 5	92 95	2	12 12 ;	353 386
	07:15 07:30 07:45	52 54 45	21 23 28	8 17		32 31 15	52 53 172	27 34 : 118 :	17 24 73	ļ	35 32 124	26 43 121	11 28	106 390	3	48	438 1500
	Total	188 51	90 26	33 13	1	34	64	52	24		39 48	30 41	10 6	84 91		28 16	455 451
	08:00 08:15 08:30	62 45	43 46	10 17		39 35 30	44 37 42	30 27 28	22 23 20	2 6	38 46	39 37	4 7	6 6 30	9	13 14 71	388 398 1692
l	08:45 Total	42 200	49 164	8 48		138	187	137	9.		171	147 268	27 55	69		119	3192
	Grand Total	388 53.7	254 3 5.1	81 1 1 .2		253 29.2	359 41.4	255 29.4	16 22. 5.	.9	295 40.4 9.2	36.7 8,4	6.3 1.7	80. 21	.0	13.6 3.7	
	Apprch % Total %	12.2	8.0	2.5		7.9	11.2	8.0	5.	. 2	J.=			a.ma	- 16		
ï		Fortun				Rout	e 16 East				er St South	Ann		Route From	West	App.	Int.
G	tart Time Left	From Thru	North Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	Total .	Total
k	Hour From 07:00 f	o 08:45	- Peak 1					400	92	157	153	402	31	345	71	447	1732
pt	ersection 07:45 Volume 203 Percent 50.4	143 35.5	57 14.1	403	139 29.0	198 41.2	143 29.8 143	480 480	22.9 92	39.1 157	38.1 153	402	6.9 31	77.2 345	15.9 71 28	447 122	1732 455
	Volume 203 Volume 51	143 26	57 13	403 90	139 34	198 64	52	150	24	39	30	93	10 07:45	84	20	122	0.952
	eak Factor High Int. 08:15 Volume 62 eak Factor	43	10	115 0.876	08:00 34	64	52	150 0.800	08:15 22	48	41	111 0.905	11	106	14	131 0.853	
	ak Factor High Int. 08:15 Volume 62	43	10	115		64	52			48	41			106	14		

08:00

94

08:15

22.8

22

492

150

0.820

143

29.1

52

213

43.3

64

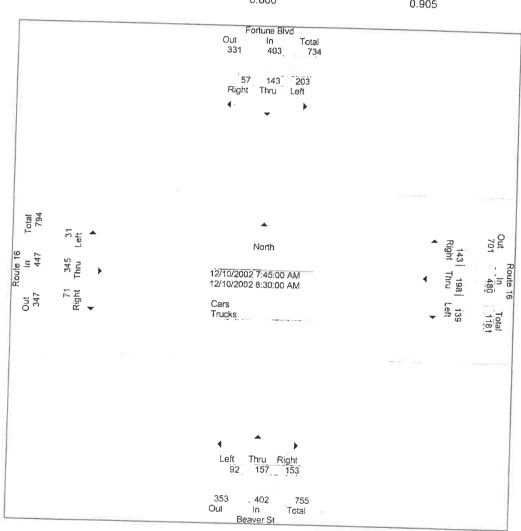
171

41.5

48

147

35.7


41

N/S Street: Fortune Blvd / Beaver St E/W Street: Route 16 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

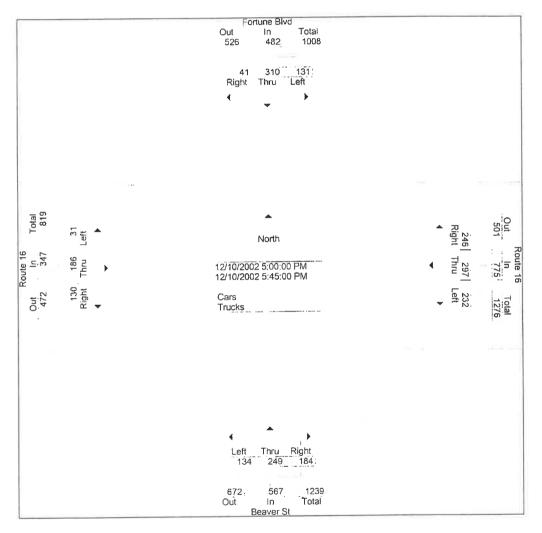
File Name Site Code Start Date Page No

Start Time Peak Hour Fro	m 07:00	Fron Thru	ne Blvd 1 North Right 5 - Peak	App. Total 1 of 1	Left		ute 16 n East Right	App. Total	Left		ver St South Right	App. Total	Left		ute 16 n West Right	App. Total
Volume Percent Volume Volume Peak Factor	203 51	143 35.5 143 26	57 14.1 57 13	403 403 90	139 29.0 139 34	198 41.2 198 64	143 29.8 143 52	480 480 150	92 22.9 92 24	157 39.1 157 39	153 38.1 153 30	402 402 93	31 6.9 31 10	345 77.2 345 84	71 15.9 71 28	447 447 122
High Int. Volume Peak Factor	08:15 62	43	10	115 0.876	08:00 34	64	52	150 0.800	08:15 22	48	41	111 0.905	07:45 11	106	14	131 0.853

N/S Street: Fortune Bivd / Beaver St E/W Street: Route 16 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20 Site Code : 20 Start Date : 12 Page No : 1


-110 0000		6
Start Date		1.
age No	:	1

			Fortune	Blvd			Group Route 16	s Printed	- Cars -						S P	tart Date age No	: 12 : 1
Sta	16:00 16:15 16:30 16:45 Total	Left 25 22 28 22 97	From No.	orth	Right 10 8 8 11 37	Left 55 54 55 55 219	From Eas Thru 69 69 73 68 279	Rig	73 53 52 53		eaver St om South Thru 68 46 49 55 218	Righ 30 33 48 32 143) . } !	Rou From eft 15 7 6 12	tte 16 1 West Thru 55 62 55 42 214	Right 55 39 36 31 161	_ Int
	17:00 17:15 17:30 17:45 Total	32 33 29 37 131	8 7	37 32 75 66 0	12 14 6 9 41	60 57 56 59 232	73 68 73 83 297	8		23 43 42 26 134	54 51 81 63 249	54 47 42 41 184	1	6	50 45 51 40 186	39 32 26 33	
App	d Total orch % otal %	228 27.5 5.5	52 63. 12.	1	78 9.4 1.9	451 29.6 10.8	576 37.8 13.8	49 32. 11.	6	253 24.2 6.1	467 44.6 11.2	327 31.2 7.9	7 9. 1.	3 ;	400 52.5 9.6	291 38.2 7.0	
Start Time Peak Hour Fro	om 16:00	From Thru	ne Blvd North Right - Peak	App. Total 1 of 1	Left	Roi Fror Thru	ute 16 m East Right	App. Total	Left	Fron	ever St n South Right	App. Total	Left	Roi Fron Thru	ute 16 n West Right	App. Total	1
Volume Perceni Volume Volume Peak Factor High Int.	131 27.2 131 33	310 64.3 310 82	41 8.5 41 14	482 482 129	232 29.9 232 57	297 38.3 297 68	246 31.7 246 80	775 775 205	134 23.6 134 43	249 43.9 249 51	184 32.5 184 47	567 567 141	31 8.9 31 9	186 53.6 186 45	130 37.5 130 32	347 347 86	2
Volume Peak Factor	32	87	12	131 0.920	17:15 57	68	80	205 0.945	17:30 42	81	42	165 0.859	17:00 5	50	39	94 0.923	0.96
Peak Hour Fro By Approach Volume Percent High Int. Volume Peak Factor	17:00 131 27.2	0 17:45 - 310 64.3 87	Peak 1 41 8.5 12	482 131	17:00 232 29.9 17:15 57	297 38.3 68	246 31.7 80	775	17:00 134 23.6 17:30 42	249 43.9 81	184 32.5 42	567 165	16:00 40 9.6 16:00	214 51.6	161 38.8	415	
, can r actor				0.920				0.945		51	74	0.859	15	55	55	125 0.830	

N/S Street: Fortune Blvd / Beaver St

E/W Street : Route 16 City/State : Milford, MA Weather : Clear Accurate Counts 978-664-2565 File Name : 20144013 Site Code : 20144013 Start Date : 12/10/2002

							ite 16 n East				ver St South				te 16 West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	n 16:00	to 17:45	- Peak	1 of 1													
Intersection	17:00																
Volume	131	310	41	482	232	297	246	775	134	249	184	567	31	186	130	347	2171
Percent	27.2	64.3	8.5		29.9	38.3	31.7		23.6	43.9	32.5		8.9	53.6	37.5		
Volume	131	310	41	482	232	297	246	775	134	249	184	567	31	186	130	347	2171
Volume	33	82	14	129	57	68	80	205	43	51	47	141	9	45	32	86	561
Peak Factor																	0.967
High Int.	17:00				17:15				17:30				17:00				
Volume	32	87	12	131	57	68	80	205	42	81	42	165	5	50	39	94	
Peak Factor	02	0,	12	0.920	0.	-		0.945				0.859				0.923	

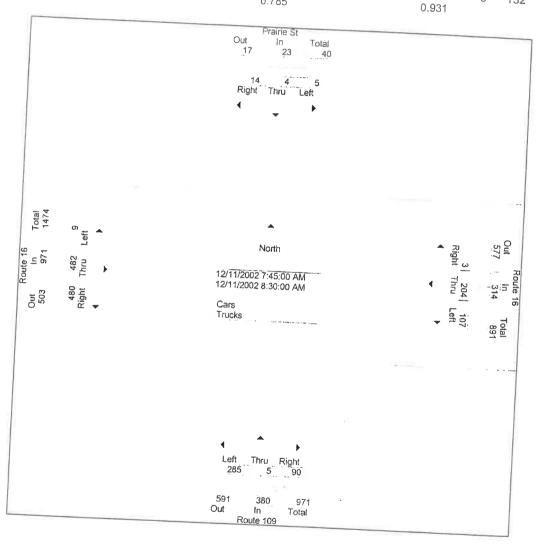
et : Prairie St/Route 109 set : Route 16 le : Milford, MA

Peak Factor

Accurate Counts 978-664-2565

File Name : 20144012 Site Code : 20144012 Start Date : 12/11/2002 Page No : 1

e: Milford, M	Prair	rie St North			Route 1	16 ast	d- Cars -	Trucks Ro Fro Left	oute 109 om South Thru	Rig	110	Rou Fron Left 0	ite 16 n West Thru 119	Right 119	1	Total 358 327
Start Time 07:00 07:15 07:30	Left 0 3 0	Thru 4 1 0 2	Right 2 1 2 8	Left 25 12 16 20	· · · · · · · · · · · · · · · · · · ·	34 37 28 50	0 1 1 0 2	37 42 48 62 189	0 1 1 1 3		18 17 21 29 85	3 2 5 10	112 119 132 482	97 129 133 478	3	367 443 1495 431
07:45 Total	1 4	7	13	73 31	7	63	0	72 76	1 2		14 24 23	3 0 1	116 116 118	123 114 11	4 1	422 392 404
08:00 08:15 08:30	1 3 ; 0 1	2 0 0	3 1 3	30 2 1	0 6	51 40 40 194	2 7 10	75 87 310	1 4 8	+	20 81	0	108 458	11 46 94	5	1649 3144
08:45 Total Grand Total	5 9 22.5	2 9 22.5	9 22 55.0	10 17 33	76 .1	343 64.6 10.9	12 2.3 0.4	499 73.8 15.9	1: 1.: 0.	6	166 24.6 5.3	14 0.7 0.4	940 49.6 29.9	49		
Apprch % Total %	0.3 Prairi	0.3	0.7		Route	16	,		Route 1 From Sc	09 outh	App.		Route From W	Vest	App.	Int. Total
htart Time Left	From	North Right	App. Total	Left	From Thru	Right	App. Total	Left	Thru R	ight	Total	Left	THU:			1688
Hour From 07:0 itersection 07:45 Volume	0 to 08:45		of 1	107 34.1	204 65.0 204	3 1.0 3	314 314	285 75.0 285	5	90 23.7 90 29	380 380 92	9 0.9 9 5	482 49.6 482 132	480 49.4 480 133	971 971 270	1688 443 0.953
Volume Volume Peak Factor	5 4 1 2	14 8	23 11	107 20 08:00	50	0	70 100	62 08:15 76	1	24	102 0.931	07:45 5	132	133	270 0.899	
Volume eak Factor	1 2	8 .s. Book	11 0.523 1 of 1	37	00		0.785	08:00			399	07:30 10	483	498	991	
ak Hour From 07 3y Approach 07: Volume	:00 to 08:4 00 4 7 6.7 29.2	13	24	07:45 107 34.1	204 65.0	3 1.0	314	310 77.7 08:45	8 2.0 4	81 20.3 20	111	1.0 07:45	48.7	50.3 133	270 0.918	0 8
Percent 1 High Int. 07 Volume Peak Factor	:45	2 8	11 0.545			0	100 0.785		4	20	0.899				3.3	•


N/S Street: Prairie St/Route 109

E/W Street: Route 16
City/State: Milford, MA
Weather: Clear

Accurate Counts 978-664-2565

File Name : 2 Site Code : 2 Start Date : 1 Page No : 1

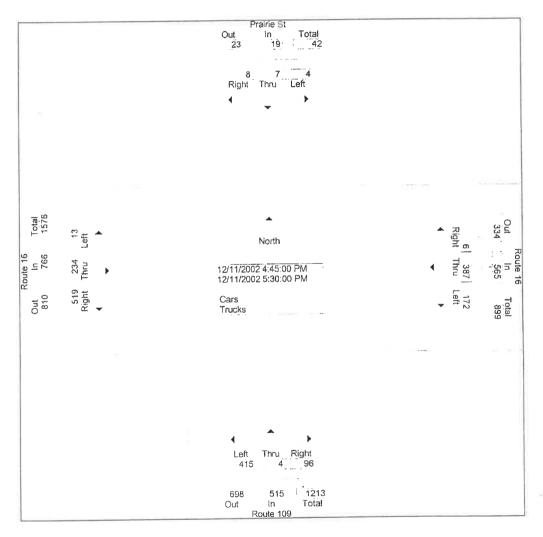
		Б													Page	No : 1
Start Time		From Thru	nirie St n North Right	App.	 Left		ute 16 n East Right	Арр.		From	te 109 South	App		Roi Fron	ute 16	
Peak Hour Fro Intersection Volume	07.40			1 of 1				Total	Left -	Thru	Right	App. Total	Left	Thru	Right	App. Total
Percent Volume	21.7	4 17.4 4	14 60.9 14	23 23	107 34.1	204 65.0	3 1.0	314	285 75.0	5 1.3	90 23.7	380	9	482	480	971
Volume Peak Factor High Int.	,	2	8	11	107 20	204 50	3 0	314 70	285 62	5	90 29	380 92	0.9 9 5	49.6 482 132	49.4 480	971
Volume Peak Factor	1	2	8	11 0.523	08:00 37	63	0	100	08:15 76	2	24	100	07:45	102	133	270
								0.785		-	24	102 0.931	5	132	133	270 0.899

S Street : Prairie St/Route 109 W Street : Route 16 ty/State : Milford, MA pather : Clear

Accurate Counts 978-664-2565

File Name : 20144012 Site Code : 20144012 Start Date : 12/11/2002

Pai	ner : Clear											Pag	ge No:1	
1						Groups P	rinted- Car	s - Trucks				`		
J		F	Prairie St		F	Route 16		R	oute 109		F	Route 16		
		Fr	om North		F	rom East		Fr	om South		Fr	om West		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
I	16:00	0	1	1	56	114	0	85	0	26	2	68	93	446
	16:15	0	0	3	43	77	2	116	0	26	ō	61	97	425
	16:30	1	2	3	39	77	1	115	1	25	3	60	106	433
	16:45	0	1	1	40	89	2	111	2	20	4	53	140	463
	Total	1	4	8	178	357	5	427	3	97	9	242	436	1767
							_		~	•	Ü		100	1707
	17:00	1	2	4	45	110	0	98	0	26	3	56	133	478
	17:15	3	2	2	40	94	1	100	0	23	3	64	134	466
	17:30	0	2	1	47	94	3	106	2	27	3	61	112	458
	17:45	3	ō	4	34	86	3	91	Õ		1	68	125	439
	Total	7	6	11	166	384	7	395	2	24 100	10	249	504	1841
			Ü		100	004	,	555	2	100	10	243	504	1041
	Grand Total	8	10	19	344	741	12	822	5	197	19	491	940	3608
	Apprch %	21.6	27.0	51.4	31.4	67.5	1.1	80.3	0.5	19.2	1.3	33.9	64.8	3000
	Total %	0.2	0.3	0.5	9.5	20.5	0.3	22.8	0.1	5.5	0.5	13.6	26.1	
	1010170	0.2	0.5	0.5	9.5	20.5	0.5	22.0	0.1	3.3	0.5	13.0	20.1	
		Prairi	o St		Poi	ute 16			oute 109			Deute 16		
		From !				m East			om South			Route 16 From Wes		
		1 101111	YOLUT		FIOI	H Last		FIC	niti oonu			rioiii wes	L	


			irie St 1 North				ite 16 n East				te 109 South				te 16 West	***************************************	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	int. Total
ak Hour Froi		to 17:45	- Peak	1 of 1													
Intersection	16:45																
Volume	4	7	8	19	172	387	6	565	415	4	96	515	13	234	519	766	1865
Percent	21.1	36.8	42.1		30.4	68.5	1.1		80.6	8.0	18.6		1.7	30.5	67.8		
Volume	4	7	8	19	172	387	6	565	415	4	96	515	13	234	519	766	1865
Volume	1	2	4	7	45	110	0	155	98	0	26	124	3	56	133	192	478
³ eak Factor																	0.975
High Int.	17:00				17:00				17:30				17:15				
Volume	1	2	4	7	45	110	0	155	106	2	27	135	3	64	134	201	
eak Factor				0.679				0.911				0.954				0.953	
ak Hour Fron	n 16:00 t	to 17:45	- Peak	1 of 1													
y Approach	17:00				16:45				16:15				16:45				
Volume	7	6	11	24	172	387	6	565	440	3	97	540	13	234	519	766	
Percent	29.2	25.0	45.8		30.4	68.5	1.1	000	81.5	0.6	18.0	0.10	1.7	30.5	67.8	, 55	
High Int.	17:00		10.0		17:00	00.0	1.,		16:15	0.0	10.0		17:15	00.0	07.0		
Volume	1	2	4	7	45	110	0	155	116	0	26	142	3	64	134	201	
'eak Factor		_	,	0.857			v	0.911				0.951		•		0.953	

N/S Street: Prairie St/Route 109 E/W Street: Route 16 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144012 Site Code : 20144012 Start Date : 12/11/2002

	Prairie St From North						ite 16 n East				te 109 South				ite 16 n West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 16:00	to 17:45	- Peak	1 of 1													
Intersection	16:45															=	
Volume	4	7	8	19	172	387	6	565	415	4	96	515	13	234	519	766	1865
Percent	21.1	36.8	42.1		30.4	68.5	1.1		80.6	8.0	18.6		1.7	30.5	67.8		
Volume	4	7	8	19	172	387	6	565	415	4	96	515	13	234	519	766	1865
Volume	1	2	4	7	45	110	0	155	98	0	26	124	3	56	133	192	478
Peak Factor	·	~		•	-												0.975
High Int.	17:00				17:00				17:30				17:15				
Volume	17.00	2	4	7	45	110	0	155	106	2	27	135	3	64	134	201	
Peak Factor	1		4	0.679	70	. 10	•	0.911		_		0.954				0.953	

S Street: Beaver Street W Street: Route 109 ty/State: Milford, MA 'eather: Clear

0

70

Volume

Peak Factor

46

116

0.875

275

0

Accurate Counts 978-664-2565 File Name : 20144004 Site Code : 20144004 Start Date : 12/11/2002

'eather : C	lear														Pag	e No :	1
1							Groups	Printed- 0	Cars - Tri	ıcks							•
			Beaver S			R	oute 109			Bea	ever St			Route	109		
Ĭ			From Nor			F	rom East			Fron	n South			From \	Vest	1	
Start		Left	Thr	u Rig	ght	Left	Thru	Right	L	eft	Thru	Right	Lef	t T	hru	Right	Int. Total
	07:00	41	(18	0	118	86		4	14	15	7		90	1	394
	07:15	42	(0	13	0	204	67		6	6	30	9)	97	0	474
	07:30	52	;	3	21	0	214	66		6	20	38	ē		103	Ö	529
, (07:45	57	(36	Ō	219	72		7	24	42	8		105	ŏ	570
	Total	192			88	O.	755	291		23	64	125	30		395	- 1	1967
in the second			,		00	·	700	201		20	01	125	50	,	,,,,		1301
C	08:00	56		1	37	0	275	92		11	23	33	13	3	90	0	631
	08:15	70	()	46	0	248	95		10	27	41	14		92	0	643
C	08:30	69	()	34	0	241	103		8	11	25	19		78	0	588
m. C	08:45	37			34	0	268	96		11	13	20	13		99	0 :	594
	Total	232			51	0	1032	386		40	74	119	59		359	0 -	2456
					•									•	, , ,	Ü	2.00
Grand	Total	424	-	7 2	39	0	1787	677		63	138	244	89) 7	754	1	4423
Appr	ch %	63.3	1.0	35	5.7	0.0	72.5	27.5	14	1.2	31.0	54.8	10.5	8	9.3	0.1	
	tal %	9.6	0.2		5.4	0.0	40.4	15.3		1.4	3.1	5.5	2.0		7.0	0.0	
·																	
			ver St				te 109				ver St				te 109		-
		From	North			Fron	n East	:		From	South			From	West		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right ;	App.	Int.
. 30.00.00				Total				Total				Total				Total	Total
ak Hour Fro		10 08:45	- Реак	1 01 1													
Intersection					_										_		
Volume	232	4	151	387	0	1032	386	1418	40	74	119	233	59	359	0	418	2456
Percent	59.9	1.0	39.0		0.0	72.8	27.2		17.2	31.8	51.1		14.1	85.9	0.0		
Volume	232	4	151	387	0	1032	386	1418	40	74	119	233	59	359	0	418	2456
Volume	70	0	46	116	0	248	95	343	10	27	41	78	14	92	0	106	643
Peak Factor																	0.955
High Int.	08:15				08:00				08:15				08:45				1
Volume	. 70	0	46	116	, 0	275	92	367	10	27	41	78	13	99	0	112	
Peak Factor				0.834				0.966				0.747				0.933	
eak Hour Fro	m 07:00 ⁻	to 08:45	- Peak	1 of 1													
3y Approach	07:45				08:00				07:30				07:15				i
Volume	252	1	153	406	0	1032	386	1418	34	94	154	282	36	395	0	431	
Percent	62.1	0.2	37.7		0.0	72.8	27.2		12.1	33.3	54.6		8.4	91.6	0.0		
High Int.	08:15				08:00				08:15				07:45				
Volume		Λ	16	116		275	0.2	367	10	27	41	79	Ω	105	0	113	1

367

0.966

10

27

41

78

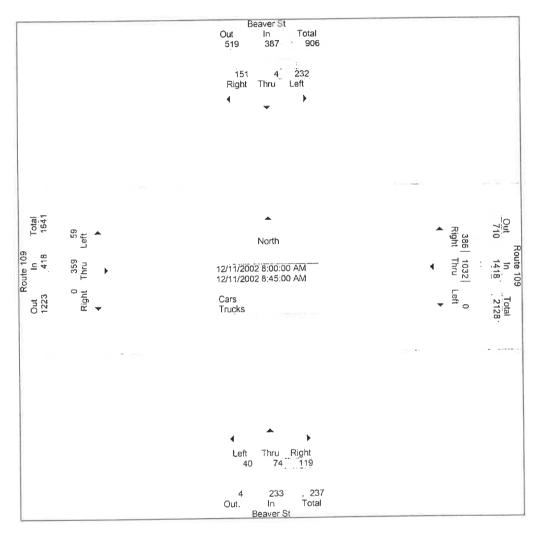
0.904

8

105

0

113


0.954

N/S Street: Beaver Street E/W Street: Route 109
City/State : Milford, MA
Weather : Clear

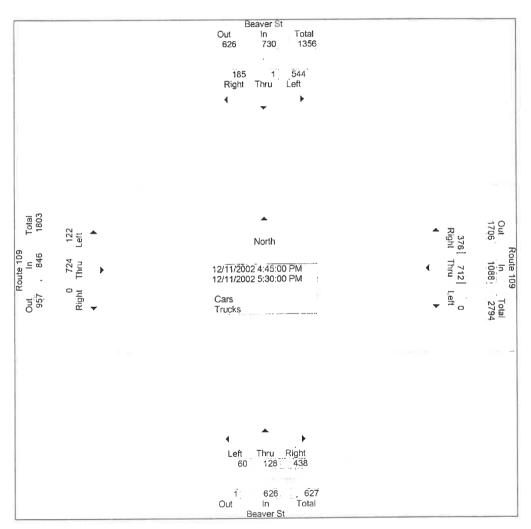
Accurate Counts 978-664-2565

File Name : 20144004 Site Code : 20144004 Start Date : 12/11/2002 Page No : 1

			ver St North				te 109 n East				ver St South				te 109 West		-,-,
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru .	Right	App. Total	Int. Total
Peak Hour Fron	n 07:00	to 08:45	- Peak	1 of 1													
Intersection	08:00															440	0.450
Volume	232	4	151	387	0	1032	386	1418	40	74	119	233	59	359	0	418	2456
Percent	59.9	1.0	39.0		0.0	72.8	27.2		17.2	31.8	51.1		14.1	85.9	0.0		
Volume	232	4	151	387	0	1032	386	1418	40	74	119	233	59	359	0	418	2456
Volume	70	Ö	46	116	Ō	248	95	343	10	27	41	78	14	92	0	106	643 0.955
Peak Factor													00.45				0.933
High Int.	08:15				08:00				08:15				08:45			440	
Volume	70	0	46	116	0	275	92	367	10	27	41	78	13	99	0	112	
Peak Factor	ŧ			0.834				0.966				0.747				0.933	

Street: Beaver Street V Street: Route 109 y/State: Milford, MA eather: Clear

Accurate Counts 978-664-2565


File Name : 20144004 Site Code : 20144004 Start Date : 12/11/2002 Page No : 1

eather . Or	di								_						ray	JE 140 . I	
	Groups Printed- Cars - Trucks Beaver St Route 109 Beaver St Route 109 From North From East From South From West																
																<u></u>	
Start T		Left	Thru	Rig		Left	Thru :	Right	L	eft	Thru	Right	Left				Int. Total
16	3:00	136	7	4	45	0	145	76		7	22	88	25		175	0	726
16	5:15	133	0		50	0	202	79		10	22	76	20		178	0	770
16	3:30	133	0		53	0	181	83		8	31	101	19		166	0	775
16	6:45	105	1		18	0	175	82		15	27	92	22		178	0	745
	otal	507	8		96	Õ	703	320		40	102	357	86		397	0	3016
1 '		007	O		,,,	Ü	, 00	020			, , ,						
4.	7:00	164	0		11	0	178	103		16	33	131	28		159	0 !	853
	7:15	166	0		+ 1 14	0	192	103		21	32	121	36		181	0	896
			_			-					36	94	36		206	0	796
	7:30	109	0		52	0	167	88		8				_		0	
	7:45	140	0		13	0	159	80		11	17	84	22		166		722
Ŧ	otal	579	0	18	30	0	696	374		56	118	430	122		712	0 ;	3267
	1											707			400	0.1	2222
Grand T		1086	8		76	0	1399	694		96	220	787	208		109	0	6283
Appro	h %	73.9	0.5	25	.6	0.0	66.8	33.2		3.7	19.9	71.4	12.9		7.1	0.0	
Tota	al %	17.3	0.1	6	.0	0.0	22.3	11.0		1.5	3.5	12.5	3.3	2	2.4	0.0	
			ver St				te 109				ver St				te 109	4	
		From	North			Fron	n East			From	South			From	West	<u></u> i	
Start Time	Left	Thru	Right	App.	Left	Thru	Right	Арр.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
				Total	LOIL		Tagin	Total	2010			Total				Total	Total
ak Hour Fron	n 16:00	to 17:45	i - Peak 1	of 1													
Intersection	16:45															:	
Volume	544	1	185	730	0	712	376	1088	60	128	438	626	122	724	0	846	3290
Percent	74.5	0.1	25.3		0.0	65.4	34.6		9.6	20.4	70.0		14.4	85.6	0.0	j	
Volume	544	1	185	730	0	712	376	1088	60	128	438	626	122	724	0	846	3290
Volume	166	0	44	210	0	192	103	295	21	32	121	174	36	181	0	217	896
Peak Factor	100			2.10	•	.02											0.918
High Int.	17:15				17:15				17:00				17:30				
			44	210	0	192	103	295	16	33	131	180	36	206	0	242	
Volume	166	0	44		U	192	103	0.922	10	JJ	101	0.869	00	200	•	0.874	
Peak Factor				0.869				0.922				0.009				0.07 + ;	
at Have Fran	- 40.00	L 47.45	Deal d	-5.4													
ak Hour Fron		10 17:45	- Peak 1	OT 1	40.00				16:30				16:45				
3y Approach					16:30	700	074	4007		400	445	628	122	724	0	846	
Volume	579	0	180	759	0	726	371	1097	60	123		020				040	
Percent	76.3	0.0	23.7		0.0	66.2	33.8		9.6	19.6	70.9		14.4	85.6	0.0		
High Int.	17:15				17:15				17:00				17:30		_	0.45	
Volume	166	0	44	210	0	192	103	295	16	33	131	180	36	206	0	242	
Peak Factor				0.904				0.930				0.872				0.874	

N/S Street : Beaver Street E/W Street : Route 109 City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565 File Name: 20144004 Site Code: 20144004 Start Date: 12/11/2002

			ver St North				te 109 n East				ver St South				te 109 West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 16:00 t	o 17:45	- Peak	1 of 1													
Intersection	16:45																
Volume	544	1	185	730	0	712	376	1088	60	128	438	626	122	724	0	846	3290
Percent	74.5	0.1	25.3		0.0	65.4	34.6		9.6	20.4	70.0		14.4	85.6	0.0		
Volume	544	1	185	730	0	712	376	1088	60	128	438	626	122	724	0	846	3290
Volume	166	0	44	210	0	192	103	295	21	32	121	174	36	181	0	217	896
Peak Factor																	0.918
High Int.	17:15				17:15				17:00				17:30				
Volume	166	0	44	210	0	192	103	295	16	33	131	180	36	206	0	242	
Peak Factor	*			0.869				0.922				0.869				0.874	

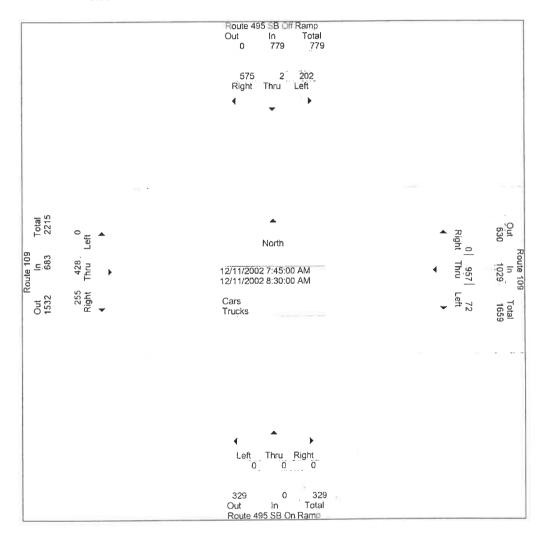
Street: Route 495 SB Ramps W Street: Route 109 cy/State: Milford, MA eather: Clear

Accurate Counts 978-664-2565

File Name: 20144007 Site Code : 20144007 Start Date : 12/11/2002 Page No : 1

Fall	iei . Cicai											. 49	0	
ľ						Groups P	rinted- Cars	- Trucks						
j		Route 49	5 SB Off	Ramp	R	oute 109		Route 49	5 SB On F	Ramp	R	oute 109		
			om North		Fr	om East		Fro	om South		Fre	om West		
	Start Time	Left	Thru	Right	Left	Thru	Right "	Left	Thru	Right	Left	Thru	Right	Int. Total
	07:00	36	0	68	23	140	o.	0	0	0	0	91	72	430
	07:15	29	1	111	13	175	0	0	0	0	0	105	64	498
•	07:30	43	0	87	20	185	0	0	0	0	0	118	83	536
	07:45	60	2	146	19	211	o :	0	0	0	0	109	86	633
1	Total	168	3	412	75	711	0	0	0	0	0	423	305	2097
I.	08:00	55	0	164	28	223	0	0	0	0	0	105	63	638
	08:15	44	0	148	11	248	0	0	0	0	0	117	51	619
1	08:30	43	Ō	117	14	275	0	0	0	0	0	97	55	601
	08:45	58	0	113	23	245	0	0	0	0	0	67	39	545
d'	Total	200	0	542	76	991	0	0	0	0	0	386	208	2403
ı	Grand Total	368	3	954	151	1702	0	0	0	0	0	809	513 !	4500
	Apprch %	27.8	0.2	72.0	8.1	91.9	0.0	0.0	0.0	0.0	0.0	61.2	38.8	
	Total %	8.2	0.1	21.2	3.4	37.8	0.0	0.0	0.0	0.0	0.0	18.0	11.4	

	Rou		SB Off R				te 109 n East		Rout		SB On R South				te 109 West	Ann	Int.
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Total
ak Hour Fron	n 07:00 i	to 08:45	- Peak	1 of 1													
Intersection	07:45											_	_		0.55	000	0404
Volume	202	2	575	779	72	957	0	1029	0	0	0	0	0	428	255	683	2491
Percent	25.9	0.3	73.8		7.0	93.0	0.0		0.0	0.0	0.0		0.0	62.7	37.3	000	0404
Volume	202	2	575	779	72	957	0	1029	0	0	0	0	0	428	255	683	2491
Volume	55	0	164	219	28	223	0	251	0	0	0	0	0	105	63	168	638
Peak Factor																	0.976
High Int.	08:00				08:30				6:45:00	AM			07:45				
Volume	55	0	164	219	14	275	0	289	0	0	0	0	0	109	86	195	
Peak Factor	•			0.889				0.890								0.876	
ak Hour Fron	n 07:00	to 08:45	5 - Peak	1 of 1													
3y Approach	07:45				08:00				07:00				07:15				
Volume	202	2	575	779	76	991	0	1067	0	0	0	0	0	437	296	733	
Percent	25.9	0.3	73.8		7.1	92.9	0.0		-	-	-		0.0	59.6	40.4		
High Int.	08:00				08:30				-				07:30				
Volume	55	0	164	219	14	275	0	289	-	-	-	-	0	118	83	201	
Peak Factor	00	J		0.889				0.923				-				0.912	


N/S Street: Route 495 SB Ramps

E/W Street: Route 109 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144007 Site Code : 20144007 Start Date : 12/11/2002 Page No : 1

	Rou		SB Off R	tamp			te 109 n East		Rou		SB On R South	amp			te 109 West	-	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 07:00	to 08:45	- Peak	1 of 1													
Intersection	07:45																
Volume	202	2	575	779	72	957	0	1029	0	0	0	0	0	428	255	683	2491
Percent	25.9	0.3	73.8		7.0	93.0	0.0		0.0	0.0	0.0		0.0	62.7	37.3		
Volume	202	2	575	779	72	957	0	1029	0	0	0	0	0	428	255	683	2491
Volume	55	0	164	219	28	223	0	251	0	0	0	0	0	105	63	168	638
Peak Factor																	0.976
High Int.	08:00				08:30				6:45:00	MA (07:45				
Volume	55	0	164	219	14	275	0	289	0	0	0	0	0	109	86	195	
Peak Factor				0.889				0.890								0.876	

S Street: Route 495 SB Ramps W Street: Route 109 ky/State: Milford, MA /eather: Clear

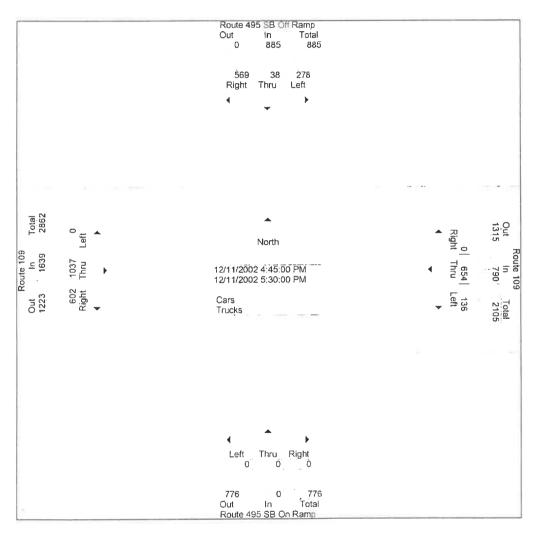
Accurate Counts 978-664-2565

File Name : 20144007 Site Code : 20144007 Start Date : 12/11/2002 Page No : 1

Çatii	ei . Oieai											P	age No :	: 1
li .						Groups F	Printed-Cars	- Trucks					5	
		Route 49	95 SB Off f	Ramp	R	Route 109		Route 49	95 SB On F	lamp	R	oute 109		
			rom North		F	rom East		Fr	om South		Fr	om West	1	
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	16:00	54	0	62	22	160	0	0	0	0	0	228	201	727
	16:15	82	1	135	21	182	0	0	0	0	0	251	132	804
i .	16:30	83	0	138	22	152	0	0	0	0	0	266	116	777
ŀ	16:45	66	1	96	32	180	0	Ō	0	Ō	Ō	258	123	756
	Total	285	2	431	97	674	0	0	Ō	Ō	Ō	1003	572	3064
1														
	17:00	61	31	176	36	177	0	0	0	0	0	262	149	892
Ji .	17:15	73	3	188	37	149	Ο.	0	0	0	0	255	170	875
	17:30	78	3	109	31	148	0	0	0	0	0	262	160	791
	17:45	79	1	93	38	144	0	0	0	0	0	230	163	748
	Total	291	38	566	142	618	0	0	0	0	0	1009	642	3306
	Grand Total	576	40	997	239	1292	0	0	0	0	0	2012	1214	6370
	Apprch %	35.7	2.5	61.8	15.6	84.4	0.0	0.0	0.0	0.0	0.0	62.4	37.6	
	Total %	9.0	0.6	15.7	3.8	20.3	0.0	0.0	0.0	0.0	0.0	31.6	19.1	

11	Ro		SB Off R	amp			te 109 n East		Ro		SB On Ra	amp			te 109 i West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru :	Right	App. Total	Int. Total
ak Hour Fron		to 17:45	- Peak	1 of 1													******************
Intersection	16:45																
Volume	278	38	569	885	136	654	0	790	0	0	0	0	0	1037	602	1639	3314
Percent	31.4	4.3	64.3		17.2	82.8	0.0		0.0	0.0	0.0		0.0	63.3	36.7		
Volume	278	38	569	885	136	654	0	790	0	0	0	0	0	1037	602	1639	3314
Volume	61	31	176	268	36	177	0	213	0	0	0	0	0	262	149	411	892
Peak Factor																	0.929
High Int.	17:00				17:00								17:15			i	
Volume	61	31	176	268	36	177	0	213	0	0	0	0	0	255	170	425	
Peak Factor				0.826				0.927								0.964	
ak Hour Fron	n 16:00 i	n 17·45	- Peak	1 of 1													
3y Approach	16:30		, i baix	1 0. 1	16:15				16:00				17:00				
Volume	283	35	598	916	111	691	0	802	0.00	0	0	0	0	1009	642	1651	
Percent	30.9	3.8	65.3	0.0	13.8	86.2	0.0	001	_	-	_	Ü	0.0	61.1	38.9	1001	
High Int.	17:00	0.0	00.0		17:00	00.2	0.0		_				17:15	01.1	50.5	- :	
Volume	61	31	176	268	36	177	0	213	_	-	_	_	0	255	170	425	
Peak Factor			.,,	0.854	00	.,,	v	0.941				-	Ü	200	., 0	0.971	

N/S Street: Route 495 SB Ramps E/W Street: Route 109


City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

File Name : 20144007 Site Code : 20144007 Start Date : 12/11/2002

Page	No	:	1	

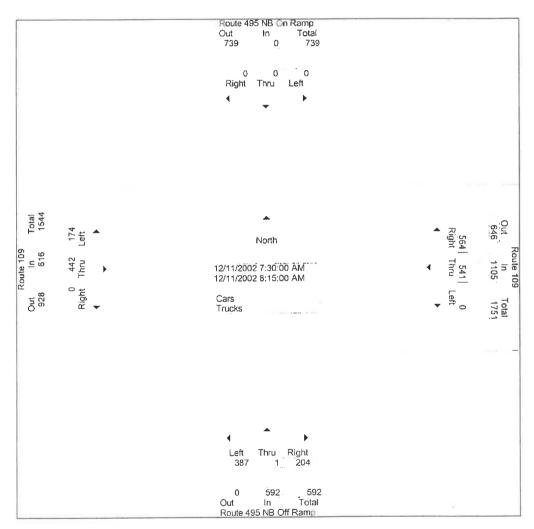
	Rou		SB Off Ra North	ımp			te 109 n East		Ro		SB On Ra South	mp			te 109 West_		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 16:00 t	o 17:45	- Peak	1 of 1													
Intersection	16:45																
Volume	278	38	569	885	136	654	0	790	0	0	0	0	0	1037	602	1639	3314
Percent	31.4	4.3	64.3		17.2	82.8	0.0		0.0	0.0	0.0		0.0	63.3	36.7		
Volume	278	38	569	885	136	654	0	790	0	0	0	0	0	1037	602	1639	3314
Volume	61	31	176	268	36	177	0	213	0	0	0	0	0	262	149	411	892
Peak Factor																- 1	0.929
High Int.	17:00				17:00								17:15				
Volume	61	31	176	268	36	177	0	213	0	0	0	0	0	255	170	425	
Peak Factor	:			0.826				0.927								0.964	

S Street : Route 495 NB Ramps W Street : Route 109 y/State : Milford, MA eather : Clear

Accurate Counts 978-664-2565

File Name : 20144006 Site Code : 20144006 Start Date : 12/11/2002 Page No : 1

eam	er : Clear											Р	'age No :	: 1
						Groups F	rinted- Cars	- Trucks					_	
		Route 49	35 NB On F	Ramp	R	oute 109		Route 49	5 NB Off F	lamp	R	oute 109		
		Fr	om North		F	rom East		Fre	om South		Fr	om West		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	07:00	0	0	0	0	79	136	92	0	16	33	87	0 ,	443
1	07:15	0	0	0	0	79	142	113	0	29	43	90	0 -	496
	07:30	0	0	0	0	107	143	97	0	24	50	103	0 :	524
	07:45	0	0	0	0	140	160	94	0	61	44	120	0	619
	Total	0	0	0	0	405	581	396	0	130	170	400	0	2082
Ť	00.00	0	0	0	0	450	407	00	4	60	20	440	0 ;	505
	08:00	0	0	0	0	152	127	98	1	60	38	119	0	595
	08:15	0	0	0	0	142	134	98	0	59	42	100	0	5 75
	08:30	0	0	0	0	148	87	113	0	4 9	33	90	0	520
	08:45	0	0	0	0	165	85	100	0	33	33	104	0	520
	Total	0	0	0	0	607	433	409	1	201	146	413	0	2210
	Grand Total	0	0	0	0	1012	1014	805	1	331	316	813	0	4292
	Apprch %	0.0	0.0	0.0	0.0	50.0	50.0	70.8	0.1	29.1	28.0	72.0	0.0	
	Total %	0.0	0.0	0.0	0.0	23.6	23.6	18.8	0.0	7.7	7.4	18.9	0.0	


			NB On R North	amp			te 109 n East	-	Rou		NB Off Ra	amp			te 109 West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left		Right	App. I Total	Int. Total
ak Hour Fron		to 08:45	- Peak	1 of 1													
Intersection	07:30															1	
Volume	0	0	0	0	0	541	564	1105	387	1	204	592	174	442	0	616	2313
Percent	0.0	0.0	0.0		0.0	49.0	51.0		65.4	0.2	34.5		28.2	71.8	0.0		
Volume	0	0	0	0	0	541	564	1105	387	1	204	592	174	442	0	616;	2313
Volume	0	0	0	0	0	140	160	300	94	0	61	155	44	120	0	164	619
Peak Factor			-													'	0.934
High Int.	6:45:00	AM			07:45				08:00				07:45				
Volume	0.10.0	0	0	0	0	140	160	300	98	1	60	159	44	120	0	164	
Peak Factor	J			ŭ				0.921				0.931				0.939	
ak Hour Fron	n 07:00 t	to 08:45	5 - Peak	1 of 1													
ly Approach	07:00				07:30				07:45				07:30				
Volume	0	0	0	0	0	541	564	1105	403	1	229	633	174	442	0	616	
Percent	-	-	-		0.0	49.0	51.0		63.7	0.2	36.2		28.2	71.8	0.0	-	
High Int.	_				07:45	10.0	01.0		08:30				07:45				
Volume	_	_	_	_	07.43	140	160	300	113	0	49	162	44	120	0	164	
Peak Factor	_	_	_	-	U	, 40	,00	0.921	. 10	Ŭ		0.977	• •	. 20	_	0.939	
22 (00.0.																	

N/S Street: Route 495 NB Ramps E/W Street: Route 109 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144006 Site Code : 20144006 Start Date : 12/11/2002

	Rou		NB On Ra	ımp			te 109 n East	_			NB Off Ra	amp			te 109 i West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 07:00 t	o 08:45	- Peak	1 of 1													
Intersection	07:30																
Volume	0	0	0	0	0	541	564	1105	387	1	204	592	174	442	0	616	2313
Percent	0.0	0.0	0.0		0.0	49.0	51.0		65.4	0.2	34.5		28.2	71.8	0.0		
Volume	0	0	0	0	0	541	564	1105	387	1	204	592	174	442	0	616	2313
Volume	0	0	0	0	0	140	160	300	94	0	61	155	44	120	0	164	619
Peak Factor																	0.934
High Int.	6:45:00	AM			07:45				08:00				07:45				
Volume Peak Factor	.0	0	0	0	0	140	160	300 0.921	98	1	60	159 0.931	44	120	0	164 0.939	

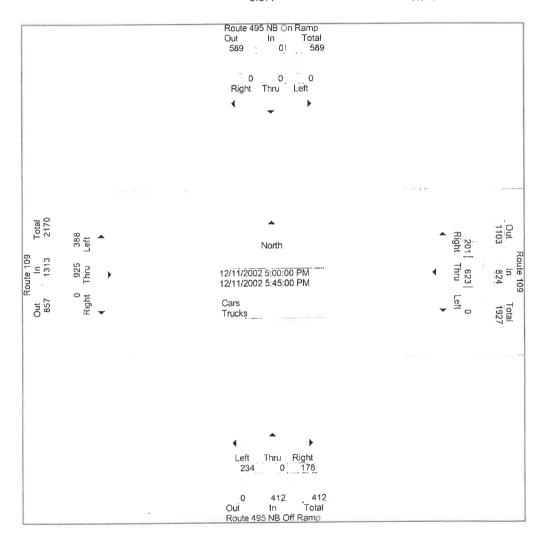
S Street: Route 495 NB Ramps W Street: Route 109 ty/State: Milford, MA 'eather: Clear

Accurate Counts 978-664-2565

File Name : 20144006 Site Code : 20144006 Start Date : 12/11/2002 Page No : 1

					Groups F	Printed- Cars	s - Trucks					3	
		95 NB On F	Ramp	R	oute 109			95 NB Off F	Ramp	R	Route 109		
		om North		F	rom East		Fr	om South		F	rom West		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
16:00	0	0	0	0	105	51	66	0	31	104	177	0	534
16:15	0	0	0	0	137	57	57	0	46	94	240	0 .	631
16:30	0	0	0	0	136	49	46	0	28	90	258	0 ;	607
16:45	0	0	0	0	131	48	46	0	41	86	235	0	587
Total	0	0	0	0	509	205	215	0	146	374	910	0	2359
17:00	0	0	0	0	169	66	52	0	40	83	240	0	650
17:15	0	0	0	0	163	55	62	0	47	92	240	0	659
17:30	0	0	0	0	141	40	60	0	42	109	239	0	631
17:45	0	0	0	0	150	40	60	0	49	104	206	0 ·	609
Total	0	0	0	0	623	201	234	0	178	388	925	0	2549
Grand Total	0	0	0	0	1132	406	449	0	324	762	1835	0 ;	4908
Apprch %	0.0	0.0	0.0	0.0	73.6	26.4	58.1	0.0	41.9	29.3	70.7	0.0	.000
Total %	0.0	0.0	0.0	0.0	23.1	8.3	9.1	0.0	6.6	15.5	37.4	0.0	
Ro	oute 495 NI	3 On Ramp)	Rou	te 109		Route 49	5 NB Off F	Ramp		Route 109	1	
	From N	vorth .		Fror	n East		Fro	om South			From West		

	Ro		NB On R	amp			te 109 n East	•	Rou		NB Off R	amp			te 109 West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
eak Hour From		to 17:45	- Peak	1 of 1													
Intersection	17:00																
Volume	0	0	0	0	0	623	201	824	234	0	178	412	388	925	0	1313	2549
Percent	0.0	0.0	0.0		0.0	75.6	24.4		56.8	0.0	43.2		29.6	70.4	0.0		
Volume	0	0	0	0	0	623	201	824	234	0	178	412	388	925	0	1313	2549
Volume	0	0	0	0	0	163	55	218	62	0	47	109	92	240	0	332	659
Peak Factor																	0.967
High Int.					17:00				17:15				17:30				
Volume	0	0	0	0	0	169	66	235	62	0	47	109	109	239	0	348	
Peak Factor								0.877				0.945				0.943	
ak Hour From	16:00	to 17:45	i - Peak	1 of 1													
3y Approach	16:00				17:00				17:00				16:15				
Volume	0	0	0	0	0	623	201	824	234	0	178	412	353	973	0	1326	
Percent	_	_	_		0.0	75.6	24.4		56.8	0.0	43.2		26.6	73.4	0.0		
High Int.	-				17:00				17:15				16:30				
Volume	_	_	_	_	0	169	66	235	62	0	47	109	90	258	0	348	
Peak Factor				-				0.877				0.945				0.953	


N/S Street: Route 495 NB Ramps

E/W Street: Route 109
City/State: Milford, MA
Weather: Clear

Accurate Counts 978-664-2565

File Name: 20144006 Site Code : 20144006 Start Date : 12/11/2002 Page No : 1

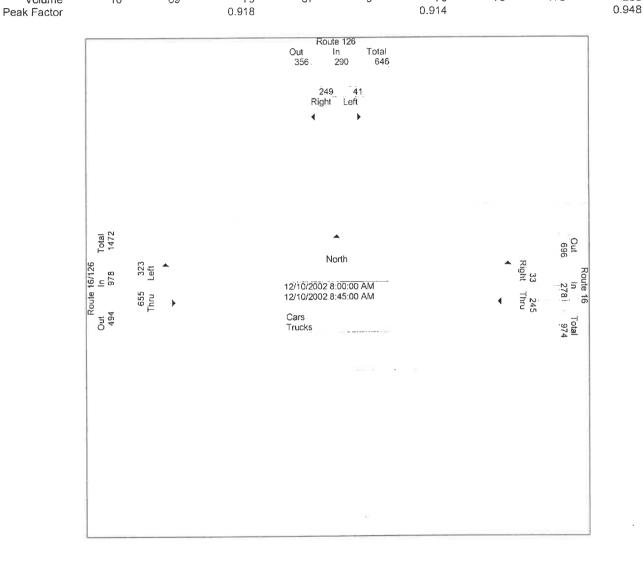
	Ro		NB On Ra North	amp			te 109 n East				NB Off Ra	amp			te 109 n West		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right ¹	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 16:00	to 17:45	- Peak	1 of 1													
Intersection	17:00																
Volume	0	0	0	0	0	623	201	824	234	0	178	412	388	925	0	1313	2549
Percent	0.0	0.0	0.0		0.0	75.6	24.4		56.8	0.0	43.2		29.6	70.4	0.0		
Volume	0	0	0	0	0	623	201	824	234	0	178	412	388	925	0	1313	2549
Volume	0	0	0	0	0	163	55	218	62	0	47	109	92	240	0	332	659
Peak Factor																	0.967
High Int.					17:00				17:15				17:30				
Volume	.0	0	0	0	0	169	66	235	62	0	47	109	109	239	0	348	
Peak Factor	4	_	•	_				0.877				0.945				0.943	

/S Street: Route 126 A GO TO TO THE ROUTE 16 ity/State: Holliston, MA /eather: Clear

Accurate Counts 978-664-2565

File Name : 20144011 Site Code : 20144011 Start Date : 12/10/2002 Page No : 1

G.							rayeni	J . I
			Groups F	Printed- Cars - Tri	ucks		9	
		Route 126	3	Route 16		Route 16/12	26	
		From Norti	h	From East	t	From Wes	t	
Sta	art Time	Left	Right	Thru	Right	Left	Thru	Int. Total
	07:00	12	45	66	4	61	121	309
	07:15	12	52	52	17	84	144	361
	07:30	5	54	44	6	73	140	322
	07:45	5	49	59	12	81	143	349
	Total	34	200	221	39	299	548	1341
	08:00	10	69	59	7	78	175 ,	398
	08:15	8	53	67	9	97	142	376
	08:30	12	63	54	9	79	179	396
	08:45	11	64	65	8	69	159	376
	Total	41	249	245	33	323	655	1546
Grai	nd Total	75	449	466	72	622	1203	2887
A	pprch %	14.3	85.7	86.6	13.4	34.1	65.9	
	Total %	2.6	15.6	16.1	2.5	21.5	41.7	


		Route 126 From North			Route 16 From East			Route 16/126 From West	1 TO 1 T.	.
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
eak Hour From 07:00 f	to 08:45 - Pe	ak 1 of 1								
Intersection	08:00									
Volume	41	249	290	245	33	278	323	655	978	1546
Percent	14.1	85.9		88.1	11.9		33.0	67.0		
Volume	41	249	290	245	33	278	323	655	978	1546
Volume	10	69	79	59	7	66	78	175	253	398
Peak Factor										0.971
High Int.	08:00			08:15			08:30			
Volume	10	69	79	67	9	76	79	179	258	
Peak Factor			0.918			0.914			0.948	
eak Hour From 07:00 t	o 08:45 - Pea	ak 1 of 1								
By Approach	08:00			08:00			08:00			
Volume	41	249	290	245	33	278	323	655	978	
Percent	14.1	85.9		88.1	11.9		33.0	67.0		
High Int.	08:00			08:15			08:30			
Volume	10	69	79	67	9	76	79	179	258	
Peak Factor			0.918			0.914			0.948	

N/S Street: Route 126 City/State: Holliston, MA
Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144011 Site Code : 20144011 Start Date : 12/10/200 Page No : 1

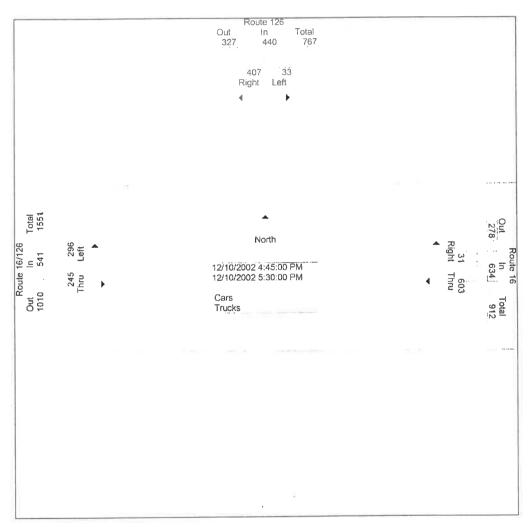
		Route 126 From North			Route 16 From East			Route 16/126 From West		
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour From 07:00 t	o 08:45 - Pea	ak 1 of 1	• •							
Intersection	08:00									
Volume	41	249	290	245	33	278	323	655	978	1546
Percent	14.1	85.9		88.1	11.9		33.0	67.0		
Volume	41	249	290	245	33	278	323	655	978	1546
Volume	10	69	79	59	7	66	78	175	253	398
Peak Factor										0.971
High Int.	08:00			08:15		(08:30			
Volume	10	69	79	67	9	76	79	179	258	

S Street: Route 126 W Street: Route 16
ty/State: Holliston, MA
eather: Clear

Accurate Counts 978-664-2565

File Name : 20144011 Site Code : 20144011 Start Date : 12/10/2002 Page No : 1

ear								Page	No :	1
			Grou	ips Printe	d- Cars - Tr	ucks		_		
		Route		•	Route 16		Route	16/126		
		From N	lorth		From Eas	t	From	West		
S	tart Time	Left	Right		Thru	Right	Left	Thru		Int. Total
	16:00	8	106		146	- 8	74	52		394
	16:15	3	86		147	11	55	52		354
	16:30	5	99		109	7	70	53		343
	16:45	5	96		153	15	69	55 _:		393
	Total	21	387		555	41	268	212		1484
	17:00	10	105		148	5	59	58		385
	17:15	12	96		142	3	90	75		418
	17:10	6	110		160		78	57		419
	17:45	10	87		164	8 7	60	62		390
0)	Total	38	398		614	23	287	252		1612
Gra	and Total	59	785		1169	64	555	464		3096
	Apprch %	7.0	93.0		94.8	5.2	54.5	45.5		
•	Total %	1.9	25.4		37.8	2.1	17.9	15.0		
					D117.7/6		Po	ute 16/126		
		Route 126			Route 16			rom West	i	
		From North		-E.L.	From East	" Ann Total	Left	Thru App. T	otal	Int. Total
Time	Left o 17:45 - Pe		App. Total	Thru	Right	App. Total	Len	risid App. 1	otai ,	
	16:45									
olume	33	407	440	603	31	634	296	245	541	1615
Julio	55	-101					647	45.0	i	


Rodie 120				Trouto 10						
	F	From North			From East			From West		
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
eak Hour From 16:00 to	17:45 - Peak	1 of 1								
Intersection	16:45									1015
Volume	33	407	440	603	31	634	296	245	541	1615
Percent	7.5	92.5		95.1	4.9		54.7	45.3		
Volume	33	407	440	603	31	634	296	245	541	1615
Volume	6	110	116	160	8	168	78	57	135	419
Peak Factor	J	1.0							i	0.964
High Int.	17:30			16:45			17:15			
Volume	6	110	116	153	15	168	90	75	165	
	Ü	110	0.948	100	10	0.943			0.820	
Peak Factor			0.940			5.0 75				
eak Hour From 16:00 to	17:45 - Peak	1 of 1								
By Approach		. ,		17:00			16:45			
Volume	33	407	440	614	23	637	296	245	541	
Percent	7.5	92.5		96.4	3.6		54.7	45.3		
High Int.		32.0		17:45			17:15			
•		110	116	164	7	171	90	75	165	
Volume	6	110		104	,	0.931		_	0.820	
Peak Factor			0.948			0.001			• • • • • • • • • • • • • • • • • • • •	

N/S Street: Route 126 N Street: Route 16
City/State: Holliston, MA
Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144011 Site Code : 20144011 Start Date : 12/10/2002 Page No : 1

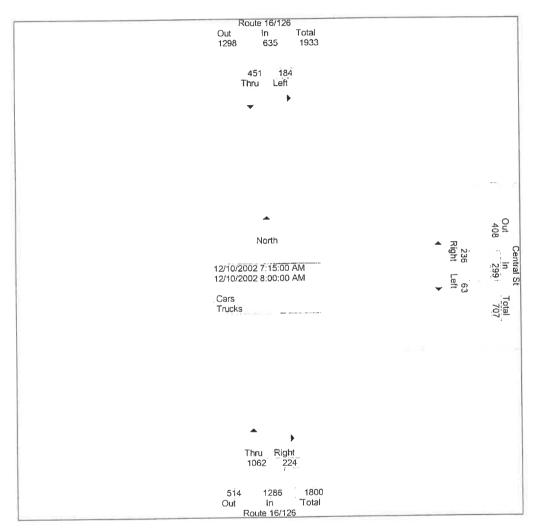
		Route 126 From North			Route 16 From East			Route 16/126 From West		
Start Time	Left	Right	App. Total	Thru	Right	App. Total	Left	Thru	App. Total	Int. Total
Peak Hour From 16:00 t	o 17:45 - Pea	ak 1 of 1								
Intersection	16:45									
Volume	33	407	440	603	31	634	296	245	541	1615
Percent	7.5	92.5		95.1	4.9		54.7	45.3		
Volume	33	407	440	603	31	634	296	245	541	1615
Volume	6	110	116	160	8	168	78	57	135	419
Peak Factor										0.964
High Int.	17:30			16:45			17:15			
Volume	6	110	116	153	15	168	90	75	165	
Peak Factor			0.948			0.943			0.820	

N/S Street : Route 16/126 E/W Street : Central Street Dity/State : Holliston, MA Veather : Clear

Accurate Counts 978-664-2565

File Name : 20144010 Site Code : 20144010 Start Date : 12/10/2002

roui .						Page No : 1			
		Groups F	Printed- Cars - Tri	ucks		5			
	Route 16/12	26	Central St		Route 16/12	26			
	From North	h	From East	t	From Sout	h			
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total		
07:00	38	72	16	57	216	39	438		
07:15	53	99	11	86	261	46	556		
07:30	50	112	16	50	266	58	552		
07:45	32	123	19	48	265	56	543		
Total	173	406	62	241	1008	199 :	2089		
08:00	49	117	17	52	270	64	569		
08:15	35	102	28	53	237	60	515		
08:30	39	107	16	48	242	45	497		
08:45	40	124	20	46	236	45	511		
Total	163	450	81	199	985	214	2092		
Grand Total	336	856	143	440	1993	413	4181		
Approh %	28.2	71.8	24.5	75.5	82.8	17.2	7701		
Total %	8.0	20.5	3.4	10.5	47.7	9.9			


		Route 16/126 From North			Central St From East			Route 16/126 From South		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
eak Hour From 07:00 t		ık 1 of 1								
Intersection	07:15									
Volume	184	451	635	63	236	299	1062	224	1286	2220
Percent	29.0	71.0		21.1	78.9		82.6	17.4		
Volume	184	451	635	63	236	299	1062	224	1286	2220
Volume	49	117	166	17	52	69	270	64	334	569
Peak Factor										0.975
High Int.	08:00			07:15			08:00			
Volume	49	117	166	11	86	97	270	64	334	
Peak Factor			0.956			0.771			0.963	
eak Hour From 07:00 t	o 08:45 - Pea	k 1 of 1								
By Approach	07:15			07:00			07:15			
Volume	184	451	635	62	241	303	1062	224	1286	
Percent	29.0	71.0		20.5	79.5		82.6	17.4		
High Int.	08:00			07:15			08:00			
Volume	49	117	166	11	86	97	270	64	334	
Peak Factor			0.956		-	0.781		•	0.963	

N/S Street: Route 16/126 E/W Street: Central Street City/State : Holliston, MA Weather : Clear

Accurate Counts 978-664-2565

File Name: 20144010 Site Code : 20144010 Start Date : 12/10/2002 Page No : 1

		oute 16/126 rom North			Central St From East			Route 16/126 From South	0	
Start Time	L.eft	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 07:00 to	08:45 - Peak	1 of 1								
Intersection	07:15									
Volume	184	451	635	63	236	299	1062	224	1286 ;	2220
Percent	29.0	71.0		21.1	78.9		82.6	17.4		
Volume	184	451	635	63	236	299	1062	224	1286	2220
Volume	49	117	166	17	52	69	270	64	334	569
Peak Factor									; C).975
High Int.	08:00			07:15			08:00		'	
Volume	49	117	166	11	86	97	270	64	334	
Peak Factor	43	111	0.956			0.771			0.963	

I/S Street: Route 16/126 :/W Street : Central Street City/State : Holliston, MA Veather : Clear

Accurate Counts 978-664-2565

File Name : 20144010 Site Code : 20144010 Start Date : 12/10/2002 Page No : 1

21001						Page No	1 : 1
		Groups P	rinted- Cars - Tri	ucks		3	
	Route 16/12	26	Central St		Route 16/12	26	
	From Nortl	h	From East	1	From Sout	h	
Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total
16:00	43	225	37	44	156	52	557
16:15	57	229	29	65	130	37	547
16:30	53	234	30	37	131	39	524
16:45	55	235	29	52	132	44	547
Total	208	923	125	198	549	172	2175
17:00	65	234	31	51	116	26	523
17:15	70	221	32	44	163	44 :	574
17:30	85	224	33	45	124	36	547
17:45	54	236	36	45	132	33	536
. Total	274	915	132	185	535	139	2180
Grand Total	482	1838	257	383	1084	311	4355
Apprch %	20.8	79.2	40.2	59.8	77.7	22.3	
Total %	11.1	42.2	5.9	8.8	24.9	7.1	

Start Time		oute 16/126 From North Thru	App. Total	Left	Central St From East Right	App. Total	Ťhru	Route 16/126 From South Right	App. Total	Int. Total
eak Hour From 16:00 t	o 17:45 - Peak	1 of 1								
Intersection	16:45									
Volume	275	914	1189	125	192	317	535	150	685	2191
Percent	23.1	76.9		39.4	60.6		78.1	21.9		
Volume	275	914	1189	125	192	317	535	150	685	2191
Volume	70	221	291	32	44	76	163	44	207	574
Peak Factor										0.954
High Int.	17:30		17	:00			17:15			
Volume	85	224	309	31	51	82	163	44	207	
Peak Factor			0.962			0.966			0.827	
eak Hour From 16:00 to	o 17:45 - Peak	1 of 1								
By Approach	16:45		16	:15			16:00			
Volume	275	914	1189	119	205	324	549	172	721	
Percent	23.1	76.9		36.7	63.3		76.1	23.9		
High Int.	17:30		16	:15			16:00			
Volume	85	224	309	29	65	94	156	52	208	
Peak Factor			0.962			0.862			0.867	

N/S Street : Route 16/126 E/W Street : Central Street City/State : Holliston, MA Weather : Clear

Accurate Counts 978-664-2565 File Name : 20144010 Site Code : 20144010 Start Date : 12/10/2002

		oute 16/126 From North			Central St From East			Route 16/126 From South		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 16:00 t	o 17:45 - Peak	1 of 1								
Intersection	16:45									
Volume	275	914	1189	125	192	317	535	150	685	2191
Percent	23.1	76.9		39.4	60.6		78.1	21.9	ı	
Volume	275	914	1189	125	192	317	535	150	685	2191
Volume	70	221	291	32	44	76	163	44	207	574
Peak Factor										0.954
High Int.	17:30			17:00		1	17:15			
Volume	85	224	309	31	51	82	163	44	207	
Peak Factor			0.962			0.966			0.827	

S Street: Route 126

N Street: Route 16

y/State: Holliston, MA
eather: Clear

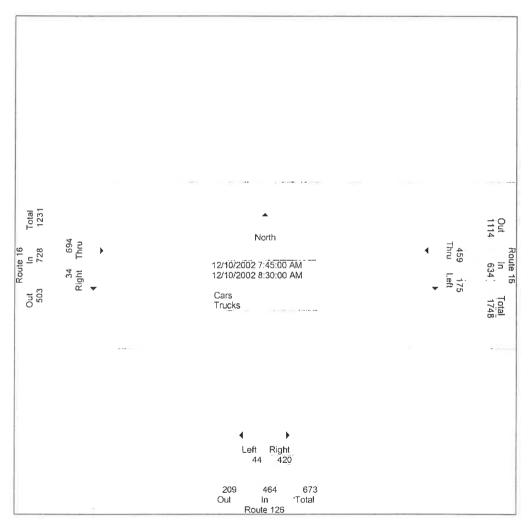
Accurate Counts 978-664-2565

File Name : 20144009 Site Code : 20144009 Start Date : 12/10/2002 Page No : 1

	Groups Printed- Cars - Trucks
Route 16	Route 126

			Ci capo i	1111100 0010 111	40110			
		Route 16		Route 126	i	Route 16		
		From East		From South	h	From Wes	t	
Start	Time	Left	Thru	Left	Right	Thru	Right	Int. Total
	07:00	45	74	6	82	152	4	363
	7:15	27	88	6	122	207	8 :	458
	07:30	52	92	10	88	159	4	405
	7:45	52	122	8	128	176	9	495
	Total	176	376	30	420	694	25	1721
(08:00	44	140	11	89	172	6	462
	08:15	37	106	18	102	156	11 ,	430
	08:30	42	91	7	101	190	8	439
	08:45	40	131	10	109	140	12	442
	Total	163	468	46	401	658	37	1773
Grand	Total	339	844	76	821	1352	62	3494
	ch %	28.7	71.3	8.5	91.5	95.6	4.4	
	tal %	9.7	24.2	2.2	23.5	38.7	1.8	

Start Time	Left	Route 16 From East Thru	App. Total	Left	Route 126 From South Right	App. Total	Ţĥru	Route 16 From West Right	App. Total	Int. Total
Intersection										
Volume	175	459	634	44	420	464	694	34	728	1826
Percent	27.6	72.4		9.5	90.5		95.3	4.7	•	
Volume	175	459	634	44	420	464	694	34	728	1826
Volume	52	122	174	8	128	136	176	9	185	495
Peak Factor										0.922
High Int.	08:00			07:45			08:30			
Volume	44	140	184	8	128	136	190	8	198	
Peak Factor			0.861			0.853			0.919	
ak Hour From 07:00 t	o 08:45 - Pea	k 1 of 1								
By Approach	07:30			07:45			07:15			
Volume	185	460	645	44	420	464	714	27	741	
Percent	28.7	71.3		9.5	90.5		96.4	3.6		
High Int.				07:45			07:15			
Volume	44	140	184	8	128	136	207	8	215	
Peak Factor	.,		0.876			0.853			0.862	


N/S Street: Route 126 Soft E/W Street: Route 16 City/State: Holliston, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144009 Site Code : 20144009

Start Date : 12/10/200
Page No : 1

		Route 16 From East			Route 126 From South			Route 16 From West		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 07:00 t	o 08:45 - Peal	k 1 of 1			*	. ,		•		5850
Intersection	07:45									
Volume	175	459	634	44	420	464	694	34	728	1826
Percent	27.6	72.4		9.5	90.5		95.3	4.7		.020
Volume	175	459	634	44	420	464	694	34	728	1826
Volume	52	122	174	8	128	136	176	9	185 :	495
Peak Factor									- 1	0.922
High Int.	08:00			07:45			08:30			
Volume	44	140	184	8	128	136	190	8	198	
Peak Factor			0.861			0.853			0.919	

S Street: Route 126 Sover W Street: Route 16 ty/State: Holliston, MA /eather: Clear

Accurate Counts 978-664-2565

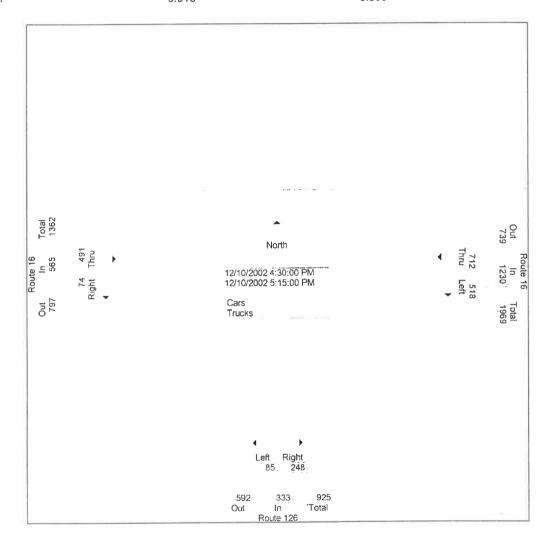
File Name : 20144009 Site Code : 20144009 Start Date : 12/10/2002 Page No : 1

		5							
1		Route 16			3	Route 16	3		
ı		From East		From South			st		
	Start Time	Left	Thru	Left	Right	Thru	Right	Int. Total	
1	16:00	113	183	15	62	122	12	507	
1	16:15	110	179	13	59	120	19	500	
!	16:30	146	189	15	60	118	21	549	
	16:45	136	156	30	59	110	22	513	
1	Total	505	707	73	240	470	74	2069	
	17:00	102	178	13	63	138	16	510	
	1 7 :15	134	189	27	66	125	15	556	
	17:30	126	183	18	73	126	20	546	
II	17:45	109	171	15	59	116	11	481	
	Total	471	721	73	261	505	62	2093	
	Grand Total	976	1428	146	501	975	136	4162	
1	Apprch %	40.6	59.4	22.6	77.4	87.8	12.2		
	Total %	23.5	34.3	3.5	12.0	23.4	3.3		

		Route 16			Route 126			Route 16		
		From East			From South			From West		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
eak Hour From 16:00 to 17:45 - Peak 1 of 1			, .pp o.u.,			тър. гота.		1 119111	App. rotal	1111. 10101
Intersection										
Volume	518	712	1230	85	248	333	491	74	565	2128
Percent	42.1	57.9		25.5	74.5		86.9	13.1		
Volume	518	712	1230	85	248	333	491	74	565	2128
Volume	134	189	323	27	66	93	125	15	140	556
Peak Factor										0.957
High Int. 16:30			17:15			17:00				
Volume	146	189	335	27	66	93	138	16	154	
Peak Factor			0.918			0.895			0.917	
eak Hour From 16:00 t	o 17:45 - Peal	k 1 of 1								
By Approach 16:30			16:45			16:45				
Volume	518	712	1230	88	261	349	499	73	572	
Percent	42.1	57.9		25.2	74.8		87.2	12.8		
High Int.	High Int. 16:30		17:15			17:00				
Volume	146	189	335	27	66	93	138	16	154	
Peak Factor			0.918			0.938			0.929	

N/S Street: Route 126 Street: Route 16

E/W Street: Route 16


City/State: Holliston, MA

Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144009 Site Code : 20144009 Start Date : 12/10/2002

		Route 16 From East			Route 126 From South			Route 16 From West		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 16:00 to 17:45 - Peak 1 of 1										
Intersection 16:30										
Volume	518	712	1230	85	248	333	491	74	565	2128
Percent	42.1	57.9		25.5	74.5		86.9	13.1		
Volume	518	712	1230	85	248	333	491	74	565	2128
Volume	134	189	323	27	66	93	125	15	140	556
Peak Factor										0.957
High Int.	High Int. 16:30			17:15		17:00				
Volume	146	189	335	27	66	93	138	16	154	
Peak Factor			0.918			0.895			0.917	

S Street: Hopping Brook Road W Street: Route 16

eather : Clear

ty/State : Milford, MA

Total %

Accurate Counts 978-664-2565

File Name : 20144008 Site Code : 20144008 Start Date : 12/11/2002

Page No : 1

Groups Printed- Cars - Trucks Hopping Brook Rd Route 16 Route 16 From East From South From West Int. Total Start Time Left Thru Left Right Thru Right 07:00 07:15 07:30 07:45 Total 08:00 43 ! 08:15 08:30 08:45 Total Grand Total Apprch % 10.7 89.3 80.7 19.3 74.5 25.5

1.5

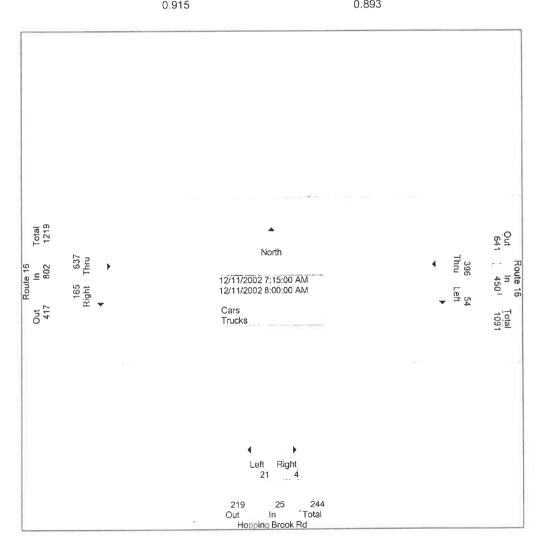
51.2

0.5

12.3

30.9

3.7


		Route 16 From East			pping Brook F From South			Route 16 From West		
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
ak Hour From 07:00 t		k 1 of 1								
Intersection	07:15									
Volume	54	396	450	21	4	25	637	165	802	1277
Percent	12.0	88.0		84.0	16.0		79.4	20.6	-	
Volume	54	396	450	21	4	25	637	165	802	1277
Volume	19	104	123	5	2	7	162	60	222	352
Peak Factor									i	0.907
High Int.	07:45			07:45			07:45			
Volume	19	104	123	5	2	7	162	60	222 .	
Peak Factor			0.915			0.893			0.903	
ak Hour From 07:00 t	o 08:45 - Pea	k 1 of 1								
By Approach	07:30			07:15			07:15			
Volume	52	411	463	21	4	25	637	165	802	
Percent	11.2	88.8		84.0	16.0		79.4	20.6		
High Int.	07:45			07:45			07:45			
Volume	19	104	123	5	2	7	162	60	222	
Peak Factor			0.941			0.893			0.903	

N/S Street: Hopping Brook Road E/W Street: Route-16 City/State: Milford, MA Weather: Clear

Accurate Counts 978-664-2565

File Name : 20144008 Site Code : 20144008 Start Date : 12/11/2002 Page No : 1

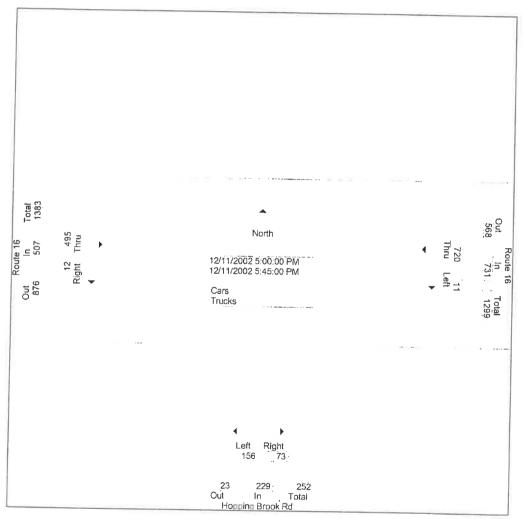
		Route 16 From East			ping Brook From South			Route 16 From West	=======================================	
Start Time	Left	Thru	App. Total	Left	Right	App. Total	Thru	Right	App. Total	Int. Total
Peak Hour From 07:00 t	o 08:45 - Peat	k 1 of 1			-					
Intersection	07:15									
Volume	54	396	450	21	4	25	637	165	802	1277
Percent	12.0	88.0		84.0	16.0		79.4	20.6		
Volume	54	396	450	21	4	25	637	165	802	1277
Volume	19	104	123	5	2	7	162	60	222 ;	352
Peak Factor										0.907
High Int.	07:45			07:45			07:45			
Volume	19	104	123	5	2	7	162	60	222	
Peak Factor	, ,		0.915	_		0.893			0.903	

Street: Hopping Brook Road

// Street: Route 16 //State: Milford, MA eather: Clear Accurate Counts 978-664-2565 File Name : 20144008 Site Code : 20144008 Start Date : 12/11/2002

Page No : 1

Groups Printed- Cars - Trucks Route 16 Hopping Brook Rd Route 16 From West Right 6 From South From East Int. Total Thru Left Right Thru Start Time Left 317 100 13 28 171 25 16:00 315 124 156 14 16:15 83 6 312 13 40 16:30 5 165 315 1 109 17 9 178 16:45 1 22 1259 39 416 96 Total 16 670 4 3 389 29 113 64 175 4 17:00 378 41 20 136 17:15 17:30 3 175 128 3 384 15 3 204 31 2 316 166 20 9 118 17:45 1 73 12 1467 495 156 11 720 Total 2726 34 911 252 112 27 1390 Grand Total 96.4 3.6 30.8 69.2 1.9 98.1 Apprch % 1.2 33.4 9.2 4.1 51.0 1.0 Total %


Start Time ak Hour From 16:00 to	Left _. o 17:45 - Pea	Route 16 From East Thru k 1 of 1	App. Total		pping Brook I From South Right	Rd App. Total	Thru	Route 16 From West Right	App. Total	Int. Total
Intersection Volume	17:00 11	720	731	156	73	229	495 97.6	12 2.4	507	1467
Percent Volume	1.5 11	98.5 720	731	68.1 156	31.9 73	229	495	12	507 117	1467 389
Volume Peak Factor	4	175	179	64	29	93	113	4		0.943
High Int. Volume Peak Factor	17:30 3	204	207 0.883	17:00 64	29	93 0.616	17:15 136	3	139 0.912	
ak Hour From 16:00 to		ık 1 of 1		40.00			17:00			
By Approach Volume Percent High Int.	11 1.5	732 98.5	743	16:30 162 69.5 17:00	71 30.5	233	495 97.6 17:15	12 2.4 3	507 139	
Volume Peak Factor	3	204	207 0.897	64	29	93 0.626	130	J	0.912	

N/S Street : Hopping Brook Road E/W Street : Route 16 City/State : Milford, MA Weather : Clear

Accurate Counts 978-664-2565

File Name : 20144 Site Code : 20144 Start Date : 12/11/ Page No : 1

Start Time Peak Hour From 16:00 t Intersection	to 17:45 -	Route 16 From East eft Thru Peak 1 of 1	App. Total	Ho Left	opping Brook From South Right	Rd App. Total	Thru	Route 16 From West Right	App. Total	Int. To
Volume Percent		11 720 .5 98.5	731	156 68.1	73 31.9	229	495 97.6	12	507	14
Volume Volume Peak Factor		11 720 4 175	731 179	156 64	73 29	229 93	495 113	2.4 12 4	507 117	14 3
High Int. Volume Peak Factor		3 204	207 0.883	17:00 64	29	93 0.616	17:15 136	3	139 0.912	0.943

Accident Data

	10	_	_	_		_	_	_	_			_	_	_	_	_	_			_	_	_	-			_		_	
	Unknown	1	*	- 1	+		t	ı	11	0		;	1	ı	0		ı	1	110			•	1 1	10		1	ı	11 0	>
Conditions	Clear/Dry Ice/Snow	-	.		۱ ۲-		-	1	7	7		-	-	L	7		ı	1			ı			10		:	1	- 1 0	'n
Cond	Clear/Dry	œ		4	₄ 9		7	10	11	28		13	13	22	51		13	13	18		٢	- 4	ח ער	1, 2		4	7	වා <u>ද</u>	7
	Rain/Wet	4	-	- 1	52		ıc	2	+1	80		4	9	7	17		က	ო	4: 은		r	. c	۷ ۵	٦ ٢		4	ო	- 1 ⊊	2
E E	Dark	o	0	1 1	=		2	m	2	~		2	2	7	17		n D	9	2 5		c	4 6	v 6	→ K		2	₹	m	'n
Lighting	Da	4	4	4	12		1	6	11	31		13	15	25	53		Ξ	9	21		α	o 44	. A	н /		9	2	ол <u>†</u>	=
	Unknown	2	m) I	2		2	-	(5)	9		-	1	2	m		-	2	دد) ه			- c	۱ ۱	m		ı	2	01 6	7
ident	Off-Road	1	-	. 1	I -			ŀ	н	-		5	-	41	10		2	က	ମାଇ			I	1 1	110		1	ı		-
Type of Accident	Head On Rear End Off-Road Unknown	5	-	. 1	9		2	2	H	2		6	თ	13	31		Ξ	7	33 55		ď	י	e	00 K		-	-	— ი	٧
	Head On	ı	1	1	0		ı	-	₩	2		1	1	t	0		1	t	11 0		1	1	1 1	0		-	-	o Į	Ξ
	Angle	9	-	4	Ξ		6 0	80	60 i	24		က	10	13	26		2	4	11 9		-	t LC	o 4	ا 5		9	9	o ₹	7
	Fatality	ı	1	ł	0		ı	1	ı	0		1	1	ı	0		-	ŀ	11 -			1	1 1	10					
Severity	Injury	4	1	-	5		4	4	9	14		က	8	-	22		œ	4	4		ç	4 6	7 4	co :1		EC)	က	roi Ź	=
Ś	Property Injury Estality Angle	6	9	(C)	18		O	80	7	24		5	12	21	48		7	=	19 37		α	o u	o es	3 2		5	_	ලා ද	2
	Night Weekend	5	e	-	6		-	2	_{CO}	9		-	4	7	12		က	4	41 ==		c	4 +		4		4		m >	-
	Night	4	ŧ	ı	4		_	-	1	က		9	2	2	10		1	4	11 🔻		c	ı i	: 1	2			ი .		1
Time of Day	Midday PM Peak	က	2		9		4	4	41	12		2	2	9	16		2	-	Z 13		c	. "	, c	15 K		က	m ·	1 ^	-
		-	1	┥	2		9	4	4	14		4		6	14		2	4	1 7		ď		۱ ۱	2			5	⊄ 1 ଓ	•
	Am Peak	ı	-	1	2		-	-	\vdash	င		6	9	60	18		9	၈	2		1		- 1	I 		-	7	ZI 1€	,
Week	Weekend	ιΩ	6	-	6		-	2	(C)	9		-	4	7	12		m	4	41 T		6	ł - -		4 4		4	(م اد <i>ع</i>	
Day of Week	Weekday	80	eo	വ	14		12	10	위	32		18	14	26	58		13	15	당 4		α) (C	o uc	20		4	은 ,	201 62	1
	Totals	13	9	4	23		13	12	13	38		19	18	33	20		16	91	23		10	2 ^		24		80	9 ;	I 8	3
_	Year	86	66	00			86	66	8			98	66	8			86	66	00		86	8 6	8 8)		86	<u>т</u>		
	Location Route 109 @ Route 16				Totals	Route 109 @ Beaver			i	Totals	Route 109 @ Route 495				Totals	Route 495 @ Route 85			Totals	Ocute 05 @ Dilloff	are on @ Ollian Ollorie			Totals	Route 16 @ Beaver/Fortune			Totals	
	Ro			_		Rot	_	_			Rol	_	_			Roc	_			0					Rot	_			

	-	_	_	_						_	-			_	_	ν.			_	_				_	_	-	
	Unknown		0	0	a	0		0	D	a	0		0	0	a	0		0	0	a	0		0	0	a	0	
tions	Ice/Snow		0	0	1	-		0	0	a	0		0	0	ø	0		0	0	a	o		0	0	a	0	
Conditions	Clear/Dry		2	2	21	ω		ιC	3	-	6		4	2	CVE	80		7	ī.	C/E	14		0	0	₩.	-	
	Rain/Wet C		-	2	1	4		2	2	ā	4		0	-	2	6		0	0	=	₩.		0	0	-1	-	
	Dark		-	-	a	01		က	0	a	က		0	2	Ħ	က		೯	0	+	4		0	0	a	0	
	Daylight		2	က	41	თ		4	S	₹~1	10		4	-	ന്ദ	œ		4	ည	7	.		0	0	7	2	
_	_		-	0	a	-		-	0	a	-		-	0	1	7		0	<u>_</u>	7	e 0		0	0	a	0	
lent	off-Road L		0	-	1	2		-	0	ō	-		0	0	-	-		0	0	ŏ	0		0	0	a	0	
Type of Accident	Angle Head On Rear End Off-Road Unknown		-	-	=	က		4	4	•	6		2	-	2	5		0	0	ŏ	0		0	0	ō	0	
Ту	lead On B		0	0	Ø	0		0	0	a	0		0	-	0	-		0	0	a	0		0	0	a	0	
	Angle 1		-	2	2	LΩ		₹ -	-	Ø	2		_	-	α	2		7	4	7	12		0	0	7	2	
	Eatality		0	0	O	0		0	0	0	0		0	0	0	0		0	0	a	0		0	0	a	0	
Severity	Injury E		-	ო	01	9		8	2	a	4		0	-	O	-		3	Ψ-	ᆏ	Ŋ		0	0	1	-	
S	Property		2	_	2	2		5	en	П	6		4	2	4	10		4	4	2	10		0	0	₩i	-	
	Night Weekend Property Injury		0	0	2	2		-	0	a	-		0	-		2		-	0	-	2		0	0	a	0	
			-	2	a	ಣ		0	-	α	-		-	0	Ţ	2		2	0	Ö	2		0	0	ō	0	
Time of Day	PM Peak		-	0	а	-		2	_	O	8		0	2	Ø	2		-	_	0	2		0	0	O	0	
Ī	Midday		0	-	a	-		-	2	0	හ		2	0	O.	2		2	4	Ţ	7		0	0	2	2	
	Am Peak		-	-	8	4		n	-	-1	တ		-	0	7	60		-	0	Ţ	2		0	0	a	0	
Week	Weekend		0	-	2	3		2	0	O	2		0	-	Н	2		**	0		2		0	0	o.	0	
Day of Week	Weekday Weekend Am Peak Midday PM Peak	ard St/North	65	8	~	00		2	5	₽	11		4	2	വ	6		9	S	21	13	ĮQ.	0	0	7	2	
	Totals	6 Concc	8	4	41	-		7	ιΩ	П	13		4	33	41	=	treet	7	2	co)	15	Brook R	0	0	2	2	
	Year]	oute 12	98	66	00			98	66	00			98	66	00		entral S	86	66	00		lopping	98	66	00		
	Location	Route 16/Washington St @ Route 126 Concord St/North				Totals	et/South				Totals	hed				Totals	 Route 16/Washington St @ Central Street				Totals	Route 16/Washington St @ Hopping Brook Rd				Totals	
	2	Route 16/W.					Summer Street/South	5				Not Designated					Route 16/Wa					Route 16/W					

City/Town:	Milton	f			MHD District:	3	
Major Street:	Route 89	5					•
Minor Street(s):	12+ 495 F	Zamos -	North +S	ath			
I.							
h:			CONTROL:	Signalized:		Unsignalized:	<u> </u>
	Intersection D	iagram:					i
	个			R+ 185			
	NORTH						
		400		1			
		4951	\leq				
					> 499	5	
			7	7			
			12	+ 85			
							1
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB	*	TOTAL	
Volumes (/ PM):	757	460	917	697	1708	4539	
"K" Factor:	.09	,	Approach ADT:	50,433	ADT=	· Total Volume/	"K" Factor
Total # of Accidents:		# of Years:	3	Average # of	Accidents (A):	18.33	ĺ
Total # 01 Accidents.	55	# Of Tears.		Average # or	Accidents (A).	10.53	
<u> </u>							
	1.00	1		RATF =	(A * 1,000,000) (ADT * 365)	į.	
Crash Rate Calculation:	1.00			70-11H =	(ADT * 365)		

* this is the # of relicles passing though both ramp intersections. This # needs to be method small the rate is for a pair of intersections

reduce accidents here

Comments: State Average Rate = 0.66 for unsignalized intersections, 0.87 for signalized intersections

District 3 Average Rate = <u>0.78</u> for unsignalized intersections, 0.81 for signalized intersections

City/Town:	Million	2			MHD District:	3	
Major Street:	Porte 8	5					
Minor Street(s):							
			CONTROL:	Signalized:	<u> </u>	Unsignalized:	
::	Intersection D	iagram:					1
	NORTH	ז	oila \	72	185		
			\times				
		R+85	1				
				Fortine			
Approach:	1	2	3	4	5		
Direction:	EB	MB	NB	SB		TOTAL	
Volumes (👛/PM):	272	1464	868	640		3244	
"K" Factor:	.09	<i>A</i>	Approach ADT:	36,044	ADT=	Total Volume/	"K" Factor
Total # of Accidents:	24	# of Years:	3	Average # of	Accidents (A):	8.0	
:-							
		1					

Crash Rate Calculation: 0.61

RATE = $\frac{(A * 1,000,000)}{(ADT * 365)}$

Comments: State Average Rate = 0.66 for unsignalized intersections, <u>0.87</u> for signalized intersections

District 3 Average Rate = 0.78 for unsignalized intersections, <u>0.81</u> for signalized intersections

City/Town:	MIL	ord			MHD District:	3	
Major Street:							ĺ
Minor Street(s):		a/Beave	(
			CONTROL:	Signalized:	X	Unsignalized:	
	Intersection D	iagram:					
	4		Fortune				
	NORTH		1				
		4	1				
			\		R+16		
			1				
				\			
		R+16		\			
				Beaver	•		
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (ﷺ/PM):	355	795	583	494		2227	
W21 5 .	-02						
"K" Factor:	.09	Δ	pproach ADT:	24,744	ADT=	Total Volume/"	K" Factor
Total # of Accidents:	29	# of Years:	3	Average # of /	Accidents (A):	9.67	
g.							
2							
sh Rate Calculation:	1.07			RATE =	(A * 1,000,000) (ADT * 365)		
Land California (Control of Control of Contr	1.07				(ADI * 365)		
Comments:	State Average R	ate = 0.66 for u	nsignalized inter	rsections, <u>0.87</u> fo	or signalized into	ersections	
				ntersections, 0.8			
4	his inte	section	o being	moround	+ will	includo	
	potecte	d ohas no	that?	an be of	exched a	D reduce	r:
	1.1.1)		1	1,004	ie:
C	accidents.	•					

City/Town:	Mila	al			MHD District:	3	
Major Street:	R+109	@R+16					
Minor Street(s):	Prairie						
			CONTROL:	Signalized:	X	Unsignalized:	
	Intersection Di	agram:					
	↑ NORTH	Prai	rie	/ TZ-1	-16		
			\times				
		R+16			12+109		
		ICT 16					
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (MPM):	788	581	529	19		1917	
"K" Factor:	.09	A	Approach ADT:	21,300	ADT=	: Total Volume/	"K" Factor
Total # of Accidents:	23	# of Years:	3	Average # of	Accidents (A):	7.67	
		1			/A * 1 000 000		
rash Rate Calculation:	0.99			RATE =	(A * 1,000,000) (ADT * 365)	1	
Comments:	State Average F	Rate = 0.66 for t	unsignalized inte	ersections, 0.87	for signalized in	tersections	ė
	District 3 Avera	ge Rate = 0.78	for unsignalized	intersections, 0	.81 for signalize	d intersections	i.

City/Town:	MIL	ord			MHD District:	3	
Major Street:	R+10	9			•		*/
Minor Street(s):			STEXT.		:		
			CONTROL:	Signalized:	X	Unsignalized:	
	Intersection D	iagram:					
	1		Be	aver			
	NORTH		1				
		-			- R+109		
			1				
			Be	aver-St.	Ext.		
							l'
							L.
Approach:	1	2	3	4	5		
Approach:	1 EB	2 WB	3 NB	4 SB	5	TOTAL	
					5	TOTAL 3383	
Direction:	870	WB 1120	NB 643	750		3383	'K'' Factor
Direction: Volumes (/ PM): "K" Factor:	870 .09	WB 1120	NB	750 37,589	ADT=	3383 Total Volume/	'K'' Factor
Direction:	870	WB 1120	NB 643	750 37,589		3383 Total Volume/	'K'' Factor
Direction: Volumes (/ PM): "K" Factor:	870 .09	WB 1120	NB 643	750 37,589	ADT=	3383 Total Volume/	'K'' Factor
Direction: Volumes (/ PM): "K" Factor:	870 .09	WB 1120	NB 643	750 37,589	ADT=	3383 Total Volume/	'K'' Factor
Direction: Volumes (/ / PM): "K" Factor: Total # of Accidents:	870 .09	WB 1120	NB 643	SB 750 37,589 Average # of	ADT=	3383 Total Volume/	'K" Factor
Direction: Volumes (/ PM): "K" Factor:	870 .09	WB 1120	NB 643	SB 750 37,589 Average # of	ADT=	3383 Total Volume/	'K'' Factor
Direction: Volumes (PM): "K" Factor: Total # of Accidents:	870 .09 38	WB IIZO # of Years:	NB 643 Approach ADT:	SB 750 37,589 Average # of	ADT= Accidents (A): (A * 1,000,000) (ADT * 365)	3383 Total Volume/	'K'' Factor
Direction: Volumes (/ PM): "K" Factor: Total # of Accidents: sh Rate Calculation: Comments:	68 870 .09 38 0.92 State Average F	WB 1120	NB 643 Approach ADT: 3	SB 750 37,589 Average # of	ADT= Accidents (A): (A * 1,000,000) (ADT * 365) for signalized interpretations	3383 Total Volume/	'K'' Factor

City/Town:					MHD District:	3	
Major Street:					· · · · · · · · · · · · · · · · · · ·		
Minor Street(s):							
					i i		
			CONTROL:	Signalized:		Unsignalized:	
	Intersection D	iagram:					
	↑ NORTH			R+ 495	.9		
		RHIC	Я			R+109	
				R+4955	1		
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB	*	TOTAL	
Volumes (MM/PM):	1688	848	424	872	2164	5996	
"K" Factor:	.09	<u> </u>	Approach ADT:	66,622	ADT=	Total Volume/	'K'' Factor
Total # of Accidents:	70	# of Years:	3	Average # of	Accidents (A):	23.33	

Crash Rate Calculation:

096

RATE = $\frac{(A * 1,000,000)}{(ADT * 365)}$

Comments: State Average Rate = 0.66 for unsignalized intersections, 0.87 for signalized intersections

District 3 Average Rate = 0.78 for unsignalized intersections, 0.81 for signalized intersections

the signalization have is expected to reduce accidente Significantly.

* this is the # of vehicles passing though both ramp intersections. This # needs to be included since the rate is for apair of intersections.

City/Town: Major Street: Minor Street(s):					MHD District:	3	·
	Intersection Di	agram:	CONTROL:	Signalized:		Unsignalized:	<u>X</u>
	NORTH				R+16		
1		•		Норр	ing Broo	Ł	
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (PM):	582	820	141			1543	
"K" Factor:	.09	A	Approach ADT:	17,144	ADT=	Total Volume/	'K" Factor
Total # of Accidents:	2	# of Years:	3	Average # of	Accidents (A):	.67	
rash Rate Calculation: Comments:	O.11 State Average F	Rate = 0.66 for u	ınsignalized inte		(A * 1,000,000) (ADT * 365) for signalized int	tersections	
	District 3 Average	ge Rate = 0.78 f	or unsignalized	intersections, 0.	81 for signalized	d intersections	

City/Town:	Holli	ston			MHD District:	3	
Major Street:		216					Ø.
Minor Street(s):		e/Summ	er St				
		,					
:			CONTROL:	Signalized:		Unsignalized:	×
	Intersection D	iagram:					
	NORTH			/ R+	16		
				Sur	nmes		
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (M):	581	1266	342			2189	
"K" Factor:	.09	<u> </u>	pproach ADT:	24,322	ADT=	Total Volume/	"K" Factor
Total # of Accidents:	13	# of Years:	3	Average # of	Accidents (A):	4.33	

Crash Rate Calculation: 0.49

RATE = $\frac{(A * 1,000,000)}{(ADT * 365)}$

Comments: State Average Rate = 0.66 for unsignalized intersections, 0.87 for signalized intersections

District 3 Average Rate = 0.78 for unsignalized intersections, 0.81 for signalized intersections

* I'f all indesignated 16/126 accidents one assigned to their intersection the rate world be 0.90

City/Town:	Hollist	7000			MHD District:	3	
Major Street:		16			Will Blothot.		
Minor Street(s):	The state of the s				•		
					•		
			CONTROL:	Signalized:		Unsignalized:	X
IV.	Intersection D	iagram:					
	↑ NORTH			/R+	16		
				4			
					- cent	~	
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (MM/PM):	705	1224	325			2254	
"K" Factor:	.09	A	Approach ADT:	25,044	ADT=	Total Volume/	'K" Factor
otal # of Accidents:	15	# of Years:	3	Average # of	Accidents (A):	50	
-							

rash Rate Calculation:

RATE =
$$\frac{(A * 1,000,000)}{(ADT * 365)}$$

Comments: State Average Rate = 0.66 for unsignalized intersections, 0.87 for signalized intersections

District 3 Average Rate = 0.78 for unsignalized intersections, 0.81 for signalized intersections

City/Town:	Hollisten				MHD District:	3	
Major Street:					Ġ.		Ü
Minor Street(s):		126/10	cod St		K.		
			CONTROL:	Signalized:	Y	Unsignalized:	
	Intersection D	iagram:	OONTROE.	orginanzeu.		onsignanzed.	
	1		2+12	26			
	NORTH				R+16		
				C.			
			/	-16/126			
				10/125			
Approach:	1	2	3	4	5		
Direction:	EB	WB	NB	SB		TOTAL	
Volumes (###PM):	556	652	•	452		1660	
"K" Factor:	.09	A	pproach ADT:	18,444	ADT=	Total Volume/	"K" Factor
Total # of Accidents:	11	# of Years:	3	Average # of	Accidents (A):	367	

Crash Rate Calculation:	0.55			RATE =	(A * 1,000,000) (ADT * 365)	i i	
Comments:	State Average F	Rate = 0.66 for u	nsignalized inte	rsections, 0.87 f	for signalized int	tersections	
				intersections, 0.			8
,							n F
							8

* if all indesignated 16/126 accidents are assigned to this intersection the rate mould be 1.10/mer.

Memorandum on Trip Generation Dated: March 28, 2002

TECHNICAL MEMORANDUM

From: Michael R. Abend

Date: March 28, 2002

SUBJECT: TRAFFIC UPDATE TO ACCOMPANY

NOTICE OF PROJECT CHANGE HOPPING BROOK BUSINESS PARK HOLLISTON, MASSACHUSETTS

Introduction

This memorandum has been prepared to accompany the Notice of Project Change for the Hopping Brook Business Park, along Route 16 (Washington Street) in Holliston, Massachusetts. The project change calls for the expansion of the park's area and changes to the roadway layout. No change is proposed regarding the overall building square footage of the development or the specific mix of land uses that would be included in the park. This memorandum discusses the traffic projections associated with the project as originally projected in 1982 and compares them with current estimates, based on various assumptions. The analysis includes updated traffic counts done at the site access along Route 16. It also considers the current mix of land uses within the park, including office, research and development, manufacturing, and warehouse space.

This comparison also considers the operating conditions at the site access intersection along Route 16. The original proposal called for three phases of the project, ultimately requiring the need to provide turning lanes in both directions along Route 16 and the installation of a traffic signal. This update confirms that the proposed mitigation will be adequate to accommodate the project based on updated trip generation estimates and updated intersection capacity analysis methodologies.

REVIEW OF 1982 FEIR ESTIMATES

The Final EIR was completed in 1982. The estimated traffic was based on an analysis of several similar parks in the area, and <u>did not</u> rely on the Institute of Transportation Engineers (ITE). publication <u>Trip Generation</u>. At the time, the ITE report was in its third edition. The estimated trips during the peak hours were based on calculations of the number of employees found in

similar parks. At the time, there were expected to be 1,900 morning peak hour trips (in and out combined) and 2,750 evening peak hour trips (in and out combined). Although the FEIR did not include a specific estimate regarding daily volumes, a review of the ITE data suggests an estimate of 20,910 vehicles per day (half inbound and half outbound). This estimate is based on the current land use mix at the site and the ITE rates in effect in 1982. These were the volumes on which the proposed mitigation at the site entrance was based. The expected volumes along Route 16 past the site for a future Build year of 1987 were also evaluated in the FEIR.

At the time that those estimates were made, there were no specific assumptions regarding the mix of land uses within the business park. Instead, it was assumed that the mix would be similar to the parks from which the other data had been collected. This was, and still is, a reasonable basis for estimating a land use mix. The FEIR analysis projected that the volumes along Route 16 during the peak hours in 1987 for the Build conditions (unrelated to the project) would amount to 460 vehicles during the morning peak hour and 940 trips during the evening peak hour.

The original estimates in 1982 also expected that 45 percent of the traffic would be oriented to the west and 55 percent toward the east. Interestingly, at the time of that study, it was noted that the use of a relatively high general traffic growth rate of 2.6 was as high as it was because of growth along the Route 495 corridor. Nonetheless, the estimated distribution assumed that the orientation of trips would be more to the east than to the west.

CURRENT CONDITIONS

Currently the park has 558,000 square feet of space occupied, including approximately 30 percent office, 14 percent research and development, 17 percent manufacturing, and 38 percent warehouse. These percentages are expected to change slightly based on discussions with current businesses that indicate that they collectively plan to expand from 558,000 square feet to 750,000 square feet. Based on the type of expansion they currently expect, it is estimated that the land use mix at that point will be 35 percent office, 35 percent warehouse, 20 percent research and development, and 10 percent manufacturing. It is this mix that is used in estimating the trips for the overall business park for this traffic update.

A turning movement count was done at the access driveway at Route 16 during the peak hours in 2001. In addition, an automatic traffic recorder (ATR) count was done along the site access roadway, near Route 16, to capture the daily volumes. This information is summarized in Exhibit 1. [Note, that the counts done in 2001 were done <u>before</u> September 11th.]

The project currently has 558,000 square feet of occupied space; this is 19 percent of the full-build out. Comparing the existing volumes at the site to 19 percent of the original trip generation shows that the existing volumes are significantly below what was originally projected for the business park. The morning peak hour has approximately 47 percent less traffic than what would be expected, the evening peak hour has volumes 61 percent less than the expected volumes, and the daily estimate shows a volume of 39 percent less than the expected volumes. Based on these current volumes, it is reasonable to conclude that the original projections were high. However, to be conservative, this update considers more conservative (i.e., higher) traffic levels.

Since the original analysis was done in 1982, several things have changed that might effect the estimated trip generation of the project. First, the project is about twenty percent complete, which provides actual data at the site as well as information on the mix of tenants and land uses. Further, the Institute of Transportation Engineers has updated their **Trip Generation** report several times; the current version is the 6th edition, updated in 1997.

The existing information at the site provides data related to the distribution of traffic as well. With all this information it would be inappropriate to simply rely on the old trip generation projections for this update. There is more than one method of estimating traffic generation for this update. Three alternative methods are presented below:

1. Current Trip Rates Only

The analysis above of existing volumes and existing square footage indicates that the project currently is generating traffic at rates that are significantly less than what was anticipated. Nonetheless, this is a legitimate basis for estimated future trips for a project. Therefore, this first alternative exclusively relies on the current trip rates at the site. The project will have a significantly lower impact than expected. Projecting the current low trip rates for the entire park would amount to 46 percent fewer trips during the morning peak hour, 61 percent fewer trips during the evening peak hour, and 39 percent fewer trips on a daily basis. These volumes were shown in Exhibit 2.

2. Comparing Current ITE Projections to 1982 ITE Projections

As noted, the original analysis did not rely on the ITE report for its trip generation projections; it is not clear why this was the case. Nonetheless, those rates are relevant since they represent the most current information at the time. It is assumed that the breakdown of land uses is 35 percent for office, 35 percent for warehouse, 20 percent for research and development, and 10 percent for manufacturing. If that breakdown had

been known then, and if the ITE data had been used, a reasonable trip projection would have been calculated. A current estimate could then be compared to it based on that same information and the current ITE report. This information is shown in Exhibit 3. The purpose of this alternative is to compare the available information in 1982 to the available information in 2002.

This approach demonstrates that if the project had been evaluated using ITE data in 1982, then the current updated ITE information suggests that the peak hour and daily trips will be lower than expected. That is, the morning peak hour would have 35 percent few trips, the evening peak hour would have 46 percent fewer trips, and the daily volumes would be 14 percent lower than might have been originally projected based on ITE data and the assumed land use splits. The key point to this alternative comparison is that ITE projections are considered to be more accurate now than they were in 1982, since they now take into account the size of a development and not just each land use's overall trip rate. Reviewing agencies and traffic engineers/planners recognize that trip rates decrease as a development increases in size. Thus, with such a large project as this one, the decrease in the rate would be significant; thus, the lower overall projections. The original projections in the FEIR were overly conservative, even compared to the ITE analysis available at that time.

3. Existing Volumes for Current Uses and Add-On Trips Based on ITE Rates

The third alternative is to accept the trips to the existing building in the park and to add trips for the remaining 2,442,000 square feet based on current ITE data and assuming the land use mix for the rest of the park is consistent with the current mix. This information is shown in Exhibit 4. The results show that the expected volumes during the morning peak hour will be 22 percent higher than the original 1982 projections; evening peak hour volumes will be 17 percent below the original projections, and daily trips will be 16 percent below original projections.

It is noteworthy that this projection for the morning peak hour is still eight percent <u>less</u> than if the entire 3,000,000 square feet were estimated based on current ITE rates. Further, if the 1982 rates were considered, this projection would be 40 percent below those volumes. That is likely the result of a significant underestimate in the original projections for this peak hour.

Summary of Alternative Trip Projections

Each of the possible methods of estimating future trips suggests that traffic will be lower on a daily basis and during the evening peak hour. For the morning peak hour, two of the three methods also suggest lower volumes. The third alternative – relying on current ITE rates for the remainder of the project – is the most conservative estimate and suggests that morning peak hour volumes will be higher than originally estimated. Keep in mind that this does not mean that this method is the most accurate, it simply means it results in the highest estimated volumes. To be conservative, these numbers are used for this update. It is our opinion that these highest estimates are not the most accurate since the existing volumes should be relied on more significantly. It is also our opinion that the location is not a "high profile location" that will attract a high density of office uses. That is, it is expected that the overall land use mix within the park will tend toward the manufacturing and/or warehouse uses or other similar uses that are less employee intensive. Nonetheless, the highest projections are used in this update as a basis for confirming that this notice of project change does not require a full, updated review.

THE UPDATED ANALYSIS

In evaluating the adequacy of the proposed access to accommodate the project, the existing traffic counts along Route 16 are used along with an estimated growth rate to account for a five year build-out, as would normally be done in an EIR analysis. Thus, the 2001 volumes have been increase by 15 percent to reflect the MHD documented regional growth rate of 2.9 percent per year. This increase is applied to the Route 16 through traffic at the site driveway. These volumes are shown in Exhibit 5. To these volumes are added the site-related trips documented in Alternative 3 above and distributed inbound and outbound, to the east and to the west, based on the existing volumes at the site driveway. The updated Build volumes are shown in Exhibit 6.

The evaluation of the traffic operations at the site entrance has been done using *Synchro5* and following the methodology of the 2000 <u>Highway Capacity Manual</u>. The calculations are included in the appendix to the memorandum.

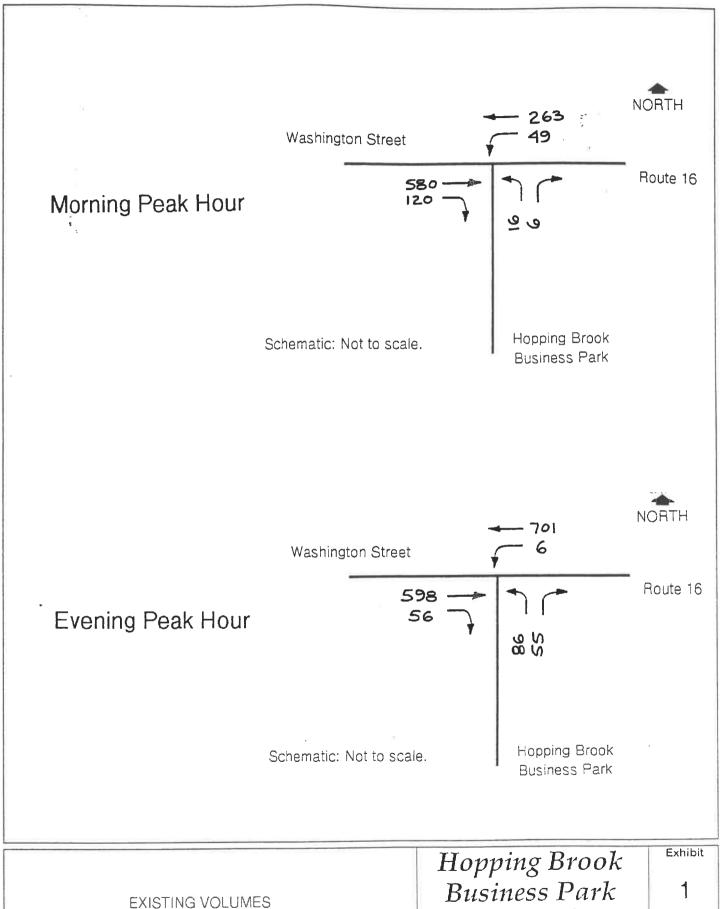
The original proposal for mitigation at the site entrance called for the installation of a traffic signal along with the construction of dedicated turn lanes along Route 16: this includes an eastbound right-turn lane and a westbound left-turn lane. Out of the site there is a wide enough roadway to allow for a left-turn lane and a right-turn lane out of the site. Based on these design

assumptions, the morning peak hour is expected to operate at Level of Service C with an average delay of 33 seconds per vehicle. The only specific movement that would operate at less than Level of Service D would be the left turn out of the site which would operate with a delay of 56 seconds, Level of Service E.

In the evening the operations are expected to be at Level of Service E for the intersection as a whole, with an average delay of 62 seconds per vehicle. As with the morning peak hour, the only flow that would operate at worse than Level of Service D would be the left turns out of the site, at Level of Service F. This information is summarized in Exhibit 7.

Discussion

While Level of Service D is generally desirable, it is considered that the proposed project will have a generally sharp peak during the evening and that designing a larger intersection would require significant investment for little gain in capacity. An alternative would be to provide police officer control during the evening peak hour if the signal is unable to accommodate the volumes; a traffic control officer would be able to enhance operations modestly compared to a signal enough to bring the overall Level of Service to a D. Considering that a Level of Service D has an average delay of up to 55 seconds, the current estimate of 62 seconds per vehicle is not significantly worse particularly when only traffic leaving the site experiences Level of Service worse than D. It is likely that implementing reasonably aggressive Traffic Demand Management (TDM) measures within the park would have the effect of improving conditions enough to meet the Level of Service D criteria for the evening peak hour.


It is noteworthy that the evening peak hour volumes for the site are expected to be less than the original projections, yet this is the peak hour that shows an apparently worse operating condition than originally expected. The morning peak hour, even with 22 percent more traffic than originally expected, is still expected to operate at Level of Service C.

To some extent, it is beneficial that the project did not move forward as originally planned. It is likely that if it had been completed in five-to-ten years from its original approval, then the previously proposed traffic signal would not have been as sophisticated as current models are. A more sophisticated signal will more appropriately control traffic flows during both peak and off peak hours.

SUMMARY

Based on this updated analysis, it is concluded that the proposed project change is not expected to result in a significant change to the traffic impact originally evaluated. The project change itself does not alter the square footage build-out of the project nor does it change the access proposal. There are several alternative ways to estimate the full build-out traffic generation of the site. Using the most conservative way, the operations at the site driveway are still expected to operate at a reasonable level. While it is possible that the evening peak hour will be slightly below Level of Service D, it is believed that the overall results will be similar to what would have been expected under the original proposal, possibly better. Therefore, no changes are proposed related to the traffic mitigation package.

20144-mem-npc

Business Park	1
Holliston, Massachusetts	
Abend Associates	

Current Volumes vs. Original Projections

		Peak Hour Trips		Daily	
		Morning	Evening	<u>Trips</u>	
Actual Counts (2001)	191	203	2,425	
trips/ksf at 558,0	000 SF	0.34/ksf	0.36/ksf	4.35/ksf	
Existing Trip Ra x 3,000,000 SF	ate	1,027	1,091	13,038	
vs. 1982 Project	ions	1,900	2,750	20,910	
Difference:	#	- 873	- 1,659	- 7,870	
	%	- 46%	- 60%	- 38%	

Actual counts from 2001. ksf = 1,000 square feet

PROJECTED VOLUMES ALTERNATIVE 1

Hopping Brook Business Park Holliston, Massachusetts Exhibit
2

Abend Associates

ITE Rates in 1982 vs. ITE Rates in 2002

	Peak Ho	Peak Hour Trips		
	Morning	Evening	<u>Trips</u>	
1982 ITE Rates				
@ 3,000,000 SF	3,870	4,620	20,910	
2002 ITE Rates @ 3,000,000 SF	2,518	2,500	17,904	
Difference: #	- 1,352	- 2,120	- 3,006	
%	- 35%	- 46%	- 14%	

Source: Trip Generation, 3rd edition 1982 and 6th edition 1997

Notes:

Trips include inbound and outbound combined.

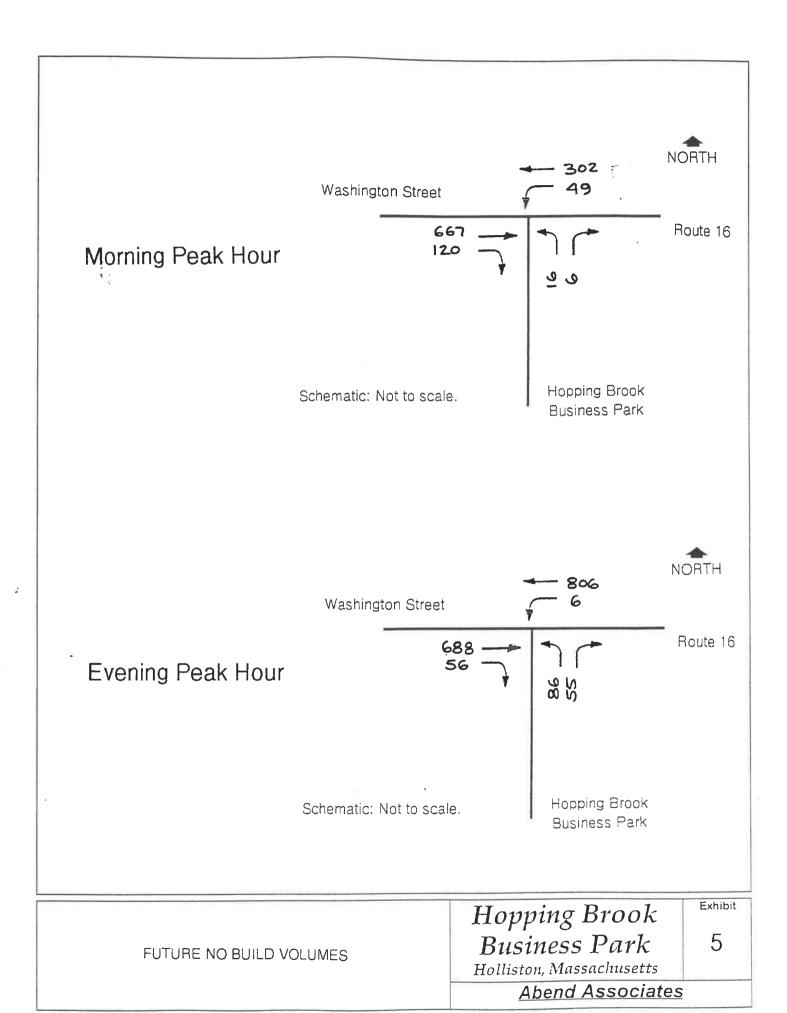
Based on the following land use codes:

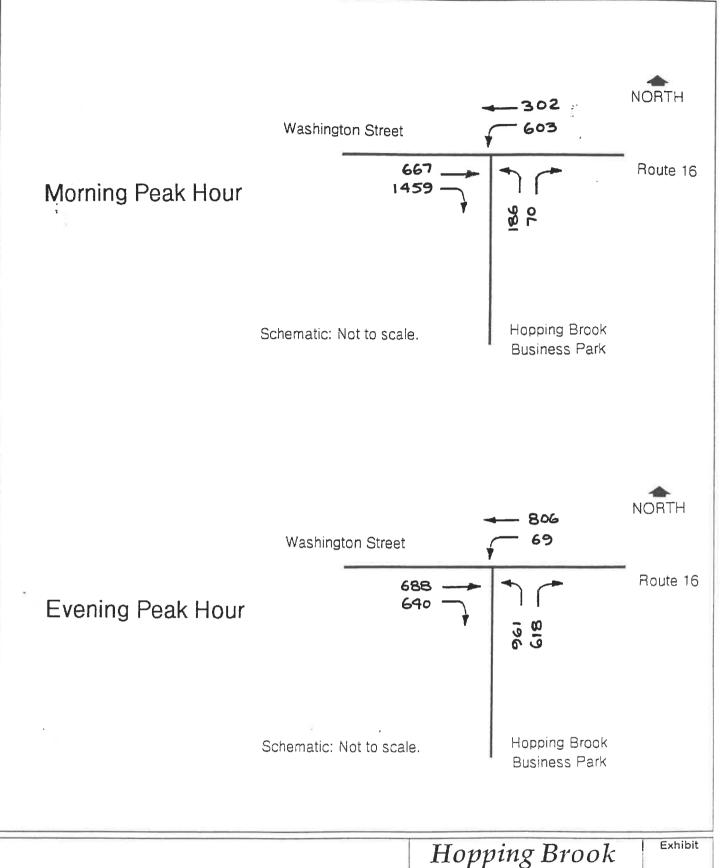
140, Manufacturing, (10%)

150, Warehousing, (35%)

710, General Office, (35%)

760, Research and Development, (20%)


	Abend Associates			
PROJECTED VOLUMES ALTERNATIVE 2	Hopping Brook Business Park Holliston, Massachusetts	3		
	TT ' 70 7	Exhibit		


Combined Existing Volumes with ITE-Based Projections for Balance of Project

		Peak Hour Trips		Daily	
:	-	Morning	Evening	<u>Trips</u>	
	g Volumes ¹ (558,000 SF)	191	203	2,425	
ITE Based Volumes for (2,	Balance of Project ² 442,000 SF)	2,126	2.085	<u>15.110</u>	
Total Project	ed Site Trips	2,317	2,288	17,535	
vs. 1982	Projections	1,900	2,750	20,910	
Difference:	#	+ 471	- 462	- 3,375	
	%	+ 22%	- 17%	- 16%	

Existing volumes based on 2001 counts.
 Balance of Park based on ITE rates and existing land use mix (see Exhibit 3).

	Hopping Brook	Exhibit			
PROJECTED VOLUMES ALTERNATIVE 3	Business Park Holliston, Massachusetts 4				
	Abend Associates				

FUTURE BUILD VOLUMES	Hopping Brook Business Park	6	
	Holliston, Massachusetts		
	Abend Associates		

Future Build Conditions Peak Hour Level of Service Summary

	Morning		Ever	ning
i.e	LOS	Delay	LOS	Delay
Route 16 at Site Drivewa Overall	У	33	E	66
Route 16 Eastbound				
thrus	D	50	D	46
rights	С	21	A	0
Route 16 Westbound				
lefts	E	56	D	48
thrus	A	3	D	45
Site Driveway				
lefts	D	45	F	154
rights	A	3	С	22

	IIing Dugale	Exhibit
	Hopping Brook	_
LEVEL OF SERVICE SUMMARY	Business Park	7
	Holliston, Massachusetts	
	Abend Associates	

APPENDIX

Count Data

Traffic Counting Unlimited

e Code : 775-Van V.

Street: Hopping Brook Road

Street: Rt.16, Holliston, MA.

ther : Cloudy


Sum of the Primary and Secondary

DATE: 8/27/01

FILE: hop4rt16

PAGE: 1

	Fro	m Nort	.h	Fr	om Eas	t	Fr	om Sout	th	Fr	om West	;	Vehicle
n	RT	THRU	Lĭ	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	Total
0 AM	0	0	0	0	52	9	1	0	3	20	146	0	231
5	0	0	0	0	74	12	3	0	4	33	158	0	284
0	0	0	0	0	69	12	1	0	3	29	165	0	279
5	0	0	0	0	68	16	1	0	6	38	111	0	240
OTAL	0	0	0	0	263	49	6	0	16	120	580	0	1034
) AM	0	0	0	Ō	46	17	0	0	2	33	79	0	177
5	0	0	0	0	46	13	2	0	4	41	72	0	178
0	0	0	0	0	57	8	2	0	7	27	70	0	171
5	0	0	0	0	83	7	7	0	8	26	102	0	233
OTAL	0	0	0	0	232	45	11	0	21	127	323	0	759
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~										
TOTAL	0	0	0	0	495	94	17	0	37	247	903	0	1793

Site Code : 775-Van V

N-S Street: Hopping Brook Road E-W Street: Rt.16, Holliston, MA.

Weather : Cloudy

Sum of the Primary and Secondary

PAGE: 1

FILE: hop4rt16

DATE: 8/27/01

PEAK PERIOD	ANALYSIS	FOR	THE	PERIOD:	7:00	AM -	9:00 AM

DIRECTION FROM	START PEAK HOUR	PEAK HR FACTOR				Total		Right	Thru	
North East South West	7:00 AM 7:15 AM 8:00 AM 7:00 AM	0.00 0.91 0.53 0.90	0 11		0 57 21 0	0 314 32 700		0 0 34 17	0 82 0	0 18 66 0
			Entire I	nterse	ction					
North East South West	7:00 AM	0.00 0.91 0.79 0.90	0	263 0	49	0 312 22 700		0 0 27 17	0 84 0 83	0 16 73 0
			Hopping	g Br	M H H M M M M M M M	Road				N -+-E S
			0	1			312		0	name than the their time time took their time type the time time.
	\						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	. 19	
	580	700				R1	1.16,	Hol	lis	ton, MA
**************************************	120	1 1 1		1 1	**************************************	22	1	я м ₃ е в м м	586	* 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1
		16	opping E	16 3roo		o	6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 12 12 12 12 12 12 12 12 12 12 12 12 1

Traffic Counting Unlimited

te Code : 884-Roy L. | Street: Hopping Brook Road | Street: Rt.16-Washington Street

ather : Sunny/Rain

PAGE: 1

FILE: rt16hop1

Sum of the Primary and Secondary

DATE: 8/13/01

10	Fro	m Nort	.h	Fr	om Eas	t	Fro	om Sout	th	Fr	om West	t	Vehicle
in	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	RT	THRU	LT	Total
00 PM	0	0	0	0	127	1	14	0	40	2	77	0	261
15	0	0	0	0	112	1	6	0	30	5	96	0	250
30	0	0	0	0	166	4	12	0	28	8	96	0	314
45	0	0	0	0	163	1	13	0	11	13	137	0	338
TOTAL	0	0	0	0	568	7	45	0	109	28	406	0	1163
00 PM	0	0	0	0	171	1	22	0	31	23	147	0	395
15	0	0	0	0	188	2	9	0	21	10	161	0	391
30	0	0	0	0	179	2	11	0	23	10	153	0	378
45	0	0	0	0	163	3	11	0	19	0	89	0	285
TOTAL	0	0	0	0	701	8	53	0	94	43	550	0	1449
							~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
TOTAL	0	0	n	0	1269	15	98	0	203	71	956	0	2612

22 - 1.16s (231) 71 2 013 (67) [331]

367

Site Code : 884-Roy L.

N-S Street: Hopping Brook Road

E-W Street: Rt.16-Washington Street

Weather : Sunny/Rain Sum of the Primary and Secondary

PAGE: 1

FILE: rt16hop1

DATE: 8/13/01

	PEAK	PERIOD ANALY	SIS FOR THE F	PERIOD:	4:00	PM - 6:	00 PM				
DIRECTION FROM	START PEAK HOUR	PEAK HR FACTOR	Right						ERCENT Thru		
South	4:45 PM 5:00 PM 4:00 PM 4:45 PM	0.93	0 0 45 56	701 0 1		0 709 154 654			0 99 0 91		
			Entire Ir	ntersect	ion						
North East South West	4:45 PM	0.00 0.93 0.67 0.96	0	0	6				0 99 0 91	1	
		; ; ; ;	Hopping	g Bro	ok	Road) H H H H H H	 		N -+-E	
			0	0	4 H H			3 1 1 3 3 4 4 1 1 1 1	W	S	
	787 .	*	0	-					0	**************************************	
Rt.16-	Washingt	on Stree	et 				707	70)1		
to a se	0	1 1					1		6		e speak taken minter server
The state of the s	makes make these make where while happe paper	i i								With thick have and three over took was	man samp same same s
	598	654			•	Rt.1	6-Was	shir 	ngto 	n Street	и й и и 22 и
and the same stars are the same star and	56	1 1			1.	41		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	653	M	м м т н м м т н
		# 66	2	36 Brook		1 1 1 1	55	K	The state and		

Hopping Brook Road Holliston, Massachusetts Counted by Traffic Counting Unlimited Box #734

ADTs

JAMAR Technologies, Inc. TAS for Windows Copyright 1998

Site Code : 734 Start Date: 08/13/2001 File I.D. : C:\PROGRAM FI Page : 1

	Begin	Mon.	08/13	Tues	1.	Wed		Thur.		Fri.		0			Par		: 1
ì.	Time	SB	NB			SB		SB	NTD.		1.00	Sat.		Sun.		Week	
ı	12:00 am	*	*			0		*	NB *	SB	NB	SB *	NB	SB *	NB	SB	NB
L	01:00	*	*		u	1	6	*	*	*	*	*	*		*	0	б
ľ	02:00	*	*	1	1	ņ		*	*	*	*	*	*	*	*	Q	4
	03:00	*	*	2		1	á	*	*	*	*	*	*	*	*	0	2
	04:00	*	*			4	2	*			*	*		*	*	2	1
Н	05:00	*	*			23			*	*	*	*	*	*	*	4	1
1	06:00	*	*			121	13	-	*.	*	*	*	*	*	*	24	2
ŀ	07:00	*	*			189			*	*	*	*	*	*	*	131	10
	08:00	*	*	197		184		*	*	*	-		*	*	*	178	45
	09:00	*	*	114	60	184	50	*	*	_	*	*	*	*	*	190	44
e.	10:00	*	*	114		55		*	*	*	*	*	*	*	*	87	46
r	11:00	65	75			50		*	*	*	*	*	*	*	*	62	52
		03	, ,	20	70	50	/6	*	*	*	*	*	*	*	*	57	74
	12:00 pm	104	131	101	150	0.0	130	*	_								
	01:00	85	62	142	156 80	98	138	*	*	*	*	*	*	*	*	101	142
	02:00	53	76	70		114	72		*	*	*	*	*	*	*	114	71
	03:00	57	75		75	41	52	*	*	*	*	*	*	*	*	55	68
	04:00	64	124	62	90	63	113	*	*	*	*	*	*	*	*	61	93
	05:00	61	157	43	148	57	142	*	*	*	*	*	*	*	*	55	138
	06:00	10	39	37	190	*	*	*	*	*	*	*	*	*	*	49	174
	07:00	9		5	49	*	*	*	*	×	*	*	*	*	*	8	44
	08:00		25	13	22	*	*	*	*	*	*	*	*	*	*	11	24
1	09:00	6	15	5	6	*	*	*	*	*	*	*	*	*	*	6	10
		3	5	1	4	+	*	*	*	*	*	*	*	*	*	2	4
	10:00	5	2	5	7	*	*	*	*	*	*	*	*	*	*	5	4
	11:00	2	6	5	5	*	*	*	*	*	*	*	*	*	*	4	6
	Totals	524	792	1263	1162	1061	778	0	0	0	0	0	0	0	0	1206	1073
			1316		2425		1839		0		0		0		0		2279
	Area Dave	47 40															
	Avg. Day	43.4%	73.8%	104.7%	108.2%	B7.9%	72.5%	.0%	· 0%	.0%	.0%	.0%	.0%	.0%	.0%		
	TM Deele-	11.00															
	AM Peaks	11:00	11:00	08:00	11:00	07:00	11:00									08:00	11:00
	Volume	65	75	197	70	189	76									190	74
	Dr. D I-																
	PM Peaks	12:00	05:00	01:00	05:00	01:00	04:00									01:00	05:00
	Volume	104	157	142	190	114	142						*			114	174

Relevant ITE Pages

TRIP GENERATION

6th Edition • Volume 2 of 3

TRIP GENERATION RATES, PLOTS, AND EQUATIONS

- Institutional (Land Uses 500-599)
- Medical (Land Uses 600-699)
- Office (Land Uses 700-799)
- Retail (Land Uses 800-899)
- Services (Land Uses 900-999)

Institute of Transportation Engineers

Trip Generation, 6th Edition

An Informational Report of the Institute of Transportation Engineers

Volume 2 of 3

The Institute of Transportation Engineers (ITE) is an international educational and scientific association of transportation and traffic engineers and other professionals who are responsible for meeting mobility and safety needs. The Institute facilitates the application of technology and scientific principles to research, planning, functional design, implementation, operation, policy development and management for any mode of transportation by promoting professional development of members, supporting and encouraging education, stimulating research, developing public awareness, and exchanging professional information; and by maintaining of a central point of reference and action.

Founded in 1930, the Institute serves as a gateway to knowledge and advancement through meetings, seminars, and publications; and through our network of approximately 15,000 members working in some 80 countries. The Institute also has more than 70 local and regional chapters and more than 90 student chapters that provide additional opportunities for information exchange, participation and networking.

ite=

Institute of Transportation Engineers

525 School St., S.W., Suite 410
Washington, D.C. 20024-2797 USA
Telephone: +1 (202) 554-8050
Fax: +1 (202) 863-5486
ITE on the Web: http://www.ite.org

© 1997 Institute of Transportation Engineers. All rights reserved.

Publication No. IR-016D

Second Printing

1000/AGS/1197

ISBN 0-93540310914 Printed in the United States of America

Land Use: 140 Manufacturing

Description

Manufacturing facilities are areas where the primary activity is the conversion of raw materials or parts into finished products. Size and type of activity may vary substantially from one facility to another. In addition to the actual production of goods, manufacturing facilities generally also have office, warehouse, research, and associated functions. General light industrial (land use 110), general heavy industrial (land use 120), and industrial park (land use 130) are related uses.

Additional Data

Average weekday transit trip ends

- 0.09 per employee
- 0.08 per 1,000 square feet gross floor area
- 1.25 per acre

Vehicle occupancy ranged from 1.2 to 1.3 persons per automobile on an average weekday.

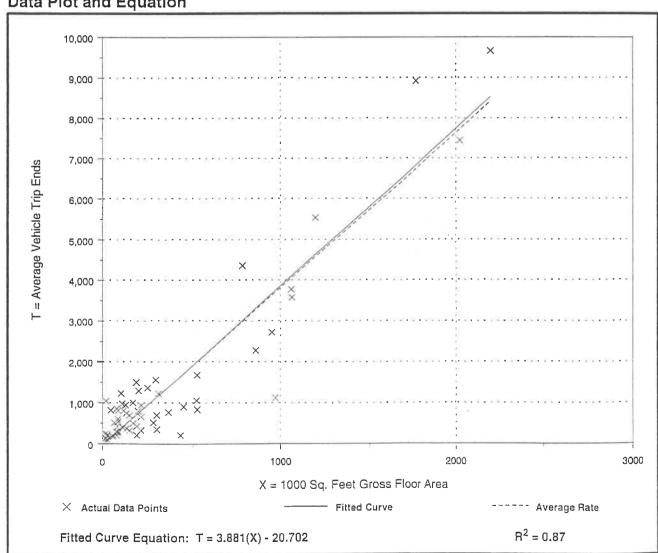
The peak hour of the generator typically coincides with the peak hour of the adjacent street traffic. Facilities with employees on shift work may peak at other hours.

The sites were surveyed in the late 1960s, the early 1970s, the mid-1980s, and the 1990s throughout the United States.

Source Numbers

3, 7, 10, 15, 17, 74, 85, 88, 177, 184, 241, 357, 384, 418, 443

Manufacturing (140)


Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday

Number of Studies: Average 1000 Sq. Feet GFA: 349

Directional Distribution: 50% entering, 50% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

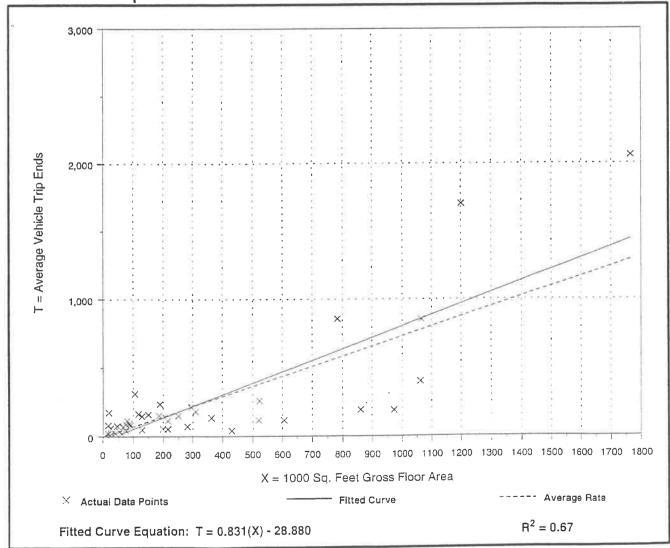
Average Rate	Range of Rates	Standard Deviation
3.82	0.50 - 52.05	3.07

Manufacturing (140)

1000 Sq. Feet Gross Floor Area Average Vehicle Trip Ends vs:

> On a: Weekday,

> > Peak Hour of Adjacent Street Traffic,


One Hour Between 7 and 9 a.m.

Number of Studies: 50 Average 1000 Sq. Feet GFA: 297

Directional Distribution: 77% entering, 23% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
0.73	0.10 - 8.75	1.04

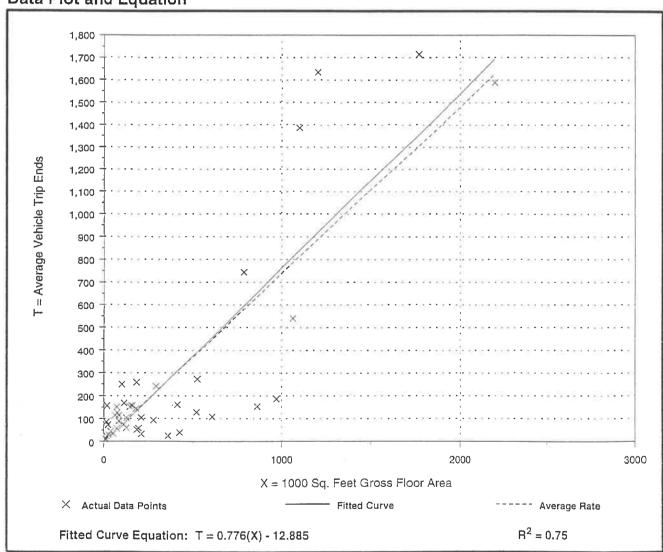
Manufacturing

(140)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday,

Peak Hour of Adjacent Street Traffic,


One Hour Between 4 and 6 p.m.

Number of Studies: 54 Average 1000 Sq. Feet GFA: 325

Directional Distribution: 36% entering, 64% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
0.74	0.07 - 7.85	1.01

Land Use: 150 Warehousing

Description

Warehouses are primarily devoted to the storage of materials; they may also include office and maintenance areas. High-cube warehouse (land use 152) is a related use.

Additional Data

No vehicle occupancy data is available specifically for warehousing, but the average was approximately 1.3 persons per automobile for all industrial uses.

The peak hour of the generator typically coincides with the peak hour of the adjacent street traffic. Facilities with employees on shift work may peak at other hours.

The sites were surveyed from the late 1960s to the mid-1990s throughout the United States and Canada.

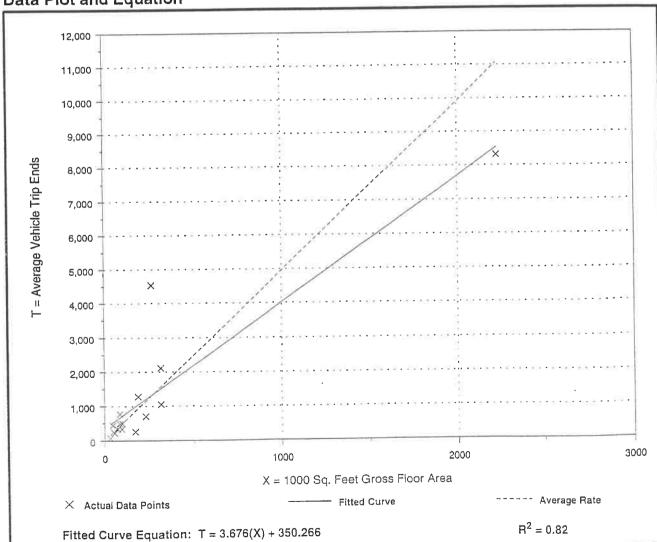
Source Numbers

6, 7, 12, 13, 15, 17, 74, 184, 192, 390, 406, 411, 436, 443

Warehousing

(150)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday

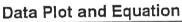
Number of Studies: 16 Average 1000 Sq. Feet GFA: 273

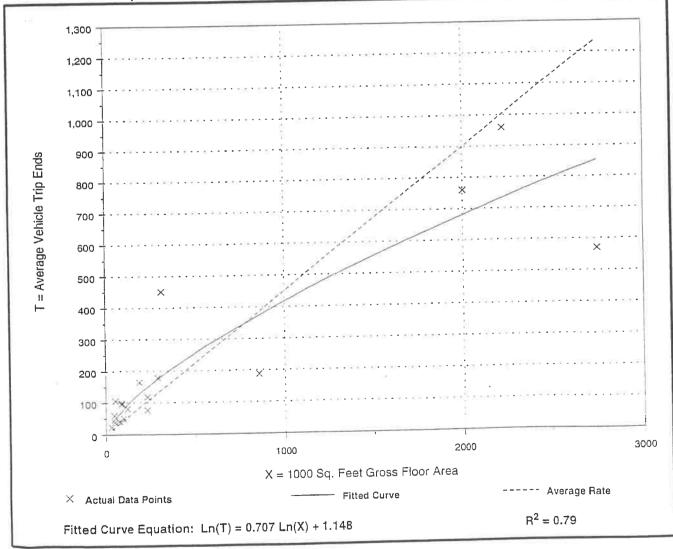
Directional Distribution: 50% entering, 50% exiting

Average Rate	Range of Rates	Standard Deviation
4.96	1.51 - 17.00	4.05

Warehousing (150)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday,


Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 19 Average 1000 Sq. Feet GFA: 531

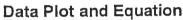
Directional Distribution: 82% entering, 18% exiting

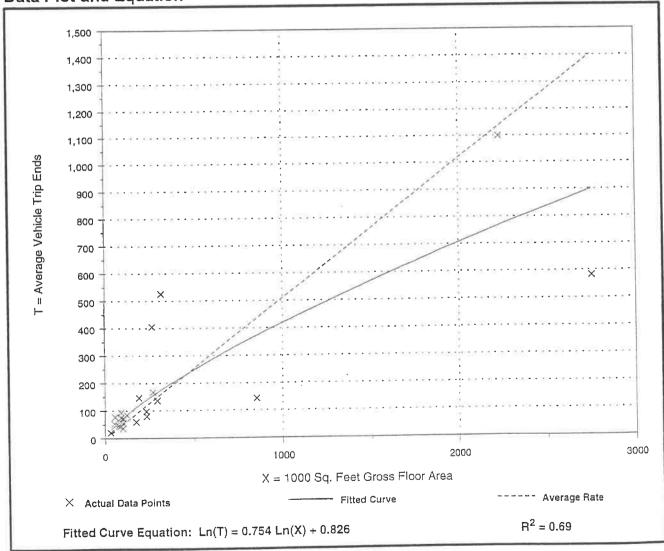
Average Rate	Range of Rates	Standard Deviation
0.45	0.21 - 1.93	0.74

Warehousing

(150)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday,


Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 22 Average 1000 Sq. Feet GFA: 406

Directional Distribution: 24% entering, 76% exiting

Average Rate	Range of Rates	Standard Deviation
0.51	0.17 - 1.66	0.83

Land Use: 710 General Office Building

Description

A general office building houses multiple tenants; it is a location where affairs of businesses, commercial or industrial organizations, or professional persons or firms are conducted. An office building or buildings may contain a mixture of tenants including professional services; insurance companies; investment brokers; and tenant services such as a bank or savings and loan institution, a restaurant or cafeteria, and service retail facilities. Nearly all of the buildings surveyed were in suburban locations. Corporate headquarters (land use 714), single tenant office building (land use 715), and office park (land use 750) are related uses.

If information is known about individual buildings, it is suggested that the general office building category be used rather than office parks when estimating trip generation for one or more office buildings in a single development. The office park category is more general, and it should be used when a breakdown of individual or different uses is not known. If the general office building category is used and if additional buildings, such as banks, restaurants, or retail stores are included in the development, then the development should be treated as a multiuse project. On the other hand, if the office park category is used, internal trip making is already reflected in the data and does not need to be considered.

When the buildings are interrelated (defined by shared parking facilities or the ability to easily walk between buildings) or house one tenant, it is suggested that the total area or employment of all the buildings be used for calculating the trip generation. When the individual buildings are isolated and not related to one another, it is suggested that the trip generation be calculated for each building separately and then summed.

Additional Data

Average weekday transit trip ends ---

Transit service was either nonexistent or negligible at the majority of the sites surveyed in this land use. Recent studies indicate increased use of transit, carpools, and other transportation demand management (TDM) strategies. Information has not been analyzed to document the impacts of TDM measures on the total site generation.

The average building occupancy varied considerably within the studies where occupancy data was provided. For buildings with occupancy rates reported, the average percent of occupied gross leasable area was 88 percent.

In some regions peaking may occur earlier or later and last somewhat longer than the traditional 7:00 A.M. to 9:00 A.M. and 4:00 P.M. to 6:00 P.M. peak period time frames.

The sites were surveyed from the 1960s to the 1990s throughout the United States.

Trip Characteristics

The trip generation for the A.M. and P.M. peak hours of the generator typically coincide with the peak hours of the adjacent street traffic; therefore, only one A.M. peak hour and one P.M. peak hour, which represent both the peak hour of the generator and the peak hour of the adjacent street traffic, are shown for general office buildings.

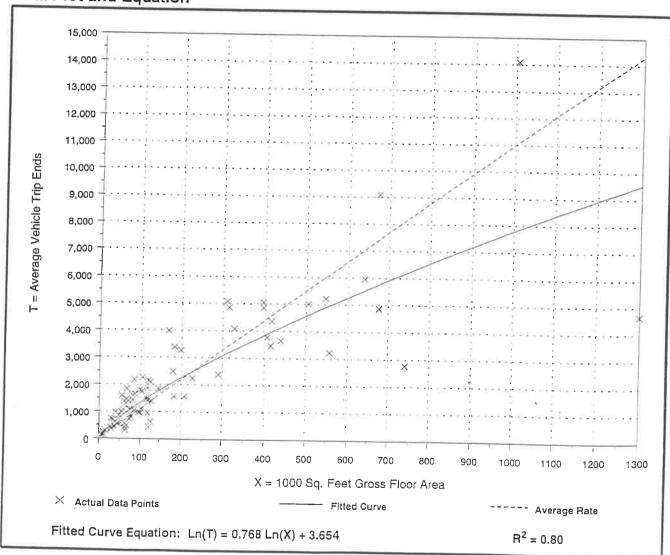
Source Numbers

2, 5, 20, 21, 51, 53, 54, 72, 88, 89, 92, 95, 98, 100, 159, 161, 172, 175, 178, 183, 184, 185, 189, 193, 207, 212, 217, 247, 253, 257, 260, 262, 279, 295, 297, 298, 300, 301, 302, 303, 304, 321, 322, 323, 324, 327, 404, 407, 408, 418, 419, 423

General Office Building

(710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday

Number of Studies: 78 Average 1000 Sq. Feet GFA: 199

Directional Distribution: 50% entering, 50% exiting

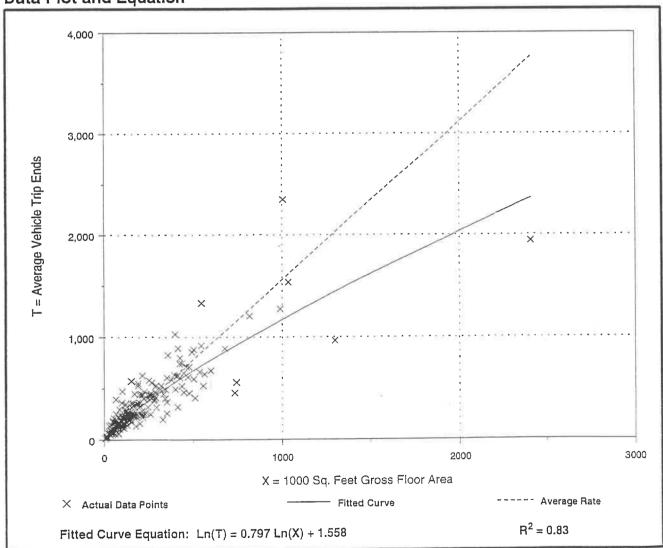
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
11.01	3.58 - 28.80	6.13

General Office Building (710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday,


A.M. Peak Hour

Number of Studies: 216 Average 1000 Sq. Feet GFA: 223

Directional Distribution: 88% entering, 12% exiting

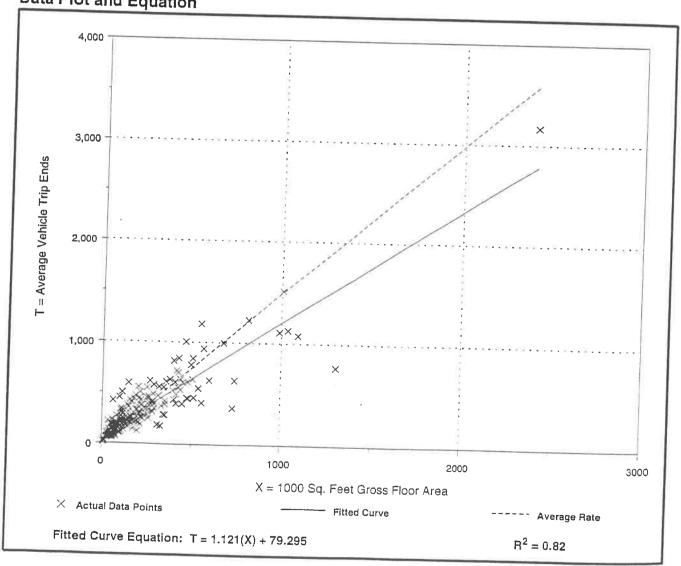
Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
1.56	0.60 - 5.98	1.40

General Office Building

(710)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday, P.M. Peak Hour

Number of Studies: 234 Average 1000 Sq. Feet GFA: 216

Directional Distribution: 17% entering, 83% exiting

Average Rate	Range of Rates	Standard Deviation
1.49	0.49 - 6.39	1 27

Land Use: 760 Research and Development Center

Description

Research and development centers are facilities or groups of facilities devoted almost exclusively to research and development activities. The range of specific types of businesses contained in this land use category varies significantly. Research and development centers may contain offices and light fabrication areas. General office building (land use 710), corporate headquarters building (land use 714), single tenant office building (land use 715), office park (land use 750), and business park (land use 770) are related uses.

Additional Data

Truck trips accounted for 1.84 percent of the weekday traffic at the research and development centers surveyed (range of 0.4 percent to 4.0 percent).

The average vehicle occupancy for the thirteen studies where information was submitted is approximately 1.19 persons per automobile. The range of vehicle occupancy rates is 1.10 to 1.33 persons per automobile.

The sites were surveyed from the 1960s to the 1990s throughout the United States, with many conducted in the Washington, D.C.; San Francisco; and San Diego metropolitan areas.

Trip Characteristics

The trip generation for the A.M. and P.M. peak hours of the generator typically coincide with the peak hours of the adjacent street traffic; therefore, only one A.M. peak hour and one P.M. peak hour, which represent both the peak hour of the generator and the peak hour of the adjacent street traffic, are shown for research and development centers.

Source Numbers

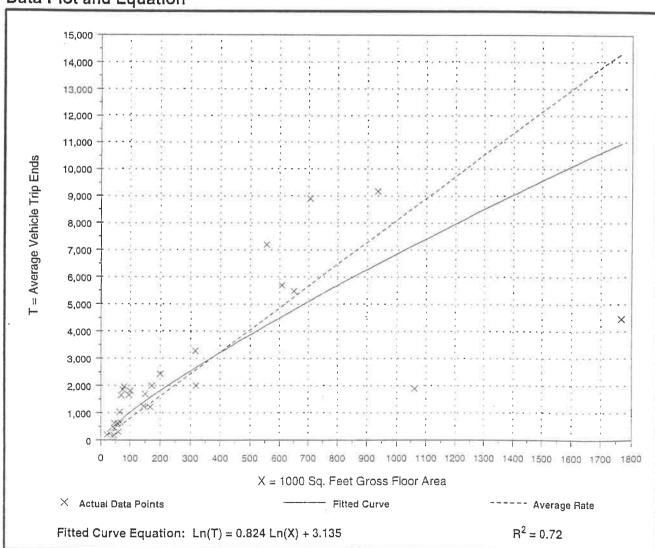
9, 105, 213, 218, 253, 332, 384, 423

Research and Development Center

(760)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area

On a: Weekday


Number of Studies: 28 Average 1000 Sq. Feet GFA: 308

Directional Distribution: 50% entering, 50% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

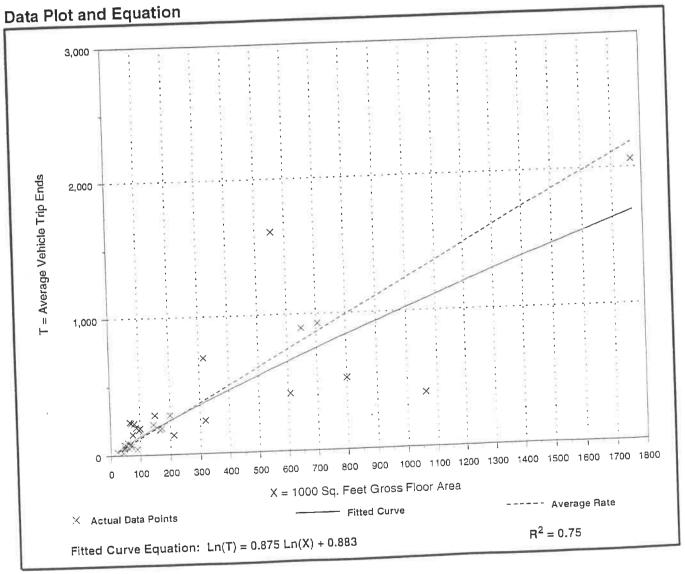
Average Rate	Range of Rates	Standard Deviation
8.11	1.78 - 24.95	5.85

Data Plot and Equation

1164

Research and Development Center (760)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


Weekday, On a:

A.M. Peak Hour

Number of Studies: 32 Average 1000 Sq. Feet GFA: 279

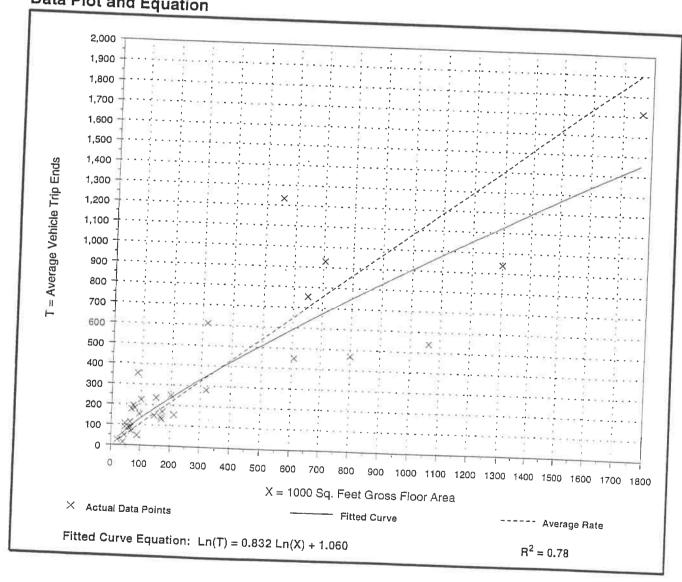
Directional Distribution: 83% entering, 17% exiting

Ordinari p	Feet Gross Floor Area	Standard Deviation
Average Rate	Range of Rates	1.00
1.24	0.37 - 3.73	1.32

Research and Development Center

(760)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area


On a: Weekday, P.M. Peak Hour

Number of Studies: Average 1000 Sq. Feet GFA: 306

Directional Distribution: 15% entering, 85% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Pango of Data	
1.08	Range of Rates	Standard Deviation
	0.40 - 4.13	1.19

Level of Service Description

LOS

The average control delay per vehicle is estimated for each lane group and aggregated for each approach and for the intersection as a whole. LOS is directly related to the control delay value. The criteria are listed in Exhibit 16-2.

EXHIBIT 16-2. LOS CRITERIA FOR SIGNALIZED INTERSECTIONS

LOS	Control Delay per Vehicle (s/veh)
A	≤ 10
В	> 10–20
С	> 20–35
D	> 35–55
Ë	> 55–80
F	> 80

EXHIBIT 17-2. LEVEL-OF-SERVICE CRITERIA FOR TWSC INTERSECTIONS

Average Control Delay (s/veh)
0–10
> 1015
> 1525
> 25–35
> 35–50
> 50

Highway Capacity Manual 2000

Abend Associates

. **Capacity Calculations**

	-	*	1	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	7	1	ሻ	7
Ideal Flow (vphpi)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		300	300		0	0
Storage Lanes		1	1		1	1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0
Turning Speed (mph)		9	15		15	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
Flt Protected			0.950		0.950	
Satd. Flow (prot)	1863	1583	1770	1863	1770	1583
Flt Permitted			0.138		0.950	
Satd. Flow (perm)	1863	1583	257	1863	1770	1583
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		586				76
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	30			30	30	
Link Distance (ft)	2268			2404	1552	
Travel Time (s)	51.5			54.6	35.3	
Volume (vph)	667	1459	602	302	186	70
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	725	1586	654	328	202	76
Lane Group Flow (vph)	725	1586	654	328	202	76
Turn Type	. =0		pm+pt	020		om+ov
Protected Phases	4		3	8	2 '	3
Permitted Phases		Free	8		_	2
Detector Phases	4	1100	3	8	2	3
Minimum Initial (s)	4.0		4.0	4.0	4.0	4.0
Minimum Split (s)	20.0		8.0	20.0	10.0	8.0
Total Split (s)	29.0	0.0	23.0	52.0	13.0	23.0
Total Split (%)	45%	0.0	35%	80%	20%	35%
Yellow Time (s)		070			3.5	
	3.5		3.5	3.5		3.5
All-Red Time (s) Lead/Lag	0.5		0.5	0.5	0.5	0.5
_	Lead		Lag			Lag
Lead-Lag Optimize? Recall Mode	Yes		Yes	Mana	A 41	Yes
	None	05.0	None	None	Min	None
Act Effct Green (s)	25.0	65.0	48.0	48.0	9.0	32.0
Actuated g/C Ratio	0.38	1.00	0.74	0.74	0.14	0.49
v/c Ratio	1.01	1.00	1.03	0.24	0.82	0.09
Uniform Delay, d1	20.0	0.0	18.6	2.7	27.2	
Delay	50.2	20.9	56.2	2.8	45.1	2.7
LOS	D	С	E	Α	D	Α
Approach Delay	30.1			38.3	33.5	
Approach LOS	С			D	С	
Queue Length 50th (ft)	~286	~3	~235	30	79	0
Queue Length 95th (ft)	#502	#241	#269	52	#183	18
Internal Link Dist (ft)	2188			2324	1472	
50th Up Block Time (%)						

Peak Hour Future Build Analysis C:\Program Files\Trafficware\20144 -- Hopping Brook Build.sy6 ABENDASMAL-LT51 Hopping Brook, Holliston Page 1

	\rightarrow	*	1	◆	4	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	•
95th Up Block Time (%)							
Turn Bay Length (ft)		300	300				
50th Bay Block Time %	7%						
95th Bay Block Time %	41%		7%				
Queuing Penalty (veh)	378		12				
Intersection Summary							
Area Type:	hor						

Area Type:

Other

Cycle Length: 65

Actuated Cycle Length: 65

Natural Cycle: 65

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 1.03 Intersection Signal Delay: 32.6

Intersection LOS: C

Intersection Capacity Utilization 95.6%

ICU Level of Service E

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 5: Route 16/Washington Street & Hopping Brook Morning Peak Hour

	-	-	1	4	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	7	7	†	7	74
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)		300	300		0	0
Storage Lanes		1	1		1	1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Turning Speed (mph)		9	15		15	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.850				0.850
FIt Protected		2.000	0.950		0.950	0.000
Satd. Flow (prot)	1863	1583	1770	1863	1770	1583
Flt Permitted	1000	1000	0.072	1000	0.950	1000
Satd. Flow (perm)	1863	1583	134	1863	1770	1583
Right Turn on Red	1005	Yes	104	1005	1770	Yes
Satd. Flow (RTOR)		335				110
,	1.00		1.00	1.00	1.00	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	30			30	30	
Link Distance (ft)	2270			1858	1536	
Travel Time (s)	51.6			42.2	34.9	
Volume (vph)	688	640	69	806	961	618
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	748	696	75	876	1045	672
Lane Group Flow (vph)	748	696	75	876	1045	672
Turn Type		Free	pm+pt		ı	om+ov
Protected Phases	4		3	8	2	3
Permitted Phases		Free	8			2
Minimum Split (s)	20.0		8.0	20.0	20.0	8.0
Total Split (s)	60.0	0.0	8.0	68.0	62.0	8.0
Total Split (%)	46%	0%	6%	52%	48%	6%
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5
All-Red Time (s)	0.5		0.5	0.5	0.5	0.5
Lead/Lag	Lead		Lag	0.0	0.0	Lag
Lead-Lag Optimize?	Yes		Yes			Yes
Act Effct Green (s)	56.0	130.0	64.0	64.0	58.0	66.0
Actuated g/C Ratio	0.43	1.00	0.49	0.49	0.45	0.51
v/c Ratio						
	0.93	0.44	0.65	0.96	1.32	0.78
Uniform Delay, d1	35.2	0.0	36.4	31.6	36.0	21.3
Delay	46.1	0.0	47.8	45.0	153.8	22.3
LOS	D	Α	D	D	F	С
Approach Delay	23.9			45.2	102.4	
Approach LOS	С			D	F	
Queue Length 50th (ft)	590	0	33	689	~1138	385
Queue Length 95th (ft)	#850	0	#79	#981	#1397	562
Internal Link Dist (ft)	2190			1778	1456	
50th Up Block Time (%)						
95th Up Block Time (%)						
Turn Bay Length (ft)		300	300			
50th Bay Block Time %	30%	500	500	31%		
95th Bay Block Time %	41%			39%		
Queuing Penalty (veh)	246			26		

Peak Hour Future Build Analysis C:\Program Files\Trafficware\20144 -- Hopping Brook Build.sy6 ABENDASMAL-LT51

Hopping Brook, Holliston

Page 1

Intersection Summary

Area Type:

Other

Cycle Length: 130

Actuated Cycle Length: 130

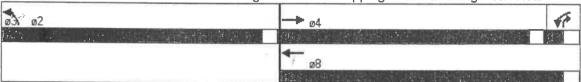
Offset: 0 (0%), Referenced to phase 2:NBL and 6:, Start of Green

Natural Cycle: 130
Control Type: Pretimed
Maximum v/c Ratio: 1.32

Intersection Signal Delay: 61.6
Intersection Capacity Utilization 111.4%

Intersection LOS: E

Intersection Capacity Utilization 111.4% ICU Level of Service G


Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Route 16/Washington Street & Hopping Brook Evening Peak Hour

Level of Service Description

*

LOS

The average control delay per vehicle is estimated for each lane group and aggregated for each approach and for the intersection as a whole. LOS is directly related to the control delay value. The criteria are listed in Exhibit 16-2.

EXHIBIT 16-2. LOS CRITERIA FOR SIGNALIZED INTERSECTIONS

DAMBIT TO E. 100 OTHER	IN TOTALIZED INTERSECTIONS
LOS	Control Delay per Vehicle (s/veh)
A	≤ 10
В	> 10–20
С	> 20–35
D	> 35–55
Ε	> 55–80
F	> 80

EXHIBIT 17-2. LEVEL-OF-SERVICE CRITERIA FOR TWSC INTERSECTIONS.

Level of Service	Average Control Delay (s/veh)
A	0–10
В	> 10–15
С	> 15–25
D	> 25–35
E	> 35–50
F	> 50

Highway Capacity Manual 2000

Abend Associates

Capacity Calculations

A. Davida	0.5	0	—	400		_ '
1: Route	85	Ŏ.	Route	495	NB	Ramps

	*	-	*	1	+	1	4	†	1	1	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	A	↑			†	7	7		74			
Sign Control Grade		Free			Free			Stop			Stop	
Volume (veh/h)	4000	0%			0%			0%			0%	
Peak Hour Factor	1006 0.97	375 0.97	0	0	235	17	153	0	224	0	0	0
Hourly flow rate (veh/h)	1037	387	0.97 0	0.97 0	0.97 242	0.97 18	0.97	0.97	0.97	0.97	0.97	0.97
Pedestrians	1001	307	U	U	242	10	158	0	231	0	0	0
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
vC, conflicting volume	260			387			2703	2721	387	2934	2703	242
vC1, stage 1 conf vol												
vC2, stage 2 conf vol tC, single (s)	4.1			4.4			7.4					
tC, 2 stage (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	2.2
p0 queue free %	21			100			3.3	100	5.5 65	100	100	3.3 100
cM capacity (veh/h)	1311			1177			5	4	664	2	4	799
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	ı,			_		1_12
Volume Total	1037	387	242	18	158	231						
Volume Left	1037	0	0	0	158	0						
Volume Right	0	0	0	18	0	231						
cSH	1311	1700	1700	1700	5	664						
Volume to Capacity	0.79	0.23	0.14	0.01	32.72	0.35						
Queue Length (ft)	225	0	0	0	Em	39						
Control Delay (s) Lane LOS	17.2	0.0	0.0	0.0	Εū	13.3						
Approach Delay (s)	C 12.5		0.0		F	В						
Approach LOS	12.5		0.0	•	4065.8 F							
Intersection Summary												
Average Delay		,	771.2									
Intersection Capacity Uti	lization		88.9%	10	CU Leve	el of Ser	vice		D			

	۶	\rightarrow	7	1	4	*		†	1	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	*			4	7	14.56		7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50		50			
Trailing Detector (ft)	0	0			0	0	0		0			
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt	8: Ti 8					0.850			0.850			
Fit Protected	0.950						0.950					
Satd. Flow (prot)	1787	1881	0	0	1881	1599	3467	0	1599	0	0	0
Flt Permitted	0.950						0.950					
Satd. Flow (perm)	1787	1881	0	0	1881	1599	3467	0	1599	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						20			266			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30	. *		30	8 - E W		30	×:
Link Distance (ft)		1705			1689			558			506	
Travel Time (s)		38.8			38.4		**** = 11 W	12.7			11.5	
Volume (vph)	1160	375	0	0	271	19	176	0	258	0	0	0
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	1196	387	0	0	279	20	181	0	266	.0	0	0
Lane Group Flow (vph)	was a finished building	387	0	0	279	20	181	0	266	0	0	0
Turn Type	Prot	3				Permo	custom	(ustom			
Protected Phases	7	4			8		5					
Permitted Phases						8	5		2			
Detector Phases	7	4	***************************************		8	8	5		2			
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0		4.0			
Minimum Split (s)	8.0	20.0			20.0	20.0	8.0		20.0			
Total Split (s)	103.0	129.0	0.0	0.0	26.0	26.0	21.0	0.0	21.0	0.0	0.0	0.0
Total Split (%)	69%	86%	0%	0%	17%	17%	14%	0%	14%	0%	0%	0%
Maximum Green (s)	99.0	125.0			22.0	22.0	17.0		17.0			
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5		3.5			
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5		0.5			± + 8
Lead/Lag	Lead				Lag	Lag						,,,,,
Lead-Lag Optimize?	Yes	1 8 8 8 8	×		Yes	Yes				3 V	100	T. U
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0		3.0			
Recall Mode	None	None			None	None	None		Min			
Walk Time (s)		5.0			5.0	5.0			5.0			
Flash Dont Walk (s)	**************************************	11.0	B :		11.0	11.0		4	11.0			
Pedestrian Calls (#/hr)		0			0	0			0			
Act Effct Green (s)	99.0	125.0			22.0	22.0	12.9		12.9			
Actuated g/C Ratio	0.68	0.86	*******	*** **********	0.15	0.15	0.09		0.09			
v/c Ratio	0.99	0.24			0.98	0.08	0.59		0.69			
Uniform Delay, d1	22.8	1.9			61.7	0.0	64.0		0.0			
Delay	42.5	2.1	B	E C	100.3	20.4	63.9		6.9			
LOS	D	Α			F	С	Е		Α			
Approach Delay		32.6	G ==		95.0							
Approach LOS		С			F		``			·		

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	×	-	7	1	-	•	1	1	-	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SRI	SRT	SAD
Queue Length 50th (ft)	1029	51	, E		268	0	86		0		366643	- Complex
Queue Length 95th (ft)	#1492	86			#475	26	128		88			
Internal Link Dist (ft)		1625			1609			478			426	
50th Up Block Time (%)		erek a da kana			ran salawa sibilibe.			now Addition		***************************************		
95th Up Block Time (%)					7.7			. WWW.	HY U		Y-1.8	
Turn Bay Length (ft)						1	New Miller C.					
50th Bay Block Time %	je:									e		
95th Bay Block Time %			*********			*************			W			
Queuing Penalty (veh)							. = .	8 1 3			·	84E,,# 7E
Intersection Summary												
Area Type: O	ther											
Cycle Length: 150	·										×	
Actuated Cycle Length:	145.9		11 11 11 11 11 11 11 11 11 11 11 11 11	-3818-	VE VES	··· ··································			X308 F			
Natural Cycle: 150											**************	
Control Type: Actuated-I	Uncoor	dinated	***************************************									
Maximum v/c Ratio: 0.99	9											
Intersection Signal Delay	v: 40.1			fr	ntersect	ion LOS	: D	800 ET 00 E	53/11/1		8 540 115	- 388
Intersection Capacity Uti	lization	96.1%		Î(CU Lev	el of Sei	vice E					:
# 95th percentile volur												
Queue shown is max	imum a	fter two	cycles	- -	10.00 4 . 15000						**************	

Splits and Phases: 1: Route 85 & Route 495 NB Ramps

∂ ø 2	→ ø4	
21.6	129's	
1 ø5	<u></u> Ø7	4 0
21 3	1133	26+

	*	-	7	1	-	*	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	36	1			↑	7	16 36		7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50		50			.== =3
Trailing Detector (ft)	0	0			0	0	0		0			
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Fri						0.850			0.850		g, weekway	EN EN
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1787	1881	0	0	1881	1599	3467	0	1599	0	0	0
Flt Permitted	0.950	4.7.7.7.	9		5,. 5	, to that contribute	0.950			***************************************		
Satd. Flow (perm)	1787	1881	0	0	1881	1599	3467	0	1599	0	0	0
Right Turn on Red	12.27 13		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						20			266	W====11=		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	1.00	30	1.00		30			30			30	
Link Distance (ft)		1705			1689			558			506	
Travel Time (s)	8 155	38.8			38.4			12.7			11.5	
Volume (vph)	1187	375	0	0	271	19	176	0	258	0	0	0
The state of the s	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Peak Hour Factor		1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Heavy Vehicles (%)	1%	387			279	20	181	0	266	. 0	. /o	0
Adj. Flow (vph)	1224		0	0	279	20	181	0	266	0	0	0
Lane Group Flow (vph)	1224	387		Ŭ.	219	Perm			custom			
Turn Type	Prot		=		0	Tenni	5 Justonii		Justotti			
Protected Phases	7	4			8		5		2			
Permitted Phases					0	8	5		2			
Detector Phases	7	4			8 4.0	4.0	4.0		4.0			
Minimum Initial (s)	4.0	4.0			10		8.0		20.0			
Minimum Split (s)	8.0	20.0	0.0	0.0	20.0	20.0	21:0	0.0	21.0	0.0	0.0	0.0
Total Split (s)	103.0	129.0	0.0	0.0	26.0	26.0	eres fact three West	0.0	14%	0%	0.0	0%
Total Split (%)	69%	86%	0%	0%	17%	17%	14%	U 70	17.0	0 70	0 70	U 70
Maximum Green (s)	99.0	125.0	. الما المقاليات		22.0	22.0	17.0		3.5			
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5		0.5			
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5		U.S			. z
Lead/Lag	Lead				Lag	Lag						
Lead-Lag Optimize?	Yes				Yes	Yes	2.0		2.0			
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0		3.0			
Recall Mode	None	None			None	None	None		Min			. = =
Walk Time (s)		5.0			5.0	5.0			5.0			
Flash Dont Walk (s)		11.0			11.0	11.0			11.0			
Pedestrian Calls (#/hr)		0			0	0			0			
Act Effct Green (s)	99.0	125.0			22.0	22.0	12.9		12.9			
Actuated g/C Ratio	0.68	0.86			0.15	0.15	0.09		0.09			
v/c Ratio	1.01	0.24			0.98	0.08	0.59	W11	0.69			
Uniform Delay, d1	23.5	1.9			61.7	0.0	64.0		0.0			
Delay	49.0	2.1			100.3	20.4	63.9		6.9			
LOS	D	Α			F	С	E		Α			
Approach Delay		37.7			95.0							
Approach LOS		D			F							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	*	\rightarrow	*	•	—	*	4	†	-	-	. ↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	~1139	51			268	0	86		0	8 .8		
Queue Length 95th (ft)	#1547	86			#475	26	128		88			and the second
Internal Link Dist (ft)		1625	_ ,: 8 .	1 di	1609		81	478			426	
50th Up Block Time (%)												
95th Up Block Time (%)								185 154		i	# *** = **	
Turn Bay Length (ft)												
50th Bay Block Time %							1					
95th Bay Block Time %												
Queuing Penalty (veh)				=								
Intersection Summary												
Area Type: C	ther			25 J. J.	25 - =							8 - 8
Cycle Length: 150					******************							
Actuated Cycle Length:	145.9									15.		
Natural Cycle: 150												
Control Type: Actuated-	Uncoor	dinated		16					H EI			
Maximum v/c Ratio: 1.0												
Intersection Signal Dela	y: 43.5			1:	ntersect	ion LOS	3: D					
Intersection Capacity Ut	ilizatior	י 97.7%		10	CU Lev	el of Se	rvice E					
 Volume exceeds cap 	pacity,	queue is	theore	tically in	ıfinite.				= == × ==			
Queue shown is max	imum a	after two	cycles	•								
# 95th percentile volui	ne exc	eeds ca	pacity, (queue n	nay be	onger.						
Queue shown is max	imum a	after two	cycles	•								

Splits and Phases: 1: Route 85 & Route 495 NB Ramps

	→ ø4	
21.8	(Z)	
4 ø5	≯ ø7	4 ≏- ø8
21 s	IU-S	25 &

	۶	→	*	1	4		4	†	-	-	1	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	37	4			4	7	35		7			
Sign Control		Free			Free			Stop		2 - 2	Stop	· · · · · · · · · · · · · · · · · · ·
Grade		0%			0%			0%			0%	
Volume (veh/h)	507	207	0	0	679	18	312	0	148	0	0	0
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h)	523	213	0	_ 0	700	19	322	0	153	0	0	0
Pedestrians								., , , , , , , , , , , , , , , , , , ,				
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage					F	3 113						
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
vC, conflicting volume	719			213			1959	1977	213	2111	1959	700
vC1, stage 1 conf vol												
vC2, stage 2 conf vol					- R E W							
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	41	*		100			0	100	82	100	100	100
cM capacity (veh/h)	887			1363			26	26	829	16	26	441
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2						
Volume Total	523	213	700	19	322	153						
Volume Left	523	0	0	0	322	0						
Volume Right	0	0	0	19	0	153						
cSH	887	1700	1700	1700	26	829	2					
Volume to Capacity	0.59	0.13	0.41	0.01	12.60	0.18						
Queue Length (ft)	99	0	0	0	Err	17			-83.	- 1		
Control Delay (s)	14.7	0.0	0.0	0.0	Err	10.3						
Lane LOS	В	180000		samel i	F	В				201		
Approach Delay (s)	10.4		0.0		6785.3							
Approach LOS					F							
Intersection Summary												
Average Delay	arri Xeve	× × 11 ==	1672.2			- 1388			10	-1) 8 2	w Zure	
Intersection Capacity Ut	ilizatior	1	93.6%	1	CU Lev	el of Se	rvice		E			

	*	→	*	*	4-	*	4	†	~	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	35	*			4	79	46.34		F			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50	, , , , , , , , , , , , , , , , , , ,	50			
Trailing Detector (ft)	0	0		***** ********	0	0	0		0		· · · · · · · · · · · · · · · · · · ·	
Turning Speed (mph)	15		9	15		9	15		9	15	W& 3: 5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Fri			11 00000			0.850			0.850			
Flt Protected	0.950			.,			0.950					
Satd. Flow (prot)	1787	1881	0	0	1881	1599	3467	0	1599	0	O	0
Flt Permitted	0.950					• • • • • • • • • • • • • • • • •	0.950				🛣	
Satd. Flow (perm)	1787	1881	0	0	1881	1599	3467	0	1599	0	0	0
Right Turn on Red			Yes			Yes	· · · · · · · · · · · · · · · · · · ·		Yes			Yes
Satd. Flow (RTOR)			103		ware and	15			175			103
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00
Link Distance (ft)		1705		·····	1689			558	×		506	
Travel Time (s)		38.8			38.4			12.7			11.5	
Volume (vph)	585	238	0	0	783	20	360	0	170	0	0	Ω
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)		245	176			21	371	176	176	170		
	603 603	and the second of the second of the second		0	807	21			175		0	0
Lane Group Flow (vph) Turn Type		245	0	0	807		371	0		0	0	0
Protected Phases	Prot 7					Penn	custom	3	custom			
Permitted Phases		4			8	•	5 5					
Detector Phases	7					8 8			2			
	7	4			8 4.0		5 4.0		4.0			
Minimum Initial (s)	4.0	4.0			******	4.0						
Minimum Split (s)	8.0	20.0			20.0	20.0	8.0	6.6	20.0	6.6	0.0	6.6
Total Split (s)	44.0	99.0	0.0	0.0	55.0	55.0	21.0	0.0	21.0	0.0	0.0	0.0
Total Split (%)	37%	83%	0%	0%	46%	46%	18%	0%	18%	0%	0%	0%
Maximum Green (s)	40.0	95.0	=%		51.0	51.0	17.0		17.0			
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5		3.5 0.5			
All-Red Time (s)	0.5	0.5	*		0.5	0.5	0.5		0.5			
Lead/Lag	Lead				Lag	Lag						
Lead-Lag Optimize?	Yes				Yes	Yes						
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0		3.0			
Recall Mode	None	None			None	None	None		Min			
Walk Time (s)		5.0			5.0	5.0			5.0			
Flash Dont Walk (s)		11.0			11.0	11.0			11.0			
Pedestrian Calls (#/hr)		0			0	0			0			
Act Effct Green (s)	40.0	95.1			51.0	51.0	16.1		16.1			
Actuated g/C Ratio	0.34	0.80			0.43	0.43	0.14		0.14			
v/c Ratio	1 00	0.16			1.00	0.03	0.79		0.48	?		
Uniform Delay, d1	39.5	2.8			34.0	5.6	49.9		0.0			
Delay	69.7	2.9			60.1	11.0	51.3		7.0		·	
LOS	Е	Α			Ε	В	D		Α			
Approach Delay		50.4			58.9							
Approach LOS		D			E							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	1	-	*	1	4-		4	Ť	-	-	1	1
Lane Group	EBL	EST	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	~477	37	= v	Ė	~629	3	144	<u> </u>	0	51000	44.5	
Queue Length 95th (ft)	#716	56			#898	18	198		63			
Internal Link Dist (ft)	144	1625	a i l'ass		1609			478			426	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %							[編 主					
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary												
Area Type: C	Other											
Cycle Length: 120												,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Actuated Cycle Length:	119.1											11.000
Natural Cycle: 120								,				
Control Type: Actuated-		dinated										
Maximum v/c Ratio: 1.0					terve was stated as	v 2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -						
Intersection Signal Dela					a significación de la contratación	tion LOS		₹				
Intersection Capacity U						el of Ser	vice E					
 Volume exceeds ca 					nfinite.							
Queue shown is max						unconcentration						
# 95th percentile volu					nay be	longer.				-81_ IIII :		
Queue shown is max	ximum a	after two	cycles	ş.								

Splits and Phases: 1: Route 85 & Route 495 NB Ramps

° ₀ 2	→ ø4	
21.8	39 Y	
5 ø5	ø7	4 ² ø8
21 s	44 9	55 a

	۶	-	•	1	+	*	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	B.2	*			*	7	18.78		Ħ			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	- 2 A		50	50	50	uu Kii	50			1.7.1 - 183.4
Trailing Detector (ft)	0	0			0	0	0	**** * * * * * * * * * * * * * * * * * *	0	er av ar hvara	of the Winds of	A Median Laure
Turning Speed (mph)	15		9	15		9	15	TILET.	9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.97	0.91	1.00	1.00	1.00	1.00
Frt		8 1 1 3 3	X		= = "	0.850	Tar = 3,333		0.850		,	- 4
Flt Protected	0.950		***************************************	***************************************			0.950		e e e de de la constitución de la grégo e de	***************************************		
Satd. Flow (prot)	1787	1881	0	0	1881	1599	3467	. 0	1599	0	0	0
Flt Permitted	0.063						0.950		***************************************			
Satd. Flow (perm)	119	1881	0	0	1881	1599	3467	0	1599	0	0	0
Right Turn on Red		e e e a a alfa et l'ate ala atala a u a	Yes			Yes			Yes	*****		Yes
Satd. Flow (RTOR)	4 54 7 7 7			- :	: =	11			175			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30	·····		30	X - X		30			30	
Link Distance (ft)		1705	****************		1689			558			506	
Travel Time (s)		38.8			38 4			12.7			11.5	
Volume (vph)	844	238	0	0	783	20	360	0	170	0	0	0
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	870	245	0	0	807	21	371	0	175	0	0	0
Lane Group Flow (vph)	The second of the second of the	245	0	0	807	21	371	0	175	0	0	0
Turn Type	pm+pt		, , , , , , , , , , , , , , , , , , ,			Permo	custom		ustom			
Protected Phases	7	4			8				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Permitted Phases	4					8	2		2			
Detector Phases	7	4			8	8	2		2			
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0		4.0			
Minimum Split (s)	8.0	20.0		**************	20.0	20.0	20.0		20.0			
Total Split (s)	66.0	129.0	0.0	0.0	63.0	63.0	21.0	0.0	21.0	0.0	0.0	0.0
Total Split (%)	44%	86%	0%	0%	42%	42%	14%	0%	14%	0%	0%	0%
Maximum Green (s)	62.0	125.0			59.0	59.0	17.0		17.0		- ×	XV EX
Yellow Time (s)	3.5	3.5	-21		3.5	3.5	3.5		3.5			
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5		0.5		31	*
Lead/Lag	Lead	···· · · · · · · · · · · · · · · · · ·		************	Lag	Lag	2550.36			*******		
Lead-Lag Optimize?	Yes				Yes	Yes				11		
Vehicle Extension (s)	3.0	3.0	**		3.0	3.0	3.0		3.0			
Recall Mode	None	None			None	None	Min		Min			
Walk Time (s)		5.0			5.0	5.0	5.0	.,	5.0	***************		
Flash Dont Walk (s)		11.0			11.0	11.0	11.0		11.0			
Pedestrian Calls (#/hr)		0			0	0	0		0			
Act Effct Green (s)	125.0	125.0		TLB F	59.0	59.0	17.0		17.0			
Actuated g/C Ratio	0.83	0.83			0.39	0.39	0.11		0.11			
v/c Ratio	1.10	0.16			1.09	0.03	0.94		0.52			
Uniform Delay, d1	38.5	2.4			45.5	13.2	66.0		0.0			
Delay	90.8	2.4	-35 75-		93.4	17.6	86.4		8.3			
LOS	F	A		:	F	В	F		Α		446 T. T	448
Approach Delay		71.4			91.5	: V						
Approach LOS		E			F							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	*	-	7	1	←	*	4	1	1	1	Į.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	~915	37			~887	6	189		0	11 - 11 - 1	# = 1	
Queue Length 95th (ft)	#1176	53			#1140	25	#289		73			
Internal Link Dist (ft)	1. =	1625			1609			478			426	
50th Up Block Time (%))	*******			to the transmission of	** *** *******			***			
95th Up Block Time (%))											. # 8
Turn Bay Length (ft)												
50th Bay Block Time %			W =									
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary												
Area Type: C	Other	Tex 1			3 10 11		37				65 = V	1 × 5 1 //
Cycle Length: 150												
Actuated Cycle Length:	150											
Natural Cycle: 150												
Control Type: Actuated-	Uncoor	dinated										
Maximum v/c Ratio: 1.1	0											
Intersection Signal Dela	y: 75.9				ntersect	ion LOS	3: E					:
Intersection Capacity Ut	tilization	111.39	6		CU Lev	el of Se	rvice G					
~ Volume exceeds ca	pacity, o	jueue is	theore	tically i	nfinite.			AWEE E				
Queue shown is max	kimum a	fter two	cycles									
# 95th percentile volu	me exce	eds ca	pacity,	queue i	may be	onger.	×					
Queue shown is max	kimum a	fter two	cycles									

Splits and Phases: 1: Route 85 & Route 495 NB Ramps

a2	2 ∞4	
21 s	129:	
	▶ ø7	4 [∞] ø8
	66 s	631

	×		*	*	-	4	4	1	-	-	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		#	r	*	4					4		7
Sign Control		Free		200713	Free	112	1 1	Stop	ueur u		Stop	
Grade		0%			0%			0%			0%	
Volume (veh/h)	0	1377	166	93	236	0	0	0	0	16	0	492
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h) Pedestrians	0	1420	171	96	243	0	0	0	0	16	0	507
Lane Width (ft)									- 0		ETE STE	
Walking Speed (ft/s)												
Percent Blockage		14.7			a Alaw							
Right turn flare (veh)			**********			*******	*************					
Median type							::	None			None	
Median storage veh)							manarasan.	nings taxaban		*************	nonwentende diwin	TOTAL STANSON
vC, conflicting volume	243			1591			2362	1855	1420	1855	2026	243
vC1, stage 1 conf vol					• • • • • • • • • • • • • • • • • • • •							
vC2, stage 2 conf vol				3 -1 1								
tC, single (s) tC, 2 stage (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s)	2.2			2.2			2.5	4.0	3.3	2.5	4.0	2.2
p0 queue free %	100	0 00		2.2 77			3.5 100	4.0 100	3.3 100	3.5 65	4.0 100	3.3 36
cM capacity (veh/h)	1329			415			7	57	168	47	45	798
					*****	*********		51	100	47	45	790
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2						
Volume Total	1420	171	96	243	16	507						
Volume Left	0	Ö	96	0	16	0						
Volume Right	0	171	0	0	0	507						
Volume to Capacity	1700	1700	415	1700	47	798			×			
Queue Length (ft)	0.84 0	0.10	0.23	0.14	0.35	0.64						
Control Delay (s)	0.0	0.0	22 16.3	0.0	31 119.1	116 17.0						
Lane LOS	0.0	0.0	10.3 C	0.0	119.1 F	17.0 C						
Approach Delay (s)	0.0		4.6	2011 1 7 2000	20.3							
Approach LOS	0.0	= #	4.0		20.3 C	w Twi						
Intersection Summary												
Average Delay			5.0			*						
Intersection Capacity Uti	ilization		93.4%	-	CU Leve	el of Ser	vice		E			

	۶	-	7	1	←	4	4	†	-	1	+	1
Movement	EBI.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	ř	100	4					¥		77
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Volume (veh/h)	0	1589	191	107	272	0	0	0	0	18	0	576
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h) Pedestrians	.0	1638	197	110	280	. 0	0	0	0	19	0	594
Lane Width (ft)			· · · · · · · · · · · · · · · · · · ·									
Walking Speed (ft/s)												
Percent Blockage			8									
Right turn flare (veh)								may an inciden			T ADMINISTRA	
Median type						5-5		None			None	
Median storage veh)	000			4005			0722	2420	1620	2420	2336	280
vC, conflicting volume	280			1835			2733	2139	1638	2139	2330	200
vC1, stage 1 conf vol												
vC2, stage 2 conf vol tC, single (s)	4.1			4.1	:		7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)	4.1			4.1			/.1	0.5	0.2	1.1	0.5	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100		W =	67			100	100	100	30	100	22
cM capacity (veh/h)	1288			334			2	33	125	27	25	761
Direction, Lane#	EB 1	E8 2	WB 1	WB 2	SB 1	SB 2						
Volume Total	1638	197	110	280	19	594				hagaanaataga	************	
Volume Left	1030	197	110	200	19	0			2			
Volume Right	0	197	0	0	0	594						
cSH	1700	1700	334	1700	27	761						
Volume to Capacity	0.96	0.12	0.33	0.16	0.70	0.78						
Queue Length (ft)	0.00	0	35	0.10	55	194						
Control Delay (s)	0.0	0.0	21.0	0.0	289.6	24.4						
Lane LOS		0.0	C		F	С	_		,			
Approach Delay (s)	0.0		5.9		32.4	,,,						
Approach LOS				- W	D					· · · · · · · · · · · · · · · · · · ·		
Intersection Summary												
Average Delay			7.8									
Intersection Capacity Ut	tilization	1 ′	105.7%		CU Lev	el of Se	rvice		F	.,		
			A.									

	*	-	-	1	←	4	4	†	-	-	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations		4	7	*	4					34		7
Sign Control		Free			Free		. 44 - 14	Stop	H. T. N		Stop	
Grade		0%			0%			0%			0%	
Volume (veh/h)	0	1616	191	107	272	0	0	0	0	18	0	804
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h)	0	1666	197	110	280	0	0	0	0	19	0	829
Pedestrians												
Lane Width (ft)	·	8				X - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		X TO LESS				
Walking Speed (ft/s)												
Percent Blockage	- 1			. 1 ""			***************************************					viez v
Right turn flare (veh)												
Median type		===						None			None	
Median storage veh)												
vC, conflicting volume	280			1863			2996	2167	1666	2167	2364	280
vC1, stage 1 conf vol												
vC2, stage 2 conf vol			- JE .	1,1113				= M = 1		i MuseuS		- MOTE
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100		Y =	66	E	× =1======	0	100	100	26	100	0
cM capacity (veh/h)	1288		• • • • • • • • • • • • • • • • • • • •	326			0	31	120	25	23	761
Direction, Lane#	EB 1	EB 2	WB1	WB 2	SB 1	SB 2						
Volume Total	1666	197	110	280	19	829		SALES IN THE SALES			***************************************	
Volume Left	0	0	110	0	19	0		*				
Volume Right	0	197	0	0	0	829						
cSH	1700	1700	326	1700	25	761						
Volume to Capacity	0.98	0.12	0.34	0.16	0.74	1.09						
Queue Length (ft)	0	0	36	0	56	560						
Control Delay (s)	0.0	0.0	21.6	0.0	314.6	82.0						
Lane LOS			C		F	F			1 a			
Approach Delay (s)	0.0		6.1		87.1							
Approach LOS					F				E. E.			
Intersection Summary												×
Average Delay	uu viisii	âren We	24.6					# 88: D		8388	a de la	
Intersection Capacity Ut	ilization	1	07.1%	1	CU Lev	el of Ser	vice		F			
					***************************************	S		12, 45-				

											3/1	0/200
Movement	حر	-	•	₩	- +	- 4	1	†	-	1	1	4
Lane Configurations	EBI	. E8			L WB	T WBR	NBL	NBT	NBR	SBL	SBT	
Sign Control			r.	Pl .	1	f				*	301	SBF
Grade		Free			Fre			Stop			Stop	
Volume (veh/h)		0%		&******	09	_		0%			0%	
Peak Hour Factor	0.97				· · · · · · · · · · · · · · · · · · ·		0	0	0	20	0 %	737
Hourly flow rate (veh/h)	0.97	,					0.97	0.97	0.97	0.97	0.97	0.97
Pedestrians		725	22	1 19	4 83	1 0	0	0	0			760
Lane Width (ft)						*******				······································		700
Walking Speed (ft/s)						***************************************				·····		
Percent Blockage			• • • • • • • • • • • • • • • • • • • •							*****************	****************	
Right turn flare (veh)												
Median type						*******						
Median storage veh)								None			None	
vC, conflicting volume	831				g	***************			***************************************		90° 70° 80° 70° 70° 70° 70° 70° 70° 70° 70° 70° 7	·······I
vC1, stage 1 conf vol	001			945			2703	1943	725	1943	2164	831
vC2, stage 2 conf vol	an		,		************					or o	····	
tC, single (s)	4.1										1	
tC, 2 stage (s)		••••••		4.1			7.1	6.5	6.2	7.1	6.5	6.2
tF (s)	2.2			2.0	······							11/
p0 queue free %	100			2.2 73			3.5	4.0	3.3	3.5	4.0	3.3
cM capacity (veh/h)	806			730			0	100	100	47	100	0
Direction, Lane #		Orano de la compansión de		730			0	48	427	39	35	371
Volume Total	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2						91000000000
Volume Left	725	221	194	831	21	760		**** ***********				
/olume Right	0	0	194	.0	21	0						
SH	0	221	0	0	0	760						
/olume to Capacity	1700	1700	730	1700	39	371			***********			
biological Capacity	0.43	0.13	0.27	0.49	0.53	2.05						
Queue Length (ft)	0	0	27	0	46	1347						20100000000
Control Delay (s)	0.0	0.0	11.7	0.0	172.4	504.4				······································		
			В	· =	F	F					**************	
pproach Delay (s) pproach LOS	0.0		2.2		495.6							
itersection Summary									•••••••••••••••••••••••••••••••••••••••			
verage Delay			141.4									
tersection Capacity Utili	zation		7.4%	IC	U Leve	of Serv	ice					
	3	· · · · · · · · · · · · · · · · · · ·				. 51 0010	106		E			

	*	→	*	1	—		1	†	1	1		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7	16	4					W.		7
Sign Control		Free			Free		E.X	Stop			Stop	
Grade		0%		r runnung	0%			0%	N. N. 201	V 1 2121	0%	
Volume (veh/h)	0	811	246	216	930	0	0	0	0	23	0	850
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h) Pedestrians	0	836	254	223	959	0	0	0	0	24	0	876
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)				· =								
Median type							ELM .	None			None	. 5
Median storage veh)								///				
vC, conflicting volume	959			1090			3116	2240	836	2240	2494	959
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)	2.2											
tF (s)	100			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free % cM capacity (veh/h)	722			65 644		£ 1	0	100 28	100 369	0 22	100 19	0 313
						*****************	U	20	208	22	19	313
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2				****		
Volume Total	836	254	223	959	24	876						
Volume Left	0	0	223	0	24	0	** * -					
Volume Right	0	254	0	0	0	876						
A	1700	1700	644	1700	1.07	313						
Volume to Capacity Queue Length (ft)	0.49	0.15	0.35 39	0.56	77	2.80 1870						
Control Delay (s)	0.0	0.0	13.5	0.0	464.3	843.3					.8,	
Lane LOS	0.0	0.0		0.0	404.3 F	643.3 F				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Approach Delay (s)	0.0		B 2.5		833.3							
Approach LOS	0.0		2.0	E EU	F					3		
Intersection Summary												
Average Delay	*		237.4		100000000000000000000000000000000000000							
Intersection Capacity Uti	lization	1	11.4%	J.	CU Lev	el of Se	rvice		G		,	
									-			

	*	\rightarrow	-	1	←	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7	18	4					ኝ		7
Sign Control		Free		3 5 8	Free			Stop		· · · · · · · · · · · · · · · · · · ·	Stop	1 : 200
Grade		0%	*****		0%			0%			0%	ر
Volume (veh/h)	. 0	1070	246	216	930	0	0	0	0	23	0,0	869
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h)	0	1103	254	223	959	. 0	0	0	0	24	0.01	896
Pedestrians									······································			
Lane Width (ft)	V. 3.4.1.		······························				XX		E			
Walking Speed (ft/s)		***************************************					***************	*******************				
Percent Blockage	:											
Right turn flare (veh)			•• • • • • • • • • • • • • • • • • • • •									
Median type						=======================================		None			None	· · · · · · · · · · · · · · · · · · ·
Median storage veh)											34000	
vC, conflicting volume	959			1357			3403	2507	1103	2507	2761	959
vC1, stage 1 conf vol			************									
vC2, stage 2 conf vol			x					8				
tC, single (s)	4.1			4.1	o		7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)		×						0.0			0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	100	= 31, 2 , 3		56			0	100	100	0.0	100	0.0
cM capacity (veh/h)	722			510			0	16	258	13	11	313
Direction, Lane#	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2	-					
Volume Total	1103	254	223	959	24	896						
Volume Left	0	254	223	959	24	090						
Volume Right	0	254	223 0	0	∠4 0	896						
cSH	1700	1700	510	1700	13	313						:
Volume to Capacity	0.65	0.15	0.44	0.56	1.85	2.86						
Queue Length (ft)	0.03	0.13	55	0.50	94	1930						
Control Delay (s)	0.0	0.0	17.4		9 4 1000.3						d	
Lane LOS	0.0	0.0		0.0		871.2						PROCESSOR (1997)
Approach Delay (s)	0.0		3.3		F.	F						
Approach LOS	0.0		3.3	=,\\\ \= \\	874.6 F							
Intersection Summary										•••••		
Average Delay	8 == 1		233.7						,			
ntersection Capacity Uti	lization	1	12.6%	1	CU Lev	el of Ser	vice		G			**************

	۶	\rightarrow	7	1	←	*	4	†	-	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	37	^		75.35	A	77		414	7	75	45	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	50	50	50	4.0
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		.9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00
Frt		0.990				0.850	regardance.		0.850		0.993	
Flt Protected	0.950			0.950			*****	0.993		0.950	0.980	
Satd. Flow (prot)	1787	1862	0	3467	1881	1599	0	3549	1599	1698	1739	0
Flt Permitted	0.950			0.950				0.993		0.950	0.980	
Satd. Flow (perm)	1787	1862	0	3467	1881	1599	0	3549	1599	1698	1739	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3	A A A A A A A A A A A A A A A A A A A			264			68	reteration of the	2	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	- V
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9			41.5			58.9			22.8	
Volume (vph)	28	441	32	321	231	256	15	94	243	881	342	31
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	29	455	33	331	238	264	15	97	251	908	353	32
Lane Group Flow (vph)	29	488	0	331	238	264	0	112	251	633	660	0
Turn Type	Prot	**************		Prot		Perm	Split		pm+ov	Split		
Protected Phases	7	4		3	8		2	2	3	6	6	
Permitted Phases						8			2			
Detector Phases	7	4		3	8	8	2	2	3	6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	10.0	35.0	0.0	15.0	40.0	40.0	21.0	21.0	15.0	49.0	49.0	0.0
Total Split (%)	8%	29%	0%	13%	33%	33%	18%	18%	13%	41%	41%	0%
Maximum Green (s)	6.0	31.0		11.0	36.0	36.0	17.0	17.0	11.0	45.0	45.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag			Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes			Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	None	Min	Min	
Walk Time (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	د بردید	0			0	0	0	0		0	0	
Act Effct Green (s)	5.9	31.0		11.0	40.1	40.1		8.9	19.9	45.0	45.0	Ē
Actuated g/C Ratio	0.05	0.28		0.10	0.36	0.36		0.08	0.18	0.40	0.40	
v/c Ratio	0.32	0.94		0.97	0.35	0.36		0.40	0.74	0.93	0.94	
Uniform Delay, d1	54.1	38.7		51.2	27.2	0.0		49.8	16.3	33.0	33.2	
Delay	52.6	58.3		81.0	28.4	3.6		48.9	17.1	45.3	47.6	
LOS	D	E		F	C	Α		D	В	D	D	4 **
Approach Delay		58.0			41.5			26.9			46.5	
Approach LOS		E			D			С			D	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

	۶	>	7	-	-		1	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	20	342		124	132	0		41	68	449	352	
Queue Length 95th (ft)	53	#568		#223	210	59		70	118	#718	#690	***************************************
Internal Link Dist (ft)	\$ L	1279			1745		,======	2511			924	
50th Up Block Time (%)												***************************************
95th Up Block Time (%)						E	3					
Turn Bay Length (ft)												
50th Bay Block Time %		Α				r di			E		1	
95th Bay Block Time %												
Queuing Penalty (veh)		==:::::::::::::::::::::::::::::::::::::										1
Intersection Summary											100110000	
	ther						Wa 🗏 😑					
Cycle Length: 120												
Actuated Cycle Length: 1	111.9			¥ = =		.21						
Natural Cycle: 120												
Control Type: Actuated-U	Jncoor	dinated										
Maximum v/c Ratio: 0.97	7	********										
Intersection Signal Delay	/ 44.7			- 1, 8	ntersec	tion LOS	3: D	*				
Intersection Capacity Uti				1	CU Lev	el of Se	rvice D					
# 95th percentile volun				queue r	nay be	longer.		å <u></u>				
Queue shown is max												

Splits and Phases: 3: Route 85 & Dilla Street

ø2	№ ø6	€ ø3	→ ø4
21 8	49.5	// 15s * 4	.35 s
		10% 40	ø8 !*

	۶	-	*	1	4	*	4	†	1	1	1	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	365	P		100	4	7		414	7	36	€ }>	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	50	50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00
Frt		0.990				0.850			0.850		0.993	= TW (§
Flt Protected	0.950			0.950				0.993		0.950	0.981	
Satd. Flow (prot)	1787	1862	.0	3467	1881	1599	0	3549	1599	1698	1741	0
Flt Permitted	0.950			0.950				0.993		0.950	0.981	
Satd. Flow (perm)	1787	1862	. 0	3467	1881	1599	- 0	3549	1599	1698	1741	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2				304		See Assets	55		2	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	2 V V
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9		- **	41.5			58.9			22.8	
Volume (vph)	32	508	38	370	266	295	18	117	304	1016	417	35
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	33	524	39	381	274	304	19	121	313	1047	430	36
Lane Group Flow (vph)	33	563	0	381	274	304	0	140	313	741	772	0
Turn Type	Prot			Prot		Perm	Split		pm+ov	Split	i = Fi = 3	A
Protected Phases	7	4		3	8		2	2	3	6	6	
Permitted Phases						8			2			
Detector Phases	7	4		3	8	8	2	2	3	6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	11
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	11.0	45.0	0.0	19.0	53.0	53.0	21.0	21.0	19.0	65.0	65.0	0.0
Total Split (%)	7%	30%	0%	13%	35%	35%	14%	14%	13%	43%	43%	0%
Maximum Green (s)	7.0	41.0		15.0	49.0	49.0	17.0	17.0	15.0	61.0	61.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag			Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes			Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	None	Min	Min	
Walk Time (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0	11.0	11.0	11.0	No in	11.0	11.0	
Pedestrian Calls (#/hr)		0			0	0	. 0	0		0	0	
Act Effct Green (s)	6.7	41.0		15.0	53.5	53.5		11.0	26.0	61.0	61.0	
Actuated g/C Ratio	0.05	0.28		0.10	0.37	0.37		0.08	0.18	0.42	0.42	
v/c Ratio	0.41	1.06		1.06	0.39	0.39	L'est	0.52	0.94	1.03	1.04	
Uniform Delay, d1	70.0	51.3		65.4	34.1	0.0		64.8	24.9	42.4	42.2	
Delay	68.4	97.5		113.9	35.3	3.6		63.9	32.4	77.0	80.8	
LOS	E	F		F	D	A		E	С	Е	F	
Approach Delay	•	95.9			56.5			42.1			78.9	
Approach LOS		F			E			D			E	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	۶	-	*	1	←	*	4	†	-	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	31	~578		~201	198	0	1	67	138	~781	~665	
Queue Length 95th (ft)	70	#839		#317	293	66		104	#257	#1076	#1128	
Internal Link Dist (ft)		1279			1745			2511		ester i	924	
50th Up Block Time (%)			i %	************	ar 1 Sauta a 1 Sau	198	***************************************	and Bellevier			- markitasa	
95th Up Block Time (%)	± =T		= 8 38			***				13%	15%	
Turn Bay Length (ft)												
50th Bay Block Time %						,			<u></u>			
95th Bay Block Time %												
Queuing Penalty (veh)									.;			
Intersection Summary												
Area Type: Of	ther	- :::									1880	
Cycle Length: 150	e characteristic e e e e e e					. Ai						
Actuated Cycle Length: 1	44	=									3/16	
Natural Cycle: 150		5	101			and the second	**** ******* **					***************************************
Control Type: Actuated-L	Jncoor	dinated										
Maximum v/c Ratio: 1.06	}	endendada e yezhoù yez		**************								***************************************
Intersection Signal Delay	71.0	FE II - KR		1	ntersec	tion LOS	Ε					
Intersection Capacity Util	lization	100.7%	3	1		el of Ser					*****************	**************
~ Volume exceeds cap												1 200
Queue shown is maxi					contracts (SE) and P().							
# 95th percentile volun					nav be	lonaer.						
Queue shown is maxi					or o¥. 17517041	:::::::::::::::::::::::::::::::::::::	*************		······································			

Splits and Phases: 3: Route 85 & Dilla Street

♦ ø2	√ P ø3 → ø4
Z1 s /// // (65 s	19 a 45 t
	Ø7 ← Ø8
	11 st 59 t

	A										3/1	1/2003
	7	\rightarrow	1	1	-	•	*	†	1	-	. Į	1
Lane Group	E8L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBF	SBL	· OBST	
Lane Configurations	36	74		P 90		7		**************	7		SBT	SBR
Ideal Flow (vphpl)	1900	1900	1900	1900			1900	4作 1900				il anna
Total Lost Time (s)	4.0	4.0	4.0	4.0		4.0	4.0	4.0				1900
Leading Detector (ft)	50	50		50			50					4.0
Trailing Detector (ft)	0	0		0		0	0	50 0	.50			
Turning Speed (mph)	15	- 13	9	15	_	.9	15	U	0	_	-	
Lane Util. Factor	1.00	1.00	1.00	0.97		1.00	0.95	0.05	4 00		***	9
Frt	11	0.990	1.00	0.07	1.00	0.850	0.95	0.95	1.00			1.00
FIt Protected	0.950	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		0.950		0.030		0.002	0.850	ter it in the end and a	0.993	a.a Cai
Satd. Flow (prot)	1787	1862	0	3467	1881	1500		0.993	4500	0.950	0.982	
Flt Permitted	0.950	1002	0	0.950	1001	1599	0	3549	1599		1743	0
Satd. Flow (perm)	1787	1862	0	3467	1881	1.500		0.993		0.950	0.982	
Right Turn on Red		1002	Yes	3407	1001	1599	U	3549	1599		1743	0
Satd. Flow (RTOR)		2	165			Yes		·	Yes			Yes
Headway Factor	1.00	1.00	1.00	1.00	4 00	304			43		2	
Link Speed (mph)	1.00	30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Distance (ft)		1359	·		30			30			30	
Travel Time (s)					1825			2591			1004	
Volume (vph)	22	30.9		500	41.5			58.9			22.8	= 10
Peak Hour Factor	32	508	38	598	266	295	18	122	331	1016	463	35
Heavy Vehicles (%)	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Lane Group Flow (vph)	33	524	39	616	274	304	19	126	341	1047	477	36
Turn Type	33	563	0	616	274	304	0	145	341	763	797	0
Protected Phases	Prot			Prot		Perm	Split		pm+ov	Split		
Permitted Phases	/	4		3	8		2	2	3	6	6	
Detector Phases	_					8			2	V V		
Minimum Initial (s)	7	4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	8	8	2	2	3	6	6	
Minimum Split (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Total Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	
Total Split (%)	11.0	42.0	0.0	26.0	57.0	57.0	21.0	21.0	26.0	61.0	61.0	0.0
Maximum Cooper fee	7%	28%	0%	17%	38%	38%	14%	14%	17%	41%	41%	0%
Maximum Green (s) Yellow Time (s)	7.0	38.0		22.0	53.0	53.0	17.0	17.0	22.0	57.0	57.0	
All Bod Time (S)	3.5	3.5	** ** *****	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s) Lead/Lag	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
	Lead	Lag		Lead	Lag	Lag			Lead			4
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes			Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	None	Min	Min	
Walk Time (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	THE W
Flash Dont Walk (s)		11.0			11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0	0	0	0		0	0	
Act Effct Green (s)	6.7	38.0		22.0	57.5	57.5		11.2	33.2	57.0	57.0	
Actuated g/C Ratio	0.05	0.26		0.15	0.40	0.40		0.08	0.23	0.40	0.40	
v/c Ratio	0.41	1.14	***************************************	1.16	0.37	0.37		0.53	0.85	1.14	1.16	
Uniform Delay, d1	70.1	52.9		62.0	31.3	0.0		64.8	24.3	44.4	44.3	
Delay	68.6	124.8		136.9	32.4	3.3		63.9	26.0		119.1	
LOS	Ė	F		F	С	Α		E	C	F	F	
Approach Delay		121.7			78.9			37.3	0		116.2	11 4
Approach LOS		F			E		7	D			F F	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	۶	-	*	1	-	*	4	Ť	-	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SRI	SBT	SAP
Queue Length 50th (ft)	31	~618		~353	190	0		70	153	~876	~887	
Queue Length 95th (ft)	70	#879		#490	281	63	12.,	108		#1175		
Internal Link Dist (ft)		1279			1745			2511	greenweer on the	**	924	
50th Up Block Time (%)				1				.::::::::::::::::::::::::::::::::::::::				Milki
95th Up Block Time (%)		38 F .	= '					*** * *** ****		21%	28%	
Turn Bay Length (ft)	*************											
50th Bay Block Time %			1			***************************************		T	¥ 53		::::::::::::::::::::::::::::::::::::::	::···
95th Bay Block Time %												i t s.ii
Queuing Penalty (veh)				4-								5 - 5
Intersection Summary											······································	
Area Type: O	ther											
Cycle Length: 150									**************			
Actuated Cycle Length: 1	144.2	8 8483	<u></u>	FÉ IEI .								782
Natural Cycle: 150									Carrage Security	and sameline		
Control Type: Actuated-L	Jncoor	dinated			= 888 7							
Maximum v/c Ratio: 1.16		*******************										
Intersection Signal Delay	: 95.5		**************************************	I	ntersec	tion LOS	8: F					
Intersection Capacity Uti		107.5%	ó	[(CU Lev	el of Se	rvice F					
 Volume exceeds cap 	acity, o	jueue is	theore	tically in	finite.						·····	
Queue shown is maxi	mum a	fter two	cycles				***************					
# 95th percentile volun	ne exce	eds ca	pacity.	aueue n	nav be	lonaer.						
Queue shown is maxi	mum a	fter two	cycles	.a.e.uaaaaaa.a	2000 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (1980 (
			,									

Splits and Phases: 3: Route 85 & Dilla Street

★ ø2	№ ø6	€ ø3	→ ø4
213	61 s	26 s	€ 23
		ø7 ø8	
		11.6 77.5	New York

	۶	\rightarrow	-	1	+	4	4	†	-	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	30	17		14 14	*	77		414	7	95	(
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	50	50	50	70
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15	** ***	9	15		- 9	15		9	15		
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00
Frt		0.980				0.850			0.850		0.982	1.00
Flt Protected	0.950			0.950				0.993		0.950	0.994	
Satd. Flow (prot)	1787	1844	0	3467	1881	1599	0	3549	1599		1744	.0
Flt Permitted	0.950	e is telle lastern		0.950		1775	7	0.993	******	0.950	0.994	37
Satd. Flow (perm)	1787	1844	- 0	3467	1881	1599	0	3549	1599	1698		0
Right Turn on Red	. 11 T.S.		Yes	. 4 194	100 (Yes	III	0010	Yes	1000.	' 4.7.7	Yes
Satd. Flow (RTOR)		9				558			242		8	103
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30		1.00	30	1.00		30	1.00	1.00	30	1.00
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9			41.5		******	58.9			22.8	
Volume (vph)	51	191	30	277	490	697	73	447	348	349	252	39
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	53	197	31	286	505	719	75	461	359	360	260	
Lane Group Flow (vph)	53	228	0	286	505	719	7,3	536	359	322	338	4 0 0
Turn Type	Prot	220	Ü	Prot	303						330	U
Protected Phases	7	4		3	8	Perm	Split 2	2	pm+ov 3	Split 6	6	
Permitted Phases				3					2		0	
Detector Phases	7			3	8	8 8	2	2	3	6		
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	6 4.0	6 4.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	arrent de la companya		
Total Split (s)	8.0	22.0	0.0	15.0	29.0	29.0	21.0	21.0	15.0	20.0	20.0	0.0
Total Split (%)	10%	28%	0%	19%	36%	36%	26%		19%	22.0	22.0	0.0
Maximum Green (s)	4.0	18.0	0.70		25.0			26%		28%	28%	0%
Yellow Time (s)	3.5	3.5		11.0 3.5	3.5	25.0 3.5	17.0	17.0	11.0	18.0	18.0	
	0.5	0.5					3.5	3.5		3.5	3.5	
All-Red Time (s) Lead/Lag				0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lead-Lag Optimize?	Lead Yes	Lag		Lead	Lag	Lag			Lead			
Vehicle Extension (s)	3.0	Yes 3.0		Yes	Yes	Yes	2.0	2.0	Yes	2.0	2.0	
Recall Mode	None			3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Walk Time (s)	MOHE	None		None	None	None	Min	Min	None	Min	Min	
Flash Dont Walk (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Pedestrian Calls (#/hr)		11.0	. :		11.0	11.0	11.0	11.0		11.0	11.0	
Act Effet Green (s)	4040	0		40.4	0	0	0	0	25.0	0	0	
	4.1	15.5		10.1	23.8	23.8		14.9	25.0	16.4	16.4	
Actuated g/C Ratio v/c Ratio	0.05	0.21		0.14	0.32	0.32		0.20	0.34	0.22	0.22	
the control of the co	0.55	0.58		0.60	0.83	0.80		0.74	0.51	0.85	0.85	
Uniform Delay, d1	35.1	24.1		30.2	23.3	4.5		27.8	2.9	27.7	27.1	
Delay LOS	51.6	26.3		31.9	32.3	8.7		28.7	3.6	39.4	38.6	
	D	С		С	С	Α		C	Α	D	D	
Approach Delay		31.1	-		21.0			18.6			39.0	:
Approach LOS		С			С			B			D	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

	۶	-	*	1	♣	•	4	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NRI	NBT	NER	SBL	SBT	CDD
Queue Length 50th (ft)	27	97		70	235	61		131	0	163	167	26313
Queue Length 95th (ft)	#80	167		109	#406	#287		185	40	#308	#318	
Internal Link Dist (ft)		1279			1745			2511			924	
50th Up Block Time (%)								LETT.LE.			J2-4	
95th Up Block Time (%)						,	***************************************					
Turn Bay Length (ft)												
50th Bay Block Time %	= =	18p / 10							W			
95th Bay Block Time %										**		
Queuing Penalty (veh)								··· = ···				
Intersection Summary												
Area Type: Of	ther				V 100							
Cycle Length: 80	Colore e da la casa da						*******					
Actuated Cycle Length: 7	3.5	XXXX	1 E8 VIII						320052			3877.83
Natural Cycle: 80												
Control Type: Actuated-L	Jncoor	dinated		W HELIS								
Maximum v/c Ratio: 0.85												
Intersection Signal Delay	. 24.8		×	- 1	ntersect	ion LOS	·C					
Intersection Capacity Util		76.2%		10		el of Sei		************				i
# 95th percentile volun	ne exce	eds car	oacity o	ueue n	nav be	onder						
Queue shown is maxi	mum a	fter two	cycles	##000000000000000000000000000000000000			***************************************				······································	

1 02	№ ø6	€ € ø3	→ @4	→ ø4			
11 8	22%	15 %	22.4				
		ø7 *	ø8				
		The second secon		00000 777 97777			

	*	-	7	1	4-	*	4	†	-	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WET	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	13		95 W	4	74		414	7	*	€\$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	- 50	50	50	- 7.0
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00
Fit		0.979			W =	0.850			0.850		0.983	
Fit Protected	0.950			0.950				0.993		0.950	0.996	
Satd. Flow (prot)	1787	1842	0	3467	1881	1599	0	3549	1599	1698	1750	0
Flt Permitted	0.950			0.950				0.993		0.950	0.996	
Satd. Flow (perm)	1787	1842	0	3467	1881	1599	0	3549	1599	1698	1750	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9				563			210		7	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30		.;	30	
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9			41.5			58.9			22.8	
Volume (vph)	58	220	36	343	565	804	88	535	417	402	312	45
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	60	227	37	354	582	829	91	552	430	414	322	46
Lane Group Flow (vph)	60	264	0	354	582	829	0	643	430	382	400	0
Turn Type	Prot			Prot		Perm	Split		om+ov	Split		
Protected Phases	7	4		3	8		2	2	3	6	6	
Permitted Phases		******				8			2		e final	
Detector Phases	7	4		3	8	8	2	2	3	6	6	,
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	8.0	25.0	0.0	16.0	33.0	33.0	23.0	23.0	16.0	26.0	26.0	0.0
Total Split (%)	9%	28%	0%	18%	37%	37%	26%	26%	18%	29%	29%	0%
Maximum Green (s)	4.0	21.0	S	12.0	29.0	29.0	19.0	19.0	12.0	22.0	22.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	***************************************
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	80.000
Lead/Lag	Lead	Lag		Lead	Lag	Lag			Lead			
Lead-Lag Optimize?	Yes	Yes	W	Yes	Yes	Yes	/		Yes		13 136	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	None	Min	Min	
Walk Time (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0	. 11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	· · · · · · · · · · · · · · · · · · ·	0			0	0	0	0		0	0	
Act Effct Green (s)	4.0	18.7		11.4	28.1	28.1		17.8	29.2	20.8	20.8	
Actuated g/C Ratio	0.05	0.22		0.13	0.33	0.33		0.21	0.34	0.24	0.24	
v/c Ratio	0.72	0.64		0.76	0.94	0.92		0.87	0.63	0.92	0.92	
Uniform Delay, d1	41.2	28.5		35.9	28.0	8.3		32.8	5.7	31.7	31.1	
Delay	74.8	30.0		40.3	47.2	18.9		38.3	6.2	50.0	49.3	
LOS	E	С		D	D	В		D	Α	D	D	
Approach Delay		38.3			32.5			25.4			49.6	
Approach LOS		D			С			С			D	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	*	-	7	1	₹.	*		†		-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	35	130		101	322	163		186	36	223	230	i Kiliyin
Queue Length 95th (ft)	#104	211		#162	#534	#443		#277	69	#402	#318	
Internal Link Dist (ft)		1279			1745			2511			924	
50th Up Block Time (%)					****							
95th Up Block Time (%)		*1										
Turn Bay Length (ft)												
50th Bay Block Time %							3811 588 			:		
95th Bay Block Time %												
Queuing Penalty (veh)				maananii.	and white							
Intersection Summary												
Area Type: O	ther		1. 33.		- X - I	 E						
Cycle Length: 90												
Actuated Cycle Length:	85											
Natural Cycle: 90												
Control Type: Actuated-	Uncoor	dinated		**								
Maximum v/c Ratio: 0.9	4											
Intersection Signal Dela	y: 34.5		VV 1 V 5	į.	ntersec	tion LOS	S: C					
Intersection Capacity Ut	ilizatior	86.5%		1	CU Lev	el of Se	rvice D					
# 95th percentile votur	ne exc	eeds ca	pacity,	queue r	nay be	langer.						
Queue shown is max	imum a	after two	cycles	S.								

Splits and Phases: 3: Route 85 & Dilla Street

1 a2	- Route 65 & Billia Girect	€ a3	→ a4
233	25.0	115 8	25:
		ø7 ø8	}
		18 s 133 s	

	۶	\rightarrow	*	1	←	*	4	†	<i>></i>	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NET	NBR	SBL	SBT	SBR
Lane Configurations	3	1,		100	4	74		44	F	32	€\$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	· · ·	50	50	50	50	50	50	50	50	-3
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	0.95	0.95	1.00	0.95	0.95	1.00
Fd		0.979	111			0.850			0.850		0.983	
Flt Protected	0.950			0.950				0.994		0.950	0.997	*************
Satd. Flow (prot)	1787	1842	.0	3467	1881	1599	0	3553	1599	1698	1751	. 0
Flt Permitted	0.950			0.950				0.994		0.950	0.997	
Satd. Flow (perm)	1787	1842	0	3467	1881	1599	0	3553	1599	1698	1751	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		8				538			159		7	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30	33		30	
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9			41.5	_ × _ × _ ×		58.9			22.8	
Volume (vph)	58	220	36	362	565	804	88	587	676	402	322	45
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	60	227	.37	373	582	829	91	605	697	414	332	46
Lane Group Flow (vph)	60	264	0	373	582	829	0	696	697	387	405	0
Turn Type	Prot			Prot	_	Perm	Split		pm+ov	Split		
Protected Phases	7	4		3	8		2	2	3	6	6	
Permitted Phases						8	7		2			
Detector Phases	7	4		3	8	8	2	2	3	6	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	8.0	21.0	0.0	20.0	33.0	33.0	24.0	24.0	20.0	25.0	25.0	0.0
Total Split (%)	9%	23%	0%	22%	37%	37%	27%	27%	22%	28%	28%	0%
Maximum Green (s)	4.0	17.0		16.0	29.0	29.0	20.0	20 0	16.0	21.0	21.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lead	Lag		Lead	Lag	Lag			Lead			
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes			Yes			
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min	None	Min	Min	
Walk Time (s)		5.0			5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0	0	0	0		0	0	
Act Effct Green (s)	4.0	15.7		16.1	29.4	29.4		19.3	35.3	21.0	21.0	
Actuated g/C Ratio	0.04	0.18		0.18	0.33	0.33		0.22	0.40	0.24	0.24	
v/c Ratio	0.76	0.79		0.59	0.93	0.93		0.89	0.95	0.96	0.96	
Uniform Delay, d1	42.8	33.1		33.5	28.7	9.6		33.9	10.8	33.6	33.0	
Delay	77.1	38.4		33.9	48.8	22.8		39.7	27.8	63.9	62.7	
LOS	E	D		С	D	С		D	С	E	Ε	
Approach Delay		45.6			33.6			33.8			63.3	
Approach LOS		D			С			С			Ė	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	≯	-	7	1	-	*	1	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	35	139		102	322	185		202	112	230	237	f f
	#104	#251		147	#534	#464		#301	#432	#421	#346	
Internal Link Dist (ft)		1279		1	1745			2511			924	
50th Up Block Time (%)		*** * * * * * * * * * * * * * * * * * *								***************************************		
95th Up Block Time (%)			*			1				127		×
Turn Bay Length (ft)				**************			***************************************			***************	**************	*************
50th Bay Block Time %	2 1					=======================================	=======================================		.8388 _ [15]			-i .
95th Bay Block Time %					***************************************		***********			***************************************		
Queuing Penalty (veh)		***					- #Ē				V.=. V.=.	
Intersection Summary												
Area Type: O	ther	·····			* *					= =		*****
Cycle Length: 90												
Actuated Cycle Length: 8	38.1											
Natural Cycle: 90							*************					
Control Type: Actuated-L	Jncoor	dinated							2		8	
Maximum v/c Ratio: 0.96	3					~						*************
Intersection Signal Delay	/. 40.0				ntersec	ion LOS	: D		8 == 1			
Intersection Capacity Uti	lization	89.0%		ŀ	CU Lev	el of Ser	vice D			****************	. , ,	
# 95th percentile volun												
Queue shown is maxi					ana na e ro na politica	un ar u ru tgadagā, , , .						

Splits and Phases: 3: Route 85 & Dilla Street

1 ø2	№ ø6	€ ø3 → ø4
24 s	25.6	20:2 23:s:/
		- ø7 ø8 8

	۶	\rightarrow	*	•	+	*		1	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		473			44	7		47			44	ř
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		75
Storage Lanes	0		0	0		1	0		0	0		1
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15	Lette IIII.	9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.95	0.95	0.95	0.95	1.00
Frt		0.976				0.850		0.943				0.850
Flt Protected		0.997			0.980			0.989			0.972	
Satd. Flow (prot)	0	3478	0	0	3503	1599	0	3333	0	. 0	3474	1599
Flt Permitted		0.926			0.673			0.798			0.634	******
Satd. Flow (perm)	0	3230	0	0	2405	1599	0	2690	0	0	2266	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		60	VAPAA =			152		162				60
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1422			697			1702			2591	
Travel Time (s)	4	32.3			15.8			38.7	4		58.9	
Volume (vph)	31	355	73	143	203	147	94	161	157	209	147	58
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	32	366	75	147	209	152	97	166	162	215	152	60
Lane Group Flow (vph)	0	473	0	0	356	152	0	425	0	0	367	60
Tum Type	pm+pt			Perm		Perm	Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8		8	2			6		6
Detector Phases	7	4		8	8	8	2	2		6	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Minimum Split (s)	8.0	20.0		20.0	20.0	20.0	20.0	20.0		20.0	20.0	20.0
Total Split (s)	8.0	28.0	0.0	20.0	20.0	20.0	22.0	22.0	0.0	22.0	22.0	22.0
Total Split (%)	16%	56%	0%	40%	40%	40%	44%	44%	0%	44%	44%	44%
Maximum Green (s)	4.0	24.0		16.0	16.0	16.0	18.0	18.0		18.0	18.0	18.0
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag	Lead			Lag	Lag	Lag				0 = 0		
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None	None	Min	Min		Min	Min	Min
Walk Time (s)		5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)		11.0		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0	0	0	0		0	0	0
Act Effct Green (s)		14.0		1	9.9	9.9		10.0			10.0	10.0
Actuated g/C Ratio		0.39			0.35	0.35		0.35			0.35	0.35
v/c Ratio		0.36		111111	0.42	0.23		0,40		379	0.46	0.10
Uniform Delay, d1		5.8			6.8	0.0		4.0			6.8	0.0
Delay		5.4	4	et	7.6	2.1		4.6			7.7	2.9
LOS		А	*******		Α			Α			Α	Α

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

	≯	-	-		←	1	1	†	-	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SRI	SBT	SAD
Approach Delay		5.4			5.9			4.6			7.0	******
Approach LOS		Α			Α			Δ			Δ	
Queue Length 50th (ft)	4	18		· Y. W	17	0	~~~	ົດ			17	ົ
Queue Length 95th (ft)	erererere Vistor	54			51	22		35			53	0
Internal Link Dist (ft)					617			1622			2511	U.
50th Up Block Time (%)		e Makanali									***************************************	
95th Up Block Time (%)						18 (3)	N=05			SIM MASS 12		
Turn Bay Length (ft)	*****************				***************************************							75
50th Bay Block Time %					- 7 8							73
Som Day Block Time %												
Queuing Penalty (veh)							Will be #				14	= -07700
Intersection Summary				· · · · · · · · · · · · · · · · · · ·								
Area Type: Ot	her				**********							
Cycle Length: 50												······
Actuated Cycle Length: 2	8.3	8× 100 17			= = × ×			,	······································	#1 23300		
Natural Cycle: 50	*******************************	*************										
Control Type, Actuated-L	Incoord	inated			4						······································	
Maximum v/c Ratio: 0.46		acamanan.										
Intersection Signal Delay				fi	ntersect	ion LOS	Α					
Intersection Capacity Util		61.4%		Į(energy and the same of the	el of Ser	***************					
Splits and Dhases: 4: E	Davida di	00 =										

Splits and Phases: 4: Route 16 & Fortune Blvd

₫ ₀₂	<u>→</u> ø4
224	28 s
♥ ™ ø6	≯ _{Ø7}
7.4	20 to 10 to

_		\rightarrow	*	1	4	•	1	Ť	1	-	+	4
Lane Group E	8L	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			414	71		472		*	4	7
Ideal Flow (vphpl) 19	00	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0		75
Storage Lanes	0		0	. 0		1	. 0		0	1	=	1
Total Lost Time (s)	1.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	77	50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
	95	0.95	0.95	0.95	0.95	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Fit		0.971				0.850		0.947			\$ 2.11	0.850
Flt Protected		0.997			0.981			0.988		0.950		
Satd. Flow (prot)	0	3460	0	0	3506	1599	0	3344	0	1787	1881	1599
Flt Permitted		0.918			0.649			0.828		0.270		
Satd. Flow (perm)	0	3186	0	- 0	2320	1599	0	2803	0	508	1881	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		57				223	E	165			٠	68
Headway Factor 1.	00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30		- F 51 8	30			30			30	
Link Distance (ft)		1422			697			1702			2591	
Travel Time (s)		32.3	::: ::::::::::::::::::::::::::		15.8		1	38.7			58.9	
Volume (vph)	35	425	109	165	253	216	120	214	181	278	181	66
Peak Hour Factor 0.	97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
	36	438	112	170	261	223	124	221	187	287	187	68
Lane Group Flow (vph)	0	586	0	0	431	223	0	532	0	287	187	68
Turn Type pm-	pt			Perm		pm+ov	Perm			pm+pt		Perm
Protected Phases	7	4			8	1		2		1	6	
Permitted Phases	4			8		8	2			6	×	6
Detector Phases	7	4		8	8	1	2	2		1	6	6
Minimum Initial (s)	1.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4 0
Minimum Split (s)	3.0	20.0		20.0	20.0	8.0	20.0	20.0		8.0	20.0	20.0
	3.0	28.0	0.0	20.0	20.0	12.0	20.0	20.0	0.0	12.0	32.0	32.0
	3%	47%	0%	33%	33%	20%	33%	33%	0%	20%	53%	53%
	0,1	24.0		16.0	16.0	8.0	16.0	16.0		8.0	28.0	28.0
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
) 5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
	ad			Lag	Lag	Lead	Lag	Lag		Lead		
	es		-	Yes	Yes	Yes	Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode No	ne	None		None	None	None	Min	Min		None	Min	Min
Walk Time (s)		5.0		5.0	5.0		5.0	5.0			5.0	5.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11 11 1 211	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0			0	0
Act Effct Green (s)		17.5			13.4	25.4		11.2		23.2	23.2	23.2
Actuated g/C Ratio		0.33			0.30	0.57		0.25		0.52	0.52	0.52
v/c Ratio		0.53			0.62	0.22		0.65	7	0.59	0.19	0.08
Uniform Delay, d1		11.9			13.4	0.0		9.9		6.1	5.7	0.0
Delay		11.6			14.2	1.1		10.8	1	9.2	6.8	2.4
LOS		В			В	Α		В		Α	Α	A

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	▶	-	*	1	4	*	4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay	19 12 1 E	11.6			9.8			10.8		4. F	7.5	
Approach LOS		В			Α			В			Α	
Queue Length 50th (ft)		57		1. N	48	0		37		37	22	0
Queue Length 95th (ft)		107	** ************************************		95	21	and a second of	95		#105	62	0
Internal Link Dist (ft)	7	1342	I X II TO Y		617			1622	s:		2511	
50th Up Block Time (%)		deren deren		***************************************							siiskiii fiis	
95th Up Block Time (%)			.7			= \$ 21,144						
Turn Bay Length (ft)												75
50th Bay Block Time %		1 1 1	E									
95th Bay Block Time %		25									2%	
Queuing Penalty (veh)									.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			**************************************
Intersection Summary												
Area Type: Of	her											
Cycle Length: 60												
Actuated Cycle Length: 4	4.9		······		3 IH							
Natural Cycle: 60		***************************************			***************************************							***************************************
Control Type: Actuated-L	Incoord	linated					***	∠w. s	es E. W. W			
Maximum v/c Ratio: 0.65		occasio acastas.										
Intersection Signal Delay	: 9.9	2 2 2 2		al a a	ntersect	ion LOS	Α			,		
Intersection Capacity Util		73.8%	************			el of Ser						
# 95th percentile volun	ie exce	eds car	pacity.	queue r	nav be	onger.						
Queue shown is maxi	mum a	fter two	cycles	es magazaranda (ö. •	ು ಬರಣ ಿಕ ್ಕು ನಾಡನ್ನು ಬಿ	er och e terationen.						

Splits and Phases: 4: Route 16 & Fortune Blvd

№ @1	া	<u></u> ø4	
12%	图4	B 29 a	
₽ ø6		₽ ₉₇	4

											3/	11/200
Wissiana American		→	*	1	- 4	- 4	4	†	1	. \	. 1	-ad
Lane Group	EB	E EST	EBF	Well	. WB	T WBR	NBL	NBT	A Territ		***************************************	-
Lane Configurations		413			41		and the second s	······································	NBF	R SBI	SBT	SB
Ideal Flow (vphpl)	1900	1900	1900	1900				47		3	1	
Storage Length (ft)	()	C			0.00	100.00		1900		1900	190
Storage Lanes) ⁽⁴⁾	C	_		1	0		(7
Total Lost Time (s)	4.0	4.0	4.0			0 4.0	0		C			
Leading Detector (ft)	5.0			50					4.0			4.
Trailing Detector (ft)	C			0			7.7			50	50	5
Turning Speed (mph)	15	rayer kiloni K	9	15			0	0		0	0	
Lane Util. Factor	0.95		0.95	0.95		9	15	ā.,	9			
Frt		0.975	0.00	0.50	0.95		0.95	0.95	0.95	1.00	1.00	1.0
Flt Protected	*** *	0.997			0.070	0.850		0.917				0.850
Satd. Flow (prot)	0				0.979			0.992		0.950		
Flt Permitted		0.883	- 0	0		Contract of the Contract of th	. 0	3251	0	1787	1881	1599
Satd. Flow (perm)	0	1 11			0.602			0.857		0.167		
Right Turn on Red		5011	0	0	2152	19 1 AT 11 N FG.	0	2809	0	314	1881	1599
Satd. Flow (RTOR)		0.0	Yes			Yes			Yes		% T.X.A.A.	Yes
Headway Factor	1.00	30				256		118				68
Link Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Distance (ft)		30			30			30			30	1.00
Travel Time (s)		1422			697		**** **********************************	1702			2591	
Volume (vph)		32.3			15.8			38.7			58.9	
Peak Hour Factor	35	516	109	190	264	248	120	214	409	552		
Heavy Vehicles (%)	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	181	66
Adi Flour Amb	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	0.97	0.97
Adj. Flow (vph)	36	532	112	196	272	256	124	221	422		1%	1%
Lane Group Flow (vph)		680	0	0	468	256	0	767	0	569	187	68
Turn Type	pm+pt			Perm			Perm			569	187	68
Protected Phases	7	4			8	1	2 2000	2		pm+pt		Perm
Permitted Phases	4			8		8	2			1	6	. Marine
Detector Phases	7	4		8	8	1	2			6		6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	2		1	6	6
Minimum Split (s)	8.0	20.0		20.0	20.0	8.0	and the first of the same	4.0	: <u>.</u>	4.0	4.0	4.0
Total Split (s)	8.0	30.0	0.0	22.0	22.0	26.0	20.0	20.0	*** <u></u>	8.0	20.0	20.0
Total Split (%)	10%	38%	0%	28%	28%		24.0	24.0	0.0	26.0	50.0	50.0
Maximum Green (s)	4.0	26.0		error and a contract		33%	30%	30%	0%	33%	63%	63%
rellow Time (s)	3.5	3.5		18.0 3.5	18.0	22.0	20.0	20.0		22.0	46.0	46.0
All-Red Time (s)	0.5	0.5			3.5	3.5	3.5	3.5		3.5	3.5	3.5
_ead/Lag	Lead	9:9		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
.ead-Lag Optimize?	Yes			Lag	Lag	Lead	Lag	Lag		Lead	or the other spec	
ehicle Extension (s)	3.0	3.0		Yes	Yes	Yes	Yes	Yes		Yes		- 8
Recall Mode	20.0	and the same of th	= =,~	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Valk Time (s)	140116	None	= , ,			None	Min	Min		None	Min	Min
lash Dont Walk (s)		5.0		5.0	5.0		5.0	5.0		a : T 11 T 1,	5.0	5.0
edestrian Calls (#/hr)		11.0		11.0	11.0		11.0	11.0			11.0	11.0
ct Effct Green (s)		0		0	0		0	0			0	0
ctuated g/C Ratio		25.6			21.6	47.2	38.8	19.9		45.6	45.6	
c Ratio		0.31			0.29	0.63		0.26		0.61	or the section of the	45.6
niform Delay, d1		0.69	1.%	1.	01dl	0.23		0.92		0.93	0.61	0.61
elay		23.2			24.4	0.0		22.6				0.07
OS	=:	23.1			24.8	0.8		40.3		16.8	6.5	0.0
		С			С	A		D		37.5	7.2	2.2

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM

ABENDASMAL-LT51

		G	- E								3/ 1	1/2003
	۶	-	7	*	•	*	1	†	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		23.1		A MATERIA	16.3	_ TM = =		40.3			27.7	
Approach LOS	************	С			В		5	D			С	
Queue Length 50th (ft)		141		W.L	105	0		158		200	34	n
Queue Length 95th (ft)		196			158	22	/.:	#293		#434	71	0
Internal Link Dist (ft)		1342	H 8	=	617				<u> </u>		2511	
50th Up Block Time (%) 95th Up Block Time (%) Turn Bay Length (ff)		¥			511	- π. μυ	1.335		E 5		F 18 B	
· ···· · · · · · · · · · · · · · · · ·												7.5
50th Bay Block Time %				:.	Y	., 4. 4.		-1_#		·······		-
Queuing Penalty (veh)						**	====				2	
Intersection Summary												
Area Type: O	ther											
Cycle Length: 80	***************************************								***************************************			
Actuated Cycle Length: 7	5.2				8 =		,			,		
Natural Cycle: 80												
Control Type: Actuated-L	Incoord	dinated					81.JR.8					
Maximum v/c Ratio: 0.93	}	ANDORONI TUTTO.							***************************************			
Intersection Signal Delay					ntersec	tion LOS	S: C					
Intersection Conneity Liti		100 70	/			al at Ca	****************					

Intersection Capacity Utilization 100.7% ICU Level of Service F
95th percentile volume exceeds capacity, queue may be longer.

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 4: Route 16 & Fortune Blvd

Queue shown is maximum after two cycles.

ø1	♠ p2	<u></u> ø4
26 s	24 s	30.3
₩ ø6		≯ _{ø7} ♥ _{ø8}
50 s // //		63. 22.

	Þ	\rightarrow	-	1	-	*	*	†	1	-		1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Lane Configurations		473			44	7		रीके			र्दार्	77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		0	0		0	0	A 1 7 7 7.1.	75
Storage Lanes	0	27. ETT	0	0		1	0		0	0		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	3 7	50	50	50	50	50		50	50	50
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.95	0.95	0.95	0.95	1.00
Frt		0.944				0.850		0.951				0.850
Flt Protected		0.996			0.979			0.988	*	. 5	0.985	air inala
Satd, Flow (prot)	0	3361	- 0	0	3499	1599	0	3358	0	0		1599
Flt Permitted		0.905	*** ************		0.695	··· ·····iA····		0.720			0.637	
Satd. Flow (perm)	0	3054	0	0	2484	1599	0	2447	0	0	2277	1599
Right Turn on Red			Yes		and the street	Yes	······································		Yes	· · · · · · · · · · · · · · · · · · ·		Yes
Satd. Flow (RTOR)		137			-: ':	261	garts v	176			S	42
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30	8 8 m		30			30			30	1,000 140 186
Link Distance (ft)	******	1422	***************************************		697			1702			2591	
Travel Time (s)	·	32.3			15.8			38.7			58.9	
Volume (vph)	31	191	133	238	304	253	138	256	189	134	319	41
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	32	197	137	245	313	261	142	264	195	138	329	42
Lane Group Flow (vph)	0	366	0	0	558	261	0	601	0	0	467	42
Turn Type	pm+pt		11.3	Perm		Perm	Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8		-8	2	-		6		6
Detector Phases	7	4	************	8	8	8	2	2		6	6	6
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	T 518	4.0	4.0	4.0
Minimum Split (s)	8.0	20.0	****	20.0	20.0	20.0	20.0	20.0		20.0	20.0	20.0
Total Split (s)	8.0	29.0	0.0	21.0	21.0	21.0	21.0	21.0	0.0	21.0	21.0	21.0
Total Split (%)	16%	58%	0%	42%	42%	42%	42%	42%	0%	42%	42%	42%
Maximum Green (s)	4.0	25.0		17.0	17.0	17.0	17.0	17.0		17.0	17.0	17.0
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
Lead/Lag	Lead			Lag	Lag	Lag			***************************************			X .X
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						:
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None	None	Min	Min		Min	Min	Min
Walk Time (s)	4 10117	5.0		5.0	5.0	5.0	5.0	5.0	A	5.0	5.0	5.0
Flash Dont Walk (s)		11.0		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0	0	0	0		0	0	0
Act Effct Green (s)	502 T W	17.0			12.9	12.9		12.0	y		12.0	12.0
Actuated g/C Ratio		0.41			0.39	0.39		0.36			0.36	0.36
v/c Ratio		0.27			0.58	0.33	= : : :	0.50			0.57	0.07
Uniform Delay, d1		4.1			7.8	0.0		5.8			8.3	0.0
Delay		4.0			8.8	1.7		6.6			9.3	3.5
LOS		A.0			Α.							3,5 A
					^	A		Α			Α	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

	۶		*	1	-	*	4	†	-	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach Delay		4.0			6.5			6.6			8.8	
Approach LOS		Α		*************	Α			Α			Α	
Queue Length 50th (ft)		.11	8 6		35	0		23	87 WA . #		32	0
Queue Length 95th (ft)		50			85	29		60			72	0
Internal Link Dist (ft)		1342	, #JE-1	1488	617			1622			2511	
50th Up Block Time (%)	***************************************	***************************************					,*****	Not liver.			000.00. \	
95th Up Block Time (%)								84 .A T				
Turn Bay Length (ft)					11							75
50th Bay Block Time %			81 <u>s=</u>			****	.,		У. О. Д.	W =		
95th Bay Block Time %	******************										10%	
Queuing Penalty (veh)								×			2	
Intersection Summary												
Area Type; O	ther											
Cycle Length: 50					*****************	***************************************						
Actuated Cycle Length: 3	33.3											
Natural Cycle: 50	***************************************					N						V
Control Type: Actuated-L	Jncoord	dinated								8 NU 3 N		
Maximum v/c Ratio: 0.61	1		***************************************			****************						
Intersection Signal Delay	/. ² 6.6 ¾				ntersect	ion LOS	: A					
Intersection Capacity Uti						el of Ser						

Splits and Phases: 4: Route 16 & Fortune Blvd

△↑ _{@2}	→ ø4	
26	23:	
\$ o6	<i>▶</i> ø7 🕏 ø8	
24 1	8	

Eane Configurations		۶	\rightarrow	7	1	4	1	4	†	-	1	1	1
Lane Configurations		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Ideal Flow (ryhph)			414			44	71		474		*	4	77
Storage Length (ff)		1900	1900	1900	1900	1900	1900	1900		1900	1900	1900	1900
Total Lost Time (s)	Storage Length (ft)	0		0	0		0	0		0			
Dial Lost Time (s)		0		0	0		1	0		0	1		
Leading Detector (ft) 50 50 50 50 50 50 50 5	Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Trailing Detector (ft) 0 <td></td> <td>50</td> <td>50</td> <td></td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>50</td> <td>. 0 = +44</td> <td>50</td> <td>50</td> <td></td>		50	50		50	50	50	50	50	. 0 = +44	50	50	
Lane Util. Factor		0	0		0	0	0	0	0		0		
Fit		15		9	15		9	15		9	15	1 24	9
Frt		0.95	0.95	0.95	0.95	0.95	1.00	0.95	0.95	0.95	1.00	1.00	1.00
Fit Protected	the desire and discount added a company of the comp		0.944				0.850		0.955				
Fit Permitted			0.995			0.979			0.989		0.950		
Fit Permitted		0	3357	. 0	0	3499	1599	0	3376	0	1787	1881	1599
Permitted Phases			0.814			0.664			0.761		0.187		
Said Flow (RTOR)	Satd. Flow (perm)	0	2747	0	_ 0	2373	1599	0	2598	0	352	1881	1599
Sald, Flow (RTOR) 166 355 88 56 Headway Factor 1.00 2.00 1.00 2.00 2.00 2.00 <td>Right Turn on Red</td> <td></td> <td></td> <td>Yes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Yes</td> <td></td> <td></td> <td></td>	Right Turn on Red			Yes						Yes			
Headway Factor	Satd. Flow (RTOR)		166		8	1 13	355		88		===		
Link Speed (mph) 30 30 30 30 30 30 30 30 30 30 30 30 30	Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	*********
Travel Time (s) 32.3 15.8 38.7 58.9			30	7 Se 170		30			30	****	:	30	
Volume (vph) 44 228 161 274 359 363 166 351 218 241 392 62 Peak Hour Factor 0.97			1422			697			1702			2591	and a financial
Volume (vph) 44 228 161 274 359 363 166 351 218 241 392 62 Peak Hour Factor 0.97	Travel Time (s)		32.3	E T X T		15.8	8 T 8 S						
Peak Hour Factor 0.97		44	228	161	274		363	166		218	241		62
Heavy Vehicles (%)	Peak Hour Factor	0:97	0.97	0.97	0.97		0.97						
Add, Flow (vph) 45 235 166 282 370 374 171 362 225 248 404 64 Lane Group Flow (vph) 0 446 0 0 652 374 0 758 0 248 404 64 Tum Type pm+pt Perm pm+ov Perm pm+pt pm+pt Perm Permitted Phases 7 4 8 1 2 1 6 6 Detector Phases 7 4 8 8 1 2 2 1 6 6 Detector Phases 7 4 8 8 1 2 2 1 6 6 Detector Phases 7 4 8 8 1 2 2 1 6 6 Minimum Initial (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 <td< td=""><td></td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td></td><td></td><td></td><td></td><td>manage and a second</td><td>errane contratter.</td><td></td><td></td></td<>		1%	1%	1%	1%					manage and a second	errane contratter.		
Lane Group Flow (vph) 0 446 0 0 652 374 0 758 0 248 404 64 Tum Type pm+pt Perm pm+ov Perm pm+pt pm+pt Perm Proceded Phases 7 4 8 8 1 2 1 6 Permitted Phases 7 4 8 8 1 2 2 1 6 6 Detector Phases 7 4 8 8 1 2 2 1 6 6 Minimum Initial (s) 4.0 <	Adj. Flow (vph)	45	235	166	282	370	374		362				
Tum Type pm+pt Perm pm+ov Perm pm+pt Perm Protected Phases 7 4 8 1 2 1 6 Permitted Phases 4 8 8 1 2 2 1 6 6 Detector Phases 7 4 8 8 1 2 2 1 6 6 Minimum Initial (s) 4.0 <td< td=""><td></td><td>0</td><td>446</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>A</td><td></td></td<>		0	446	0								A	
Protected Phases	Turn Type	pm+pt			Perm		pm+ov	Perm			pm+pt		Perm
Permitted Phases	Protected Phases	7	4				1		2		1	6	
Minimum Initial (s) 4.0 20.0 43.0	Permitted Phases	4			8		8	2		× × =	6	= =	6
Minimum Split (s) 8.0 20.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Detector Phases	7	4		8	8	1	2	2	• • • • • • • • • • • • • • • • • • • •	1	6	6
Minimum Split (s) 8.0 20.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0
Total Split (%) 10% 46% 0% 36% 36% 15% 39% 39% 0% 15% 54% 54% Maximum Green (s) 4.0 33.0 25.0 25.0 8.0 27.0 27.0 8.0 39.0 39.0 Yellow Time (s) 3.5	Minimum Split (s)	8.0	20.0		20.0	20.0	8.0	20.0	20.0			20.0	20.0
Total Split (%) 10% 46% 0% 36% 36% 15% 39% 39% 0% 15% 54% 54% Maximum Green (s) 4.0 33.0 25.0 25.0 8.0 27.0 27.0 8.0 39.0 39.0 Yellow Time (s) 3.5	Total Split (s)	8.0	37.0	0.0	29.0	29.0	12.0	31.0	31.0	0.0			
Yellow Time (s) 3.5 3.0 3.0 3.0	Total Split (%)	10%	46%	0%	36%	36%	15%		39%	0%		54%	* . *
Yellow Time (s) 3.5 3.6 3.0		4.0	33.0		25.0	25.0	8.0	27.0	27.0		8.0	39.0	39.0
All-Red Time (s) 0.5 0.0 3.0	Yellow Time (s)	3.5	3.5				3.5				3.5		3.5
Lead/Lag Lead Lag Lag Lead Lag	All-Red Time (s)	0.5	0.5							- 3			
Lead-Lag Optimize? Yes	Lead/Lag											Delicos.	
Vehicle Extension (s) 3.0	Lead-Lag Optimize?	Yes								,			
Recall Mode None None None None None Min Min None Min Min Walk Time (s) 5.0 6.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Vehicle Extension (s)		3.0	***************************************				*****		1414 1		3.0	3.0
Walk Time (s) 5.0 <	Recall Mode	None	None							F F			
Flash Dont Walk (s) 11.0 </td <td>Walk Time (s)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ACCEPT.</td> <td></td> <td></td>	Walk Time (s)										ACCEPT.		
Pedestrian Calls (#/hr) 0	Flash Dont Walk (s)		11.0							NAME OF THE PARTY			
Act Effct Green (s) 25.5 21.4 33.6 21.4 33.6 </td <td></td>													
Actuated g/C Ratio 0.36 0.34 0.53 0.34 0.53 0.53 0.53 v/c Ratio 0.40 0.90dl 0.37 0.81 0.67 0.40 0.07 Uniform Delay, d1 9.7 18.9 0.4 16.4 8.0 8.7 0.9 Delay 9.7 22.1 1.6 17.2 12.9 9.6 3.1	Act Effct Green (s)	10.8	25.5	- # -		21.4	33.6		21.4		33.6	33.6	33.6
V/c Ratio 0.40 0.90dl 0.37 0.81 0.67 0.40 0.07 Uniform Delay, d1 9.7 18.9 0.4 16.4 8.0 8.7 0.9 Delay 9.7 22.1 1.6 17.2 12.9 9.6 3.1		*** ***********											
Uniform Delay, d1 9.7 18.9 0.4 16.4 8.0 8.7 0.9 Delay 9.7 22.1 1.6 17.2 12.9 9.6 3.1													
Delay 9.7 22.1 1.6 17.2 12.9 9.6 3.1			*										
and the second													
			Α			C	Α		В	********	В	A	Α

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	1	-	7	1	-	*	1	†	~	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Approach Delay	NAME OF	9.7			14.6			17.2		3444	10.2	101010
Approach LOS		Α		Ø	В			В			B	
Queue Length 50th (ft)		42			126	4		132		54	97	•
Queue Length 95th (ft)		80			#220	42	······································	123		#127	155	
Internal Link Dist (ft)	Tue (178	1342	=		617	0.727		1622		77121	2511	
50th Up Block Time (%)			***************************************						·····		2011	
95th Up Block Time (%)					* 45			88.			·	
Turn Bay Length (ft)						**************	···•···					75
50th Bay Block Time %		W_8 =								×	17%	/ \
95th Bay Block Time %			********				*****************				28%	••••••
Queuing Penalty (veh)		. W W									14	e 8
Intersection Summary									······································			
	her										••••	
Cycle Length: 80						*****************	***************		• • • • • • • • • • • • • • • • • • • •			
Actuated Cycle Length: 6	3.3				``````	······································			*********			
Natural Cycle: 80						***************************************	A					
Control Type, Actuated-L		inated										
Maximum v/c Ratio: 0.81												
Intersection Signal Delay	: 13.4			- tı	ntersect	ion LOS	. В					
Intersection Capacity Util	ization 8	88.3%		10	CU Leve	el of Ser						
# 95th percentile volum	e exce	eds cap	acity,	queue n	nay be l	onger.			X			
Queue shown is maxii	mum af	ter two	cycles							***************************************		
dl Defacto Left Lane F	Recode	with 1 t	hough	lane as	a left la	ine.	4					

Splits and Phases: 4: Route 16 & Fortune Blvd

st o2	g4
26 / 31 s	37.5
∳	ø7 7 ø8

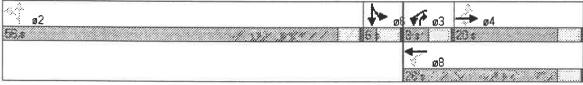
	•	\rightarrow	7	1	- 4-		•	†	<i>J</i>		.	ام.
Lane Group	EB	. EBT	EBR	WBL	. WB	WBR	NBL	NBT	/	000	*	
Lane Configurations		414		2	ની				NBR	SBL	SBT	SE
Ideal Flow (vphpl)	1900	1900	1900	1900				47	4000	4000	1	
Storage Length (ft)	()	0	0	9.7	1300		1900	1900			
Storage Lanes	()	0	O		1 F	0		0			
Total Lost Time (s)	4.0	4.0	4.0			4.0		4.0	0			
Leading Detector (ft)	50		7	50				4.0	4.0			
Trailing Detector (ft)	(0				7.5		50	50	
Turning Speed (mph)	15	_	9	15	_	0	0	0		0	-	
Lane Util. Factor	0.95	****************	0.95	0.95	*********	1 00			9	15		
Frt		0.945	0.00	0.93	0.95	1.00	0.95	0.95	0.95	1.00	1.00	1.0
Flt Protected		0.995			0.074	0.850		0.952				0.85
Satd. Flow (prot)	0		0		0.974	1921	· · · · · · · · · · · · · · · · · · ·	0.989		0.950		
Flt Permitted	······································	0.693		U	3481	1599	0	3365	0	1787	1881	159
Satd. Flow (perm)	n en en	2341	0		0.623	atimi kalenderi		0.758		0.124	*****	*** ***
Right Turn on Red		2341	0	. 0	2227	1599	0	2579	0	233	1881	159
Satd. Flow (RTOR)		4 4 4	Yes	********		Yes			Yes	******		Υe
Headway Factor	1.00	117				280		56				2
Link Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Link Distance (ft)		30	W 8331	******	30			30			30	1.0
Travel Time (s)		1422			697			1702		"*	2591	
Volume (vph)		32.3			15.8		7	38.7			58.9	
Pook House Fast	44	238	161	532	462	674	166	351	242	270	392	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0 97	0.97	0.97	0.97	0.97	0.97	6
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	the course of a property and	0.9
Adj. Flow (vph)	45	245	166	548	476	695	171	362	249	278	1%	19
Lane Group Flow (vph)	0	456	0	0	1024	695	0	782	0	278	404	6
Гипп Туре	pm+pt	= W (Perm			Perm	7 02		Station accessors	404	64
Protected Phases	7	4			8	1	# #	2		pm+pt		Pem
Permitted Phases	4			8		Ŕ	7	<u>4</u>		7 3000 - 1000	6	
Detector Phases	7	4	***************************************	8	8	1	2 2	2		6		
Vinimum Initial (s)	4.0	4.0	w w E	4.0	4.0	4.0	40	4.0		1	6	(
Minimum Split (s)	8.0	20.0		20.0	20.0	8.0	term and a signature	and the second of the		4.0	4.0	4.(
otal Split (s)	8.0	75.0	0.0	67.0	67.0	20.0	20.0	20.0	·····) with www	8.0	20.0	20.0
otal Split (%)	6%	54%	0%	48%	48%		45.0	45.0	0.0	20.0	65.0	65 (
Maximum Green (s)	4.0	71.0		or green as a		14%	32%	32%	0%	14%	46%	46%
'ellow Time (s)	3.5	3.5		63.0 3.5	63.0	16.0	41.0	41.0		16.0	61.0	61 0
II-Red Time (s)	0.5	0.5			3.5	3.5	3.5	3.5		3.5	3.5	3.5
ead/Lag	Lead	V.9	W.,	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5
ead-Lag Optimize?	Yes			Lag	Lag	Lead	Lag	Lag		Lead		5655 5
ehicle Extension (s)	3.0	2.0		Yes	Yes	Yes	Yes	Yes		Yes	X	
ecall Mode		3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Valk Time (s)	Mone	None				None	Min	Min		None	Min	Min
lash Dont Walk (s)		5.0		5.0	5.0		5.0	5.0	* **		5.0	5.0
edestrian Calls (#/hr)		11.0		11.0	11.0		11.0	11.0			11.0	11.0
ct Effct Green (s)		0		0	0		0	0			0	0.11
ctuated a/C D-4:-		67.0		×	63.0	83.0		40.8	· = 31 III.	60.8	60.8	60.8
ctuated g/C Ratio c Ratio		0.48			0.48	0.63		0.31	. 8 E.	0.46	0.46	
		0.38		1	.25dl	0.63		0.93		0.46		0.46
niform Delay, d1		15.7			33.2	7.9		40.9		28.5	0.47	0.08
elay		15.5			46.0	8.4		50.4			24.3	10.7
DS		В			D	Α		D		55.2 E	24.8 C	12.1 B

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM

ABENDASMAL-LT51

	*	\rightarrow	*	1	←	•	4	†	~	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NER	SBL	SBT	SAP
Approach Delay		15.5	8 111		30.8			50.4	******		35,0	WHAT'S
Approach LOS		В			С		1	D	A	3	D	
Queue Length 50th (ft)		87			436	198	911	236		165	232	0
Queue Length 95th (ft)	F - F	124			#596	317		#365		#340	323	42
Internal Link Dist (ft)	112	1342	- E		617			1622		45	2511	7.6
50th Up Block Time (%)							*****************	2.76.77.				
95th Up Block Time (%)				8 38 W.S		· · · · · · · · · · · · · · · · · · ·						
Turn Bay Length (ft)		***************************************			v							75
50th Bay Block Time %	×			4 - E							38%	
95th Bay Block Time %											42%	
Queuing Penalty (veh)		= 1 7 5			T 'g				٠		25	
Intersection Summary												*
	her											
Cycle Length: 140										***************************************		
Actuated Cycle Length: 1	31.8							7.11				
Natural Cycle: 140										***************************************		
Control Type: Actuated-L	Incoord	dinated					7					
Maximum v/c Ratio: 0.96	,				***********				************			
Intersection Signal Delay				1	ntersect	ion LOS	S: C					
Intersection Capacity Util	ization	101.4%	6			el of Se						A. e.
# 95th percentile volum	ie exce	eds ca	pacity, (queue n	nay be l	onger.	= 1 = 1					
Queue shown is maxi	mum a	fter two	cycles					****************				
dl Defacto Left Lane. F	Recode	with 1	though	lane as	a left la	ine.						

Splits and Phases: 4: Route 16 & Fortune Blvd


₽ ø1	⊕ ↑ ø2	→ ø4
20.0	杨金	75.3
ø6		≯ , ♦ ∞8
100 s	<u></u>	8:s 67:v

	۶	-	*	1	4-	1	4	†	-	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414	7	34	ħ			स	77		€\$	************
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	10	12	12	12	12	12	10	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50		50	50	50	50	50	7.77
Trailing Detector (ft)	0	0	0	0	0		0	0		. 0	0	2771108
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt ·			0.850		0.998				0.850		0.916	**************************************
Fit Protected		0.999		0.950				0.953			0.990	
Satd. Flow (prot)	0	3452	1599	1668	1877	0	0	1793	1599	0	1592	0
Fit Permitted		0.949		0.200		=		0.212		8 1 8	0.990	
Satd. Flow (perm)	0	3279	1599	351	1877	0	0	399	1599	0	1592	0
Right Turn on Red			Yes	=		Yes			Yes			Yes
Satd. Flow (RTOR)			509		1		***************************************		95		15	
Headway Factor	1.04	1.04	1.00	1.09	1.00	1.00	1.00	1.00	1.00	1.09	1.09	1.09
Link Speed (mph)		30			30			30	"	727/7:7	30	
Link Distance (ft)		811			1422			1775			576	
Travel Time (s)		18.4			32.3			40.3			13.1	
Volume (vph)	9	496	494	104	210	3	293	5	92	5	4	15
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	9	511	509	107	216	3	302	5	95	5	4	15
Lane Group Flow (vph)	0	520	509	107	219	0	0	307	95	.0	24	0
Turn Type	Perm		and the second	pm+pt	TO A TO	C	ustom		Over	Split		
Protected Phases		4		3	8				3	6	6	
Permitted Phases	4		4	8			2	2				
Detector Phases	4	4	4	3	8		2	2	3	6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	8.0	20.0		20.0	20.0	8.0	20.0	20.0	
Total Split (s)	20.0	20.0	20.0	8.0	28.0	0.0	56.0	56.0	8.0	6.0	6.0	0.0
Total Split (%)	22%	22%	22%	9%	31%	0%	62%	62%	9%	7%	7%	0%
Maximum Green (s)	16.0	16.0	16.0	4.0	24.0		52.0	52.0	4.0	2.0	2.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lag	Lag	Lag	Lead					Lead			
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	*** ****				Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	None		Min	Min	None	Min	Min	
Walk Time (s)	5.0	5.0	5.0		5.0		5.0	5.0	110110	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0		11.0		11.0	11.0		11.0	11.0	'
Pedestrian Calls (#/hr)	0	0	0		0		0	0		0	0	
Act Effct Green (s)	7	16.0	16.0	24.0	24.0			52.0	4.0	U	2.0	
Actuated g/C Ratio		0.18	0.18	0.27	0.27			0.58	0.04	U	0.02	
v/c Ratio		0.89	0.72	0.70	0.44	7		1.33	0.59		0.48	
Uniform Delay, d1		36.1	0.0	26.0	27.2			19.1	0.0		16.2	
Delay		47.1	3.6	40.6	27.8			153.4	13.3		43.6	11.11.11.11
LOS		D	A	D	C			F	13.3 B		43.0 D	
Approach Delay		25.6			32.0			120.3			43.6	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

	۶	-	*	1		*	1	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SEL	SBT	SBF
Approach LOS		С			С			F			G	
Queue Length 50th (ft)		153	0	48	103			~229	0		5	
Queue Length 95th (ft)	- 12 g	#245	95	#118	170			#388	#57		#42	
Internal Link Dist (ft)		731			1342			1695	.,		496	
50th Up Block Time (%)				3155 V								
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %												
95th Bay Block Time %		E.E.	3. T			W- 0		= = × ×,		······································	=	
Queuing Penalty (veh)												
Intersection Summary		11/10/2014										
	ther											
Cycle Length: 90												
Actuated Cycle Length: 9	90							***************************************			***************************************	
Natural Cycle: 90	ESTEE	Y			V 8 3 5 5 5 5				- 1			
Control Type: Actuated-L	Jncoor	dinated										
Maximum v/c Ratio: 1.33	3						۸.					
Intersection Signal Delay	r: 48.4			1	ntersec	tion LOS	S: D					
Intersection Canacity Liti	ization	1 59 7%		1	CU Lev	el of Se	rvice A					
 Volume exceeds cap 	acity,	queue is	theore	tically i	nfinite.							
Queue shown is maxi	mum a	after two	cycles									
# 95th percentile volun					nay be	longer.						
Queue shown is maxi	mum :	after two	cycles									

Splits and Phases: 5: Route 16 & Route 109

	1	¹ →		6	- 4-	4	•	+			1	11/200
Lane Group	E 8	L EBI		R WB	. WBT	1APSE	7	1			+	4
Lane Configurations		41		1	1	WBR	NBL			SBL	SBT	SBF
Ideal Flow (vphpl)	190					1000	1000	€			4	
Lane Width (ft)	1					1900	1900			1900	1900	1900
Total Lost Time (s)	4.				1111	12	12			10	10	10
Leading Detector (ft)	5	,				4.0	4.0			4.0	4.0	4.0
Trailing Detector (ft)	errene and a second	0 0					50			50	50	
Turning Speed (mph)	1:		ç				0		0	0	0	
Lane Util. Factor	0.9					9	15		9	15		ç
Frt			0.850		0.998	1.00	1.00	1.00	** ** * * ** ** ** *	1.00	1.00	1.00
Flt Protected		0.999	0.000	0.950		the state of the state of			0.850		0.910	
Satd. Flow (prot)	(3452	1599					0.953	Andrews		0.991	
Flt Permitted		0.949	_	0.200		0	0	1793	1599	0	1583	0
Satd. Flow (perm)		3279	1599					0.222			0.991	
Right Turn on Red	······································	. 0213	Yes		1877	0	0	418	1599	0	1583	0
Satd. Flow (RTOR)	***************************************		588	A PRINCIPLE OF THE PARTY OF THE		Yes			Yes			Yes
Headway Factor	1.04	1.04	1.00		1	orna meresia	*************		109		18	
Link Speed (mph)	M M 3	30	1.00	1.09		1.00	1.00	1.00	1.00	1.09	1.09	1.09
Link Distance (ft)		811			30			30			30	
Travel Time (s)		18.4			1422			1775			576	
Volume (vph)	1.0		E70	4.00	32.3			40.3			13.1	
Peak Hour Factor	0.97	0.97	570	120	287	3	338	5	106	5	4	17
Heavy Vehicles (%)	1%		0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	10	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Lane Group Flow (vph)	0	638 648	588	124	296	3	348	5	109	5	4	18
Turn Type	Perm	040	588	124	299	0	0	353	109	0	27	0
Protected Phases	r eiiii		Perm	pm+pt	**.***.*	CI	ustom		Over	Split	·	
Permitted Phases		4		3	8				3	6	6	
Detector Phases			4	8			2	2	******************	· · · · · · · · · · · · · · · · · · ·		
Minimum Initial (s)	4.0	4.0	4	3	8		2	2	3	6	6	
Minimum Split (s)	20.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Total Split (s)	20.0	20.0	20.0	8.0	20.0		20.0	20.0	8.0	20.0	20.0	
Total Split (%)	29%	20.0	20.0	8.0	28.0	0.0	22.0	22.0	8.0	20.0	20.0	0.0
Maximum Green (s)	16.0	29%	29%	11%	40%	0%	31%	31%	11%	29%	29%	0%
Yellow Time (s)	3.5	16.0	16.0	4.0	24.0		18.0	18.0	4.0	16.0	16.0	722
All-Red Time (s)	0.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	
Lead/Lag	Lag	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	
Lead-Lag Optimize?	Yes	Lag	Lag	Lead					Lead		T. M. W.	
Vehicle Extension (s)	3.0	Yes	Yes	Yes					Yes			
Recall Mode		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Valk Time (s)	None	None	None	None	None		Min		None	Min	Min	l. I misi
lash Dont Walk (s)	5.0	5.0	5.0		5.0		5.0	5.0		5.0	5.0	= 1
Pedestrian Calls (#/hr)	11.0	11.0	11.0		11.0		11.0	11.0		11.0	11.0	
ct Effct Green (s)	0	0	0		0		0	0		0	0	
Actuated g/C Ratio		15.2	15.2	23.3	21.4		er de layeria	18.2	4.0		6.2	
/c Ratio		0.26	0.26	0.38	0.37			0.31	0.07		0.2	··. ······
Iniform Delay, d1		0.75	0.69	0.56	0.43			2.69	0.52		9 37	:
Pelay		20.1	0.0	12.2	13.3		ter vice	20.3	0.0		0.15 7.9	
OS		21.6	2.4	14.4	13.7			33.2	7.9			
pproach Delay		С	Α	В	В		Tile 12	F	Α.		15.3	
pproach Delay		12.5			13.9		2	56.4	7		B 15.3	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	۶	-	*	1		*	1	†	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			В		û we	F			В	
Queue Length 50th (ft)		111	0	28	73			~225	0		3	
Queue Length 95th (ft)		#177	71	#68	136			#376	#47		20	
Internal Link Dist (ft)	VVI	731			1342			1695			496	
50th Up Block Time (%)	34.						esentile II					
95th Up Block Time (%)												
Turn Bay Length (ft))			# ##N, `-			1.9		
50th Bay Block Time %	*************											
95th Bay Block Time %			mit del						::			
Queuing Penalty (veh)												
Intersection Summary						i passella.						
31	ther											
Cycle Length: 70				·,								
Actuated Cycle Length:	57.9											
Natural Cycle: 70												
Control Type: Actuated-	Uncoor	dinated									************	
Maximum v/c Ratio: 2.6	9											
Intersection Signal Dela	y: 65.3					tion LOS						
Intersection Capacity Ut	ilizatio	n 69.9%			ICU Lev	el of Se	rvice B					
~ Volume exceeds cap	oacity,	queue i	s theore	etically i	nfinite.				e. e			
Queue shown is max										.,,,		
# 95th percentile volui					may be	longer.						
Queue shown is max												

Splits and Phases: 5: Route 16 & Route 109

	№ ø6	€ ø3	
21.00.00.00	204		24 s // /
		₹ ø8	
		28 \$	

	*	\rightarrow	7	1	-	*	1	†	-	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	7	A.	1			सै	7		€\$	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	10	12	12	12	12	12	10	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50		50	50	50	50	50	
Trailing Detector (ft)	0	0	0	.0	0		0	0	0	0	0	1 1 5 1 5 1 5 1 5 1
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.999			**** ****** ****	0.850		0.910	
Flt Protected		0.999		0.950			- W	0.953			0.991	E
Satd. Flow (prot)	0	3452	1599	1668	1879	0	0	1793	1599	0	1583	0
Flt Permitted		0.949	\	0.200				0.222		- 19	0.991	X - 11 - 34
Satd. Flow (perm)	0	3279	1599	351	1879	0	0	418	1599	0	1583	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			588		1				109		18	and a second desired for all
Headway Factor	1.04	1.04	1.00	1.09	1.00	1.00	1.00	1.00	1.00	1.09	1.09	1.09
Link Speed (mph)		30	Tremi.	1117 741	30			30			30	
Link Distance (ft)	**********	811			1422		¥ W	1775			576	
Travel Time (s)		18.4			32.3			40.3			13.1	
Volume (vph)	10	710	570	120	298	3	338	5	106	5	4	17
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	. 1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	10	732	588	124	307	3	348	5	109	5	4	18
Lane Group Flow (vph)	0	742	588	124	310	0	0	353	109	0	27	0
Turn Type	Perm	A. I. T. X.	6.70066.706.	pm+pt			custom		Over	Split		
Protected Phases		4	1 01111	3	-8				3	6	6	
Permitted Phases	4		4	8			2	2				
Detector Phases	À	4	Ž.	3	8		2	2	3	6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	8.0	20.0		20.0	20.0	8.0	20.0	20.0	
Total Split (s)	20.0	20.0	20.0	8.0	28.0	0.0	22.0	22.0	8.0	20.0	20.0	0.0
Total Split (%)	29%	29%	29%	11%	40%	0%	31%	31%	11%	29%	29%	0%
Maximum Green (s)	16.0	16.0	16.0	4.0	24.0		18.0	18.0	4.0	16.0	16.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0,5	0.5		0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lag	Lag	Lag	Lead	0.5		0.0	0.0	Lead	0.5	0.0	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes					Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None		None	None	None		Min	Min	None	Min	Min	
Walk Time (s)	5.0	None 5.0	5.0	None			5.0	5.0	INOHE	5.0	5.0	
Flash Dont Walk (s)					5.0	-		11.0			11.0	
Pedestrian Calls (#/hr)	11.0	11.0	11.0		11.0		11.0	0		11.0		
Act Effct Green (s)	0	16.1	16.1	24.0			U		4.0	U	6.2	
		16.1	16.1	24.0	22.3			18.1	4.0			
Actuated g/C Ratio		0.27	0.27	0.39	0.38		********	0.31	0.07		0.11	×
v/c Ratio		0.83	0.68	0.56	0.43			2.74	0.52		0.15	
Uniform Delay, d1	1	20.4	0.0	12.0	13.2	Ť:		20.7	0.0		8.0	
Delay		26.2	2.4	14.4	13.8			327.5	7.8		15.3	
LOS		C	Α	В	B 42.0			F 252.4	Α,		15.2	
Approach Delay		15.7			13.9			252.1			15.3	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	۶	-	*	1	←	*	4	†	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		В			В			F			В	
Queue Length 50th (ft)		132	0	28	77			~225	0		3	
Queue Length 95th (ff)		#232	71	#68	141	1	15. A - F &	#376	#47		20	
Internal Link Dist (ft)	%	731			1342	4		1695			496	
50th Up Block Time (%)		388								" #'Yalifa		
95th Up Block Time (%)							·			***************************************		
Turn Bay Length (ft)	٠					T ana	7 <u>82</u> H= -		/ E 18===	= = 1 1 1	&= =	
50th Bay Block Time %		***************************************						***************************************				
95th Bay Block Time %	`a, `.											
Queuing Penalty (veh)												
Intersection Summary	* * * * * * * * * * * * * * * * * * * *											
Area Type: O	ther											
Cycle Length: 70						= = ""						
Actuated Cycle Length:	58.6											
Natural Cycle, 70						и п б и						
Control Type: Actuated-	Uncoor	dinated										
Maximum v/c Ratio: 2.7	4											
Intersection Signal Delay	y: 63.8				ntersec	tion LOS	S: E					
Intersection Capacity Ut	lizatior	73.1%			CU Lev	el of Se	rvice C					
~ Volume exceeds cap	pacity,	queue is	s theore	tically i	nfinite.							
Queue shown is max	imum a	after two	cycles									
# 95th percentile volur	ne exc	eeds ca	pacity, o	queue i	nay be	longer.						
Queue shown is max	imum a	after two	cycles		A							

Splits and Phases: 5: Route 16 & Route 109

::	↓ ø6	€ ø3	<i>→</i> ø4
22.8	20 c	0.0	20 s
		9 8	

	*	-		1	4-	*	•	†	<i>></i>	_		0/200
Lane Group	EBL	. E81	EBF	R WBL	14/03		*****************	# 6000000000000000000000000000000000000				•
Lane Configurations		41				WBR	NBL	NBT	NBR	SBL	SBT	SBF
Ideal Flow (vphpl)	1900					The Section 1	1100 2 0 0	ન			\$	
Lane Width (ft)	11			***** * ** * * * *		1900	1900			1900	1900	190
Total Lost Time (s)	4.0		12			12	12			10	10	11
Leading Detector (ft)	50		4.0			4.0	4.0			4.0	4.0	3 4
Trailing Detector (ft)	0						50	50	50	50	50	
Turning Speed (mph)	15						0	0	0	. 0		
Lane Util. Factor			9			9	15		9	15		*********
Frt	0.95	0.95	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit Protected		.0.000	0.850		0.998				0.850	tomilië T.S.	0.943	
Satd. Flow (prot)		0.998		0.950	- 33			0.953			0.990	00
Flt Permitted	0	3448	1599		1877	0	0	1793	1599	0	1639	
Satd. Flow (perm)	i i	0.800		0.386				0.213		1	0.990	
Right Turn on Red	0	2764	1599	678	1877	0	0	401	1599	0	1639	
Sate Flori (DTOD)			Yes		Y	Yes			Yes	- 3	1039) ::::::::::::::::::::::::::::::::::::
Satd. Flow (RTOR)			551		1			*******	94			Yes
Headway Factor	1.04	1.04	1.00	1.09	1.00	1.00	1.00	1.00	1.00	1.09	8 1.09	
Link Speed (mph)	****************	30			30	***** *	4.5.512	30	1.00	1.05	*** ** ** ***	1.09
Link Distance (ft)		811	T		1422			1775			30	
Travel Time (s)		18.4			32.3			40.3	····		576	
Volume (vph)	13	241	534	177	398	6	427	40.3	98		13.1	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97			4	7	8
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	13	248	551	182	410	6	440	1%	1%	1%	1%	1%
Lane Group Flow (vph)	0	261	551	182	416	0		4	101	4	7	8
Turn Type	Perm	· - TTT	errer of Sacher,	pm+pt	710		0	444	101	0	19	0
Protected Phases		4	. 01111	3	Q	GI	ustom		Over	Split		
Permitted Phases	4	· · · · · · · · · · · · · · · · · · ·	4	8	(Q)				3	6	6	
Detector Phases	4	4	4	3	8		2	2	55555	****		
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		2	2	3	6	6	
Minimum Split (s)	20.0	20.0	20.0	8.0	20.0		4.0	4.0	4.0	4.0	4.0	
Total Split (s)	20.0	20.0	20.0	8.0	t it see the common to the common to		20 0	20.0	8.0	20.0	20.0	
Total Split (%)	20%	20%	20%	8%	28.0	0.0	52.0	52.0	8.0	20.0	20.0	0.0
Maximum Green (s)	16.0	16.0	16.0		28%	0%	52%	52%	8%	20%	20%	0%
Yellow Time (s)	3.5			4.0	24.0		48.0	48.0	4.0	16.0	16.0	
All-Red Time (s)	0.5	3.5 0.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	
_ead/Lag	Lag		0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	***************************************
_ead-Lag Optimize?	Yes	Lag	Lag	Lead					Lead	**************************************	***************************************	31.3
/ehicle Extension (s)	3.0	Yes	Yes	Yes					Yes		***************************************	
Recall Mode		3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Valk Time (s)				None	None		Min	Min	None	Min	Min	
lash Dont Walk (s)	5.0	5.0	5.0		5.0		5.0	5.0	×	5.0	5.0	
edestrian Calls (#/hr)	11.0	11.0	11.0		11.0		11.0	11.0		11.0	11.0	
ct Effct Green (s)	0	0	0		0		0	0		0	0	
ctuated g/C Ratio	*** ******** **	15.0	15.0	23.0	23.0		5 5	48.0	4.0		6.3	
/c Ratio		0.17	0.17	0.26	0.26	.333.		0.54	0.04		0.07	
		0.56	0.76	0.83	0.86			2.07	0.63		************	
niform Delay, d1		34.1	0.0	29.2	31.5			20.7	2.8		0.15	
elay		34.6	3.6	44.3	38.4			94.1	16.5		22.5	
OS		С	Α	D	D			F	B_		29.4	
pproach Delay		13.6			40.2			42.6	D		C	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

		-	₩	₩	•	-	7	Ì		*	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			D	i na jira	W ===	F		(and	С	
Queue Length 50th (ft)		71	0	85	222			~403	4	***************	6	Andrews.
Queue Length 95th (ft)		114	102	#199	#390	······································		#600	#71		27	
Internal Link Dist (ft)		731			1342			1695			496	
50th Up Block Time (%)									0.00T 1000		24 B.F	
95th Up Block Time (%)				***************						*****************		
Tum Bay Length (ft)												:
50th Bay Block Time %							**,*,					
95th Bay Block Time %		-:		34,71								
Queuing Penalty (veh)												**********
Intersection Summary	***********				***************************************		÷1		1000			
	ther											
Cycle Length: 100												
Actuated Cycle Length: 8	39.4											
Natural Cycle: 100												
Control Type: Actuated-L		dinated										
Maximum v/c Ratio: 2.07												
Intersection Signal Delay						ion LOS						
Intersection Capacity Uti						el of Sei	vice C					
 Volume exceeds cap 	acity, c	queue is	theore	tically in	nfinite.							
Queue shown is maxi												
# 95th percentile volun	ne exce	eds ca	pacity,	queue r	nay be	onger.						
Queue shown is maxi	imum a	fter two	cycles									
Splits and Phases: 5: I	Doute 1	IG 0 Da	uto 100									
Spins and Friases. 5.1	Roule	16 & Ro	ute 105				_	1 2				

<u>්</u> ø2	↓ ₀₀	₹ ø3	→ ø4
□ 6	201	6/4/	20.0
		€ Ø8	

	۶	-	7	1	-	*	4	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44	7	190	Ť»			स्	ř		4	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	10	12	12	12	12	12	10	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50		50	50	50	50	50	
Trailing Detector (ft)	0	0	0	0	0		0	0	0	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.998				0.850		0.939	
Fit Protected		0.998		0.950				0.953			0.990	
Satd. Flow (prot)	0	3448	1599	1668	1877	0	0	1793	1599	0	1632	0
Flt Permitted		0.854		0.361			= 1	0.218	- XED	- 1	0.990	
Satd. Flow (perm)	0	2951	1599	634	1877	0	0	410	1599	0	1632	0
Right Turn on Red		- 7.	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			635		1				116		9	
Headway Factor	1.04	1.04	1.00	1.09	1.00	1.00	1.00	1.00	1.00	1.09	1 09	1.09
Link Speed (mph)		30			30			30			30	
Link Distance (ft)	_ ===	811			1422			1775			576	-8887/ 1/-
Travel Time (s)		18.4			32.3			40.3			13.1	
Volume (vph)	15	324	616	204	510	-6	492	4	113	4	7	9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	15	334	635	210	526	6	507	4	116	4	7	9
Lane Group Flow (vph)	0	349	635	210	532	0	0	511	116	0	20	0
Turn Type	Perm		Perm	pm+pt		C	ustom		Over	Split		
Protected Phases		4		3	8				3	6	6	
Permitted Phases	4		4	8			2	2				******
Detector Phases	4	4	4	3	8		2	2	3	6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	8.0	20.0		20.0	20.0	8.0	20.0	20 0	
Total Split (s)	20.0	20.0	20.0	8.0	28.0	0.0	27.0	27.0	8.0	20.0	20.0	0.0
Total Split (%)	27%	27%	27%	11%	37%	0%	36%	36%	11%	27%	27%	0%
Maximum Green (s)	16.0	16.0	16.0	4.0	24.0		23.0	23.0	4.0	16.0	16.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lag	Lag	Lag	Lead				=	Lead			
Lead-Lag Optimize?	Yes	Yes		Yes					Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		Min	Min	None	Min	Min	
Walk Time (s)	5.0	5.0			5.0		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0		0		0	0		= 0	0	
Act Effct Green (s)		13.8	13.8	21.8	21.8			23.1	4.0		6.2	
Actuated g/C Ratio		0.22		0.35				0.37	0.06		0.10	
v/c Ratio		0.54	0.75	0.74				3.41	0.55		0.12	
Uniform Delay, d1		21.8		16.0				20.0	0.0		14.2	
Delay		21.9		23.5				367.9	9.4		20.5	
LOS		С		С				F	Α		C	
Approach Delay		9.5			22.4			301.6			20.5	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

		\rightarrow	*	1	-	•	1	Ť		-	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBF
Approach LOS	8 18	A	ile se		C			F			C	
Queue Length 50th (ft)		62	0	58	180			~371	0		4	
Queue Length 95th (ft)		102	83	#139	#341				#53	1,	20	
Internal Link Dist (ft)		731			1342			1695			496	************
50th Up Block Time (%)						= v						W. John
									.,,,-,,			
Turn Bay Length (ft)			:1				- T - TE					
50th Bay Block Time %										****	***************	
95th Bay Block Time %	18 1 %		ii.									
Queuing Penalty (veh)												
Intersection Summary					101							
,	ther							.,,,				
									.X			
Cycle Length: 75												
Cycle Length: 75	63.1											
Cycle Length: 75 Actuated Cycle Length: (Natural Cycle: 75												
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75												
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated- Maximum v/c Ratio: 3.4	Uncoor	dinated								188 () 18	1	
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated- Maximum v/c Ratio: 3.4	Uncoor	dinated								188 () 18		
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated-I Maximum v/c Ratio: 3.4 Intersection Signal Delay	Uncoor 1 y: 90.8	dinated			ntersec	tion LOS	S: F					
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated-I Maximum v/c Ratio: 3.4 Intersection Signal Delay	Uncoor 1 y: 90.8	dinated		l etically i	ntersec CU Lev nfinite.	tion LOS rel of Se	S: F rvice D					
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated- Maximum v/c Ratio: 3.4 Intersection Signal Dela- Intersection Capacity Ut Volume exceeds cap Queue shown is max	Uncoor 1 y: 90.8 illization pacity, imum:	dinated 182.7% queue is	s theore	tically i	ntersec CU Lev nfinite.	tion LOS rel of Se	S: F rvice D					
Cycle Length: 75 Actuated Cycle Length: 6 Natural Cycle: 75 Control Type: Actuated-Imaximum v/c Ratio: 3.4 Intersection Signal Delay Intersection Capacity Ut Volume exceeds cap	Uncoor 1 y: 90.8 illization pacity, imum:	dinated 182.7% queue is	s theore	tically i	ntersec CU Lev nfinite.	tion LOS rel of Se	S: F rvice D					

Splits and Phases: 5: Route 16 & Route 109

《A.P. g2	№ ø6	€ 6 ø3	<u>→</u> ø4
27.8	20:	8 4	20.3
		4 Ø8	
		28 \$	in the second

	Þ	-	-	1	←	*	1	†	1	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414	7	18	1 2			4	79		43	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	11	11	12	10	12	12	12	12	12	10	10	10
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50		50	50	50	50	50	* 17
Trailing Detector (ft)	0	0	.0	0	0		0	0	0	0	0	. : 8
Turning Speed (mph)	15		9	15	** ** ** ***	9	15	* *****	9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850		0.999			****	0.850		0.924	TATE
FIt Protected		0.998		0.950	7 Jan 1111 111			0.953			0.988	
Satd. Flow (prot)	0	3448	1599	1668	1879	0	0	1793	1599	0	1603	0
FIt Permitted		0.751	- 1.00 AND	0.367				0.272			0.988	
Satd. Flow (perm)	0	2595	1599	644	1879	0	0	512	1599	0	1603	0
Right Turn on Red		- 1 1 8 V	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			635		1		********		116		9	· · · · · · · · · · · · · · · · · · ·
Headway Factor	1.04	1.04	1.00	1.09	1.00	1.00	1.00	1.00	1.00	1.09	1.09	1.09
Link Speed (mph)		30			30			30			30	
Link Distance (ft)	** ************************************	811			1422			1775	38 W, V		576	201
Travel Time (s)		18.4			32.3			40.3			13.1	
Volume (vph)	15	334	616	204	613	6	492	4	113	4	3	9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	15	344	635	210	632	6	507	4	116	4	3	9
Lane Group Flow (vph)	0	359	635	210	638	0	0	511	116	0	16	0
Turn Type	Perm	a a constant that	errer 1555autota	pm+pt	.,	C	ustom	C.A.A.	Over	Split		
Protected Phases		4		3	8				3	6	6	
Permitted Phases	4		4	8			2	2				
Detector Phases	4	4	4	3	8		2	2	3	6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	**********	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	8.0	20.0	82. C X	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	20.0	20.0	20.0	8.0	28.0	0.0	22.0	22.0	8.0	20.0	20.0	0.0
Total Split (%)	29%	29%	29%	11%	40%	0%	31%	31%	11%	29%	29%	0%
Maximum Green (s)	16.0	16.0	16.0	4.0	24.0		18.0	18.0	4.0	16.0	16.0	**********
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lag	Lag	Lag	Lead					Lead			
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	*****				Yes			******
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	None		Min	Min	None	Min	Min	
Walk Time (s)	5.0	5.0	5.0		5.0		5.0	5.0		5.0	5.0	E
Flash Dont Walk (s)	11.0	11.0	11.0		11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	- 0	0	0		0		0	0		0	0	
Act Effct Green (s)	*** **	16.0	16.0	24.0	24.0			18.0	4.0		6.0	
Actuated g/C Ratio		0.27	0.27	0.40	0.40		minum da wasi	0.30	0.07		0.10	3 · 1 · 2 · 30 ·
v/c Ratio		0.52	0.71	0.64	0.85			3.32	0.54		0.09	718
Uniform Delay, d1		18.7	0.0	12.5	16.3			21.0	0.0	1	10.7	
Delay		19.3	2.3	17.1	23.1			355.7	8.1		18.1	
LOS		В	= A	В	С			F	A		В	
Approach Delay		8.5			21.6			291.4			18.1	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	۶	-	*	•	4	*		†	~	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS		Α	reaction and a		C			F	\$ -V1		В	
Queue Length 50th (ft)		57	0	50	199			~336	0		2	
Queue Length 95th (ft)	(5.1	96	74	#113	#393		1 11	#508	#50		16	
Internal Link Dist (ft)		731	***************************************		1342	v		1695			496	
50th Up Block Time (%)	E .					100			×			
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %												
95th Bay Block Time %				===	: :::::::::::::::::::::::::::::::::::::							=:::=
Queuing Penalty (veh)		*******	************									
Intersection Summary												
Area Type: O	ther											
Cycle Length: 70						:					w=w1= 3	
Actuated Cycle Length:	30											,
Natural Cycle: 70					72				3			
Control Type: Actuated-	Uncoor	dinated										
Maximum v/c Ratio: 3.3.	2		8						123 - 500			
Intersection Signal Delay	y: 84.4			l	ntersec	tion LO	S: F					
Intersection Capacity Ut	lization	88.6%			CU Lev	el of Se	ervice D			8 8 8 9		
~ Volume exceeds car	oacity,	queue is	s theore	tically i	nfinite.							
Queue shown is max	imum a	fter two	cycles		788 E 1			X = 5				
# 95th percentile volur	ne exc	eeds ca	pacity,	queue i	nay be	longer.						
Queue shown is max											***************************************	

Splits and Phases: 5: Route 16 & Route 109

©2.	▶ ø6	₹ ø3 ♣ ø4
22.8/	2.03	6:92 20:s
		√ ø8 28 ≈

	Þ	-	*	1	-	4	4	†	1	-	 	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	CDD
Lane Configurations		412			^	7	1				051	SBR
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900			1000	4000	1000
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0			1900	1900	1900
Leading Detector (ft)	50	50	: ::		50	5.0	50			4.0	4.0	4.0
Trailing Detector (ft)	0	0			0	0.0	0			0		50
Turning Speed (mph)	15		9	15		9	1.5	_	9	15		0
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	1.00	1.00			0.97	1.00	1.00
Frt State Control						0.850		1.00	0.850	0.97	1.00	1.00
Flt Protected		0.993					0.950		0.000	0.950	9a	0.850
Satd. Flow (prot)	0	3549	0	0	3574	1599	1787	1881	1599	3467	0	1500
Flt Permitted		0.592				. 177,7	0.950		1000	0.950	U	1599
Satd. Flow (perm)	0	2116	0	0	3574	1599	1787	1881	1599	3467	- 0	1500
Right Turn on Red			Yes		odii T. Basta.	Yes	****.***		Yes			1599 Yes
Satd. Flow (RTOR)						409			126			160
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30		1.00	30	1.00
Link Distance (ft)		850		**	1164			571		•	1702	
Travel Time (s)		19.3			26.5	- 108		13.0	*** ******		38.7	
Volume (vph)	60	369	0	0	1062	397	41	76	122	238	0	155
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	62	380	0	0	1095	409	42	78	126	245	0	160
Lane Group Flow (vph)	0	442	0	0	1095	409	42	78	126	245	0	160
Turn Type	Perm					ustom	Split		Permo			ustom
Protected Phases		4			8	68	2	2		6		6
Permitted Phases	4				-	.8		-	2	6		6
Detector Phases	4	4			8	68	2	2	2	6		6
Minimum Initial (s)	4.0	4.0			4.0		4.0	4 0	4.0	4.0		4.0
Minimum Split (s)	20.0	20.0			20.0	,,,	20.0	20.0	20.0	20.0		20.0
Total Split (s)	25.0	25.0	0.0	0.0	25.0	45.0	20.0	20.0	20.0	20.0	0.0	20.0
Total Split (%)	38%	38%	0%	0%	38%	69%	31%	31%	31%	31%	0%	31%
Maximum Green (s)	21.0	21.0			21.0	***************************************	16.0	16.0	16.0	16.0		16.0
Yellow Time (s)	3.5	3.5			3.5		3.5	3.5	3.5	3.5	****	3.5
All-Red Time (s)	0.5	0.5	7		0.5		0.5	0.5	0.5	0.5		0.5
Lead/Lag		=000 0								of an Di Dilling.		.170,6100
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0		3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None			None		Coord	Coord	Coord	Min		Min
Walk Time (s)	5.0	5.0			5.0		5.0	5.0	5.0	5.0		5.0
Flash Dont Walk (s)	11.0	11.0			11.0		11.0	11.0	11.0	11.0	y = = -	11.0
Pedestrian Calls (#/hr)	0	0			0		0	0	0	0		0
Act Effct Green (s)		21.0			21.0	36.1	20.9	20.9	20.9	11.1		11.1
Actuated g/C Ratio		0.32			0.32	0.56	0.32	0.32	0.32	0.17		0.17
v/c Ratio		0.65			0.95	0.38	0.07	0.13	0.21	0.41		0.39
Uniform Delay, d1		18.8	****		21.5	0.0	15.3	15.6	0.0	24.0		0.0
Delay LOS		19.4			33.2	0.7	17.4	17.6	4.5	23.3	:	4.4
		В			С	Α	В	В	Α	С		A
Approach LOS		19.4			24.4			10.9				
Approach LOS		В			С			В				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

	ၨ	-	*	1	4	*	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		77			219	-0	11	21	0	45		0
Queue Length 95th (ft)	*************	124			#344	25	35	55	34	68		37
Internal Link Dist (ft)		770			1084			491			1622	
50th Up Block Time (%)												
95th Up Block Time (%)											= =	
Turn Bay Length (ft)												
50th Bay Block Time %	- W-	8, E.				1883						
95th Bay Block Time %												
Queuing Penalty (veh)							×					
Intersection Summary									0.010.000			
Area Type: Otl	her			30 Especials								
Cycle Length: 65												
Actuated Cycle Length: 6	5											
Offset: 0 (0%), Reference	ed to p	hase 2:	NBTL,	Start of	Green							
Natural Cycle: 65	ā.				. Ē							
Control Type: Actuated-C	oordin	ated										
Maximum v/c Ratio: 0.95												
Intersection Signal Delay:	20.9			1	ntersec	tion LOS	S: C					
Intersection Capacity Utili					Access to the control of	el of Se	rvice B					
# 95th percentile volum					nay be	longer.						
Queue shown is maxir	mum a	fter twi	o cycles									

Splits and Phases: 6: Route 109 & Beaver Street

★ ø2	ø6	<u></u> ø4
26		25.5
		ø8 25 s &

	J	\rightarrow	7	1	—	*	4	†	1	-		1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			44	7	36	4	7	34.54		75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	261		50	50	50	50	50	50		50
Trailing Detector (ft)	0	0			0	0	0	0	0	0		0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt						0.850			0.850	- 44		0.850
Flt Protected		0.993					0.950			0.950		
Satd. Flow (prot)	0	3549	0	0	3574	1599	1787	1881	1599	3467	. 0	1599
Flt Permitted		0.569					0.950			0.950		
Satd. Flow (perm)	0	2034	0	0	3574	1599	1787	1881	1599	3467	0	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						472			144			184
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30	4116		30	
Link Distance (ft)		850			1164			571			1702	
Travel Time (s)		193			26.5			13.0			38.7	
Volume (vph)	69	425	0	0	1225	458	47	87	140	274	0	178
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	71	438	0	0	1.263	472	48	90	144	282	0	184
Lane Group Flow (vph)	0	509	0	0	1263	472	48	90	144	282	0	184
Turn Type	Perm					pm+ov	Split		Prote	custom		custom
Protected Phases		4			8	6	2	2	2	6		6
Permitted Phases	4					8				6		6
Detector Phases	4	4			8	6	2	2	2	6		6
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0	4.0		4.0
Minimum Split (s)	20.0	20.0			20.0	20.0	20.0	20.0	20.0	20.0		20.0
Total Split (s)	30.0	30.0	0.0	0.0	30.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0
Total Split (%)	43%	43%	0%	0%	43%	29%	29%	29%	29%	29%	0%	29%
Maximum Green (s)	26.0	26.0			26.0	16.0	16.0	16.0	16.0	16.0		16.0
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5	3.5	3.5	3.5		3.5
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5	0.5	0.5	0.5		0.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None			None		Coord	Coord	Coord	Min		Min
Walk Time (s)	5.0	5.0			5.0	5.0	5.0	5.0	5.0	5.0		5.0
Flash Dont Walk (s)	11.0	11.0			11.0	11.0	11.0	11.0	11.0	11.0		11.0
Pedestrian Calls (#/hr)	0	0			0	0	0	0	0	0		0
Act Effct Green (s)		26.0			26.0	42.3	19.7	19.7	19.7	12.3		_12.3
Actuated g/C Ratio		0.37			0.37	0.60	0.28	0.28	0.28	0.18		0.18
v/c Ratio	85 11 1-	0.67			0.95	0.41	0.10	0.17	0.26	0.46		0.42
Uniform Delay, d1		18.4			21.4	0.0	18.5	19.0	0.0	25.9		0.0
Delay		19.1			32.3	0.6	20.7		4.7	25.2		4.4
LOS		В			C	Α	С	С	Α	С		Α
Approach Delay		19.1			23.6			12.6				
Approach LOS		В			С			В				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	*	\rightarrow	*	1	-	*	4	†	-	-	1	1
Lane Group	EBL	EBT	EBR	WBL	WET	WBR	NBL	NBT	NBR	SBL	SBT	SRE
Queue Length 50th (ft)	34 - T	94			271	0	15	29	0	56		
Queue Length 95th (ft)		147		and the	#410	26	42	67	38	85	···· · · · · · · · · · · · · · · · · ·	43
Internal Link Dist (ft)		770			1084			491			1622	
50th Up Block Time (%)		P. 50 5			artani t				A			
95th Up Block Time (%)			(E) 85 55			. 3						
Turn Bay Length (ft)				***************************************					*** **** **** *			
50th Bay Block Time % 95th Bay Block Time %				·····	W B		w-g				- XS - 11 - X	
95th Bay Block Time %	***************************************	or three is				:						
Queuing Penalty (veh)	V.				Yu. 7 - 33				, ::			
Intersection Summary												
Area Type: O	ther	113 1130.0										
Cycle Length: 70											**************	
Actuated Cycle Length:	70		TELL W		= = =	,			va Ši			
Actuated Cycle Length: Offset: 0 (0%), Referenc Natural Cycle: 70	ed to p	hase 2:	NBTL.	Start of C	reen	*************			* - * - * - *			
				L #	-1 -88				8 T - 8 e	===	- E.V.	
Control Type: Actuated-	Coordin	ated						***************************************			************	
Maximum v/c Ratio: 0.9	5			*	1000000					1880		
Intersection Signal Delay	v: 20.8			In	ersect	ion LOS	: C	***************************************				
Intersection Capacity Ut	lization	73.8%		IC	U Lev	et of Ser	vice C					
# 95th percentile volur	ne exce	eds ca	pacity,	queue m	ay be I	onger.	samanini silik .			*************		
Queue shown is max	imum a	fter two	cycles								w	

Splits and Phases: 6: Route 109 & Beaver Street

₩ ø2	ø6	→ ₀ 4
20%	20:	30:
		Ø8

	*	\rightarrow	\rightarrow	1	—	*		†	-	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			ተተ	7*	3	1	7"	2 3		Ţ.
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50	50	50	50		50
Trailing Detector (ft)	0	0			0	0	0	0	0	0		0
Turning Speed (mph)	15		9	15		9	15		9	15	1 0	9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt						0.850	z		0.850	(0.850
Fit Protected		0.993					0.950			0.950		
Satd. Flow (prot)	0	3549	0	0	3574	1599	1787	1881	1599	3467	0	1599
FIt Permitted		0.569					0.950			0.950		
Satd. Flow (perm)	0	2034	0	0	3574	1599	1787	1881	1599	3467	0	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)				-		659			144			184
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		.30			30			30			30	
Link Distance (ft)		850			1164			571			1702	
Travel Time (s)		19.3	1 - 1		26.5			13.0		: :1t	38.7	
Volume (vph)	69	425	0	0	1225	686	47	87	140	299	0	178
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	71	438	0	0	1263	707	48	90	144	308	0	184
Lane Group Flow (vph)	0	509	0	0	1263	707	48	90	144	308	0	184
Turn Type	Perm	11 11 11 11	- W W			pm+ov	Split		custom	custom		custom
Protected Phases		4			8	6	2	2	2	6		6
Permitted Phases	4					8		Tetalia.	2	6		6
Detector Phases	4	4			8	6	2	2	2	6		6
Minimum Initial (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0			4.0
Minimum Split (s)	20.0	20.0			20.0	20.0	20.0	20.0	20.0	20.0		20.0
Total Split (s)	30.0	30.0	0.0	0.0	30.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0
Total Split (%)	43%	43%	0%	0%	43%	29%	29%	29%	29%	29%	0%	29%
Maximum Green (s)	26.0	26.0		3	26.0	16.0	16.0	16.0	16.0	16.0		16.0
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5	3.5	3.5	3.5		3.5
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5	0.5	0.5	0.5		0.5
Lead/Lag												
Lead-Lag Optimize?		. 38				11	1 2853			125 B.		
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			3.0
Recall Mode	None	None		#	None	Min	Coord	Coord	Coord			Min
Walk Time (s)	5.0	5.0			5.0	5.0	5.0	5.0				5.0
Flash Dont Walk (s)	11.0	11.0	2	***	11.0	11.0	11.0	11.0	11.0	11.0		11.0
Pedestrian Calls (#/hr)	0	0			0	0	0	0	0			0
Act Effct Green (s)		26.0			26.0	43.6	18.4	18.4				13.6
Actuated g/C Ratio		0.37	****		0.37	0.62	0.26	0.26				0.19
v/c Ratio		0.67	11 < 8		0.95	0.57	0.10	0.18				0.40
Uniform Delay, d1		18.4			21.4	0.4	19.5	19.9				0.0
Delay		19.1			32.3	0.8	21.4	21.8	4.8	24.4		4.3
LOS		В		* *	C	Α	С	С	Α	С		A
Approach Delay		19.1			21.0			13.0				
Approach LOS	100	В			С			В				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM

Synchro 5 Light Report Page 1

ABENDASMAL-LT51

	1	-	*	*	4	*	4	†	-	-	1	4
Lane Group	EBL	EBT	EBR	WA	WRT	WRR	NRI	NBT	NBR	CDI	COT	Con
Queue Length 50th (ft)	<u> </u>	94			271	6	16	31	.,,,,,	59	SID (ODE
Queue Length 95th (ft)		147			#410	39	42	67	38	92		42
Internal Link Dist (ft)		770			1084			491	30	32	1622	43
50th Up Block Time (%)	***** *** ****** ****** ****** ****** ****	designation of the second		**************************************				7.0			1022	
95th Up Block Time (%)												
Turn Bay Length (ft)		1			ali a anganasi				A			
50th Bay Block Time %	*		W 12 W									
95th Bay Block Time %												III
Queuing Penalty (veh)					1 28 ,		••••••	=27==-0		T s.		
Intersection Summary											•••••	
Area Type: O	ther											
Cycle Length: 70	***************************************		*********									
Actuated Cycle Length: 7	70											500
Offset: 0 (0%), Referenc Natural Cycle: 70	ed to pl	hase 2:I	NBTL.	Start of	Green							i
Natural Cycle: 70			3 3X		-30.30					8 200 3		= 0 =
Control Type: Actuated-0 Maximum v/c Ratio: 0.95	Coordin	ated		*******								
Maximum v/c Ratio: 0.95	5						^ =	*	<u> </u>			
Intersection Signal Delay	194			L	ntersect	ion LOS	: B					
Intersection Capacity Uti	lization	74.5%		- 6	CILLE	al of Sa	Nice C					
# apui bercennie volun	ne exce	eas car	pacity, (queue n	nay be l	onger.						
 Queue shown is maxi 	mum a	fter two	cycles					**************************************				. = _8

Splits and Phases: 6: Route 109 & Beaver Street

♦ ø2	₩ ø6	ø4
20 s	(O) ¢	93
		ø8
		30 s

	۶	-	*	1	-	*	4	†	1	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WET	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			† †	74	74	4	7	16.16		7
ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900		1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50	50	50			50
Trailing Detector (ft)	0	0			0	0	0	0	0	0		0
Turning Speed (mph)	15		9	1.5		9	15		9	15		9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt						0.850			0.850			0.850
Flt Protected		0.993					0.950			0.950	*** * *** * **	
Satd. Flow (prot)	. 0	3549	0	.0	3574	1599	1787	1881	1599	3467	0	1599
Flt Permitted		0.632					0.950			0.950	T	11.2
Satd. Flow (perm)	0	2259	0	0	3574	1599	1787	1881	1599	3467	0	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						399			68			196
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30		8	30			30	=88		30	
Link Distance (ft)		850			1164			571			1702	
Travel Time (s)		19.3			26.5	··············		13.0			38.7	
Volume (vph)	125	745	0	0	733	387	61	131	451	560	0	190
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	129	768	0	0	756	399	63	135	465	577	0	196
Lane Group Flow (vph)	0	897	0	0	756	399	63	135	465	577	0	196
Turn Type	Perm	× 11 - 11 20	F (8 18) 335 7			om+ov	Split		Proto	ustom		ustom
Protected Phases		4			8	6	2	2	2	6		6
Permitted Phases	4					8				6		6
Detector Phases	4	4			8	6	2	2	2	6		6
Minimum Initial (s)	4.0	4.0			4.0	4 0	4.0	4.0	4.0	4.0		4 0
Minimum Split (s)	20.0	20.0			20.0	20.0	20.0	20.0	20.0	20.0		20.0
Total Split (s)	41.0	41.0	0.0	0.0	41.0	20.0	29.0	29.0	29.0	20.0	0.0	20.0
Total Split (%)	46%	46%	0%	0%	46%	22%	32%	32%	32%	22%	0%	22%
Maximum Green (s)	37.0	37.0			37.0	16.0	25.0	25.0	25.0	16.0	8 8	16.0
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5	3.5	3.5	3.5		3.5
All-Red Time (s)	0.5	0.5			0.5	0.5	0.5	0.5	0.5	0.5		0.5
Lead/Lag			****									12.50
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None			None	Min	Coord	Coord	Coord	Min		Min
Walk Time (s)	5.0	5.0			5.0	5.0	5.0	5.0	5.0	5.0		5.0
Flash Dont Walk (s)	11.0	11.0			11.0	11.0	11.0	11.0	11.0	11.0		11.0
Pedestrian Calls (#/hr)	0	0			0	0	0	0	0	0		0
Act Effct Green (s)		36.8			36.8	56.8	25.2	25.2	25.2	16.0		16.0
Actuated g/C Ratio		0.41			0.41	0.63	0.28	0.28	0.28	0.18		0.18
v/c Ratio		0.97			0.52	0.35	0.13	0.26	0.94	0.94		0.44
Uniform Delay, d1		26.1		***	19.9	0.0	24.2	25.1	26.9	36.5		0.0
Delay		43.4			20.2	0.8	24.8		48.6	53.4		5,3
LOS		D			С	Α	С	С	D	D		Α
Approach Delay		43.4			13.5			41.7				
Approach LOS		D			В			D				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

	۶	-	*	1	-	1	4	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		255			164	0	27	60	216	168	3 G - 1	0
Queue Length 95th (ft)		#392			218	30	58	107	#420	#268		56
Internal Link Dist (ft)	200	770			1084			491			1622	
50th Up Block Time (%)		****** ******* **										,
95th Up Block Time (%)			== 171 11									
Turn Bay Length (ft)												
50th Bay Block Time %				=	-:				*****			
95th Bay Block Time %												
Queuing Penalty (veh)				- 2.		A						۸
Intersection Summary												
Area Type: O	ther				*							:-6
Cycle Length: 90												
Actuated Cycle Length: §	90			X-								
Offset: 0 (0%), Reference	ed to p	ohase 2:	NBTL,	Start of	Green							
Natural Cycle: 90			15.74									
Control Type: Actuated-0	Coordi	nated										
Maximum v/c Ratio: 0.9								·		:		
Intersection Signal Delay	y: 32.7			1	ntersec	tion LOS	S: C					
Intersection Capacity Uti	lizatio	n <mark>82.8</mark> %	:		CU Lev	el of Se	rvice D					
# 95th percentile volume	ne exc	eeds ca	pacity,	queue r	nay be	longer.						
 Queue shown is max 	imum	after two	cycles),.								

Splits and Phases: 6: Route 109 & Beaver Street

♦ ø2	^ \$ ø6	№ ø4
28 s	20 s	41 i
		4
		414

	۶	\rightarrow	•	1	4	1	4	†	-	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			44	74	75	4	7	24		#
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50	50	50	50	50	50		50
Trailing Detector (ft)	0	0			0	0	0	0	0	0	•	0
Turning Speed (mph)	15		9	15		9	15		9	15		- 9
Lane Util. Factor	0.95	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt x						0.850			0.850			0.850
Flt Protected		0.993					0.950		. 717 8 80	0.950		0.000
Satd. Flow (prot)	0	3549	0	0	3574	1599	1787	1881	1599		0	1599
Flt Permitted		0.577					0.950	3117.7.2.		0.950		
Satd. Flow (perm)	$P_{\rm ev} = 0$	2062	0	0	3574	1599		1881	1599	3467	0	1599
Right Turn on Red			Yes			Yes	i.i 7.8		Yes			Yes
Satd. Flow (RTOR)					1 2	460			60			226
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30	V 5884		30			30		= =	30	1.00
Link Distance (ft)		850			1164			571			1702	
Travel Time (s)	```````	19.3			26.5			13.0			38.7	
Volume (vph)	144	859	0	0	845	446	70	151	520	646	0	219
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	148	886	0	0	871	460	72	156	536	666	0	226
Lane Group Flow (vph)	0	1034	0	0	871	460	72	156	536	666	Ö	226
Turn Type	Perm					Perm	Split	=1 144		ustom		ustom
Protected Phases	and a second	4			8	. P. 177118	2	2	2	6		6
Permitted Phases	4					8				6		6
Detector Phases	4	4			8	8	2	2	2	6		6
Minimum Initial (s)	4.0	4.0	<u> </u>		4.0	4.0	4.0	4.0	4.0	4.0		4.0
Minimum Split (s)	20.0	20.0			20.0	20.0	20.0	20.0	20.0	20.0		20.0
Total Split (s)	63.0	63.0	0.0	0.0	63.0	63.0	40.0	40.0	40.0	27.0	0.0	27.0
Total Split (%)	48%	48%	0%	0%	48%	48%	31%	31%	31%	21%	0%	21%
Maximum Green (s)	59.0	59.0			59.0	59.0	36.0	36.0	36.0	23.0	0 70	23.0
Yellow Time (s)	3.5	3.5			3.5	3.5	3.5	3.5	3.5	3.5		3.5
All-Red Time (s)	0.5	0.5		X 200 ///	0.5	0.5	0.5	0.5	0.5	0.5		0.5
Lead/Lag	energy Williams				515	४-%	0,0			0,0		0.0
Lead-Lag Optimize?				11.3								
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0	3.0		3.0
Recall Mode	None	None			None	None	Min	Min	Min	Min		Min
Walk Time (s)	5.0	5.0		***********	5.0	5.0	5.0	5.0	5.0	5.0		5.0
Flash Dont Walk (s)	11.0	11.0			11.0	11.0	11.0	11.0	11.0	11.0		
Pedestrian Calls (#/hr)	0	0			0	0	0	0	0	0		11.0
Act Effct Green (s)		59.0			59.0	59.0	36.0	36.0	36.0	23.0		0
Actuated g/C Ratio	********	0.45			0.45	0.45	0.28	0.28	0.28	0.18		23.0
v/c Ratio		1.10		- 00 .	0.54	0.43	0.25	0.30	1.10			0.18
Uniform Delay, d1		35.5			25.6	0.0	35.4	37.1	41.2	1.09		0.48
Delay		86.9			25.9	1.9	35.8	37.5	96.7	53.5 99.9		0.0
LOS		F			_ 25,9 _ C							5.9
Approach Delay		86.9			17.6	Α	D	78.0	F	F		Α
Approach LOS		60.9 F						78.9				
					В			Ε				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	≯	\rightarrow	*	1	—	*	1	1	-	1	1	1
Lane Group	EBL	EBT	EBR	WEL	WET	WBR	NBL	NBT	NBR	SBL	SBT	CDD
Queue Length 50th (ft)		~521			273	0	46	104		~324		app.
Queue Length 95th (ft)		#656			335	59	86	167	#700	e de la Terra de la Caracia		74
Internal Link Dist (ft)	**	770			1084			491	#700	#443	1622	
50th Up Block Time (%)										vi van aans	1022	
95th Up Block Time (%)								W., 1988	38%			
Turn Bay Length (ft)		er ka adalah.		Alem a filler i		Venin ir iii i			30 /0			
50th Bay Block Time %							y			arm v		
95th Bay Block Time %												
Queuing Penalty (veh)							E or a				3W VI-	= 100
Intersection Summary												
Area Type: Ot	her								• • • • • • • • • • • • • • • • • • • •		31	
Cycle Length: 130		********										
Actuated Cycle Length: 1	30		887.7	= = = = = = = = = = = = = = = = = = = =								
Natural Cycle: 130	************	***************************************										
Control Type: Actuated-U	ncoord	linated										
Maximum v/c Ratio: 1.10	a a a a consequencia de la conse									***************************************		
Intersection Signal Delay			T. T.	lr	tersect	ion LOS	· =					
Intersection Capacity Utili	zation	93.4%	•••			el of Ser					<i></i>	
 Volume exceeds capa 	acity o	mene is	theore	tically in	finite	01 01 001	7100 L					
Queue shown is maxir	num a	fter two	cycles					• • • • • • • • • • • • • • • • • • • •				
# 95th percentile volum	e exce	eds ca	nacity (Therie n	av be l	onger	3330F II II					
Queue shown is maxir	num a	fter two	cycles	42240111	DO 1	origot.	······································					

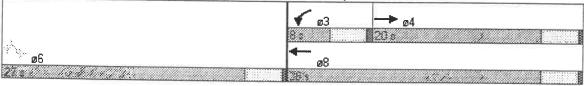
Splits and Phases: 6: Route 109 & Beaver Street

₩ ø2	♦ ø6	m4
40 8	77 5	63 s
		ø8
		694

200000000000000000000000000000000000000		-	*	*	-	*	4	1	1	-	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	11:5		000000000000000000000000000000000000000	***************************************	
Lane Configurations		44			^ ^	7		**************	*****************		SBT	SB
Ideal Flow (vphpl)	1900	1900	1900	1900		1900		-	7	. 4 5		
Total Lost Time (s)	4.0		4.0	4.0							1900	190
Leading Detector (ft)	50		E A31	7.0	50	4.0	4.0			4.0	4.0	4.
Trailing Detector (ft)	0	0			.50	50		_		50.		5
Turning Speed (mph)	15		9	15	_	0	0		0 0	0		
Lane Util. Factor	0.95	0.95	1.00	1.00		9	15		. 9	15		
Fit		0.00	1.00	1.00	0.95	1.00	1.00	1.00		0.97	1.00	1.0
FIt Protected		0.993				0.850			0.850	- +		0.85
Satd. Flow (prot)	0		0			*	0.950			0.950		
Flt Permitted	·	0.585	U	U	3574	1599	1787	1881	1599	3467	0	1599
Satd. Flow (perm)	0		00 Pe21				0.950			0.950	a e milio	103
Right Turn on Red	U	2091	0	.0	3574	1599	1787	1881	1599	3467	0	1599
Satd. Flow (RTOR)			Yes	211		Yes			Yes	·	Sales (Mark	
Headway Factor	4.00	Augustinia.				330			63			Yes
Link Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	194
Link Distance (ft)		30			30			30		1.00	30	1.00
Travel Time (s)		850			1164			571				
		19.3		V	26.5			13.0			1702	
Volume (vph)	144	859	0	0	845	470	70	151		004	38.7	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	520	904	0	219
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	te strikerening	0.97	0.97	0.97	0.97
Adj. Flow (vph)	148	886	0	0	871	485	72	1%	1%	1%	1%	1%
Lane Group Flow (vph)	0	1034	0	0	871	485		156	536	932	0	226
Turn Type	Perm					** * * * ******	72	156	536	932	0	226
Protected Phases		4			8	m+ov	Split			ustom	CI	stom
Permitted Phases	4					6 8	2	2	2	6		6
Detector Phases	4	4			8					6		- 6
Vinimum Initial (s)	4.0	4.0			4.0	6	2	2	2	6		6
Minimum Split (s)	20.0	20.0			The second of th	4.0	4.0	4.0	4.0	4.0		4.0
Total Split (s)	66.0	66.0	0.0	0.0	20.0	20.0	20.0	20.0	20.0	20.0		20.0
Total Split (%)	51%	51%	0%	0.0	66.0	38.0	26.0	26.0	26.0	38.0	0.0	38.0
Maximum Green (s)	62.0	62.0	076	0%	51%	29%	20%	20%	20%	29%	0%	29%
ellow Time (s)	3.5	3.5		· ! W .	62.0	34.0	22.0	22.0	22.0	34.0		34.0
II-Red Time (s)	0.5				3.5	3.5	3.5	3.5	3.5	3.5	*** ******	3.5
.ead/Lag	0.5	0.5			0.5	0.5	0.5	0.5	0.5	0.5		0.5
ead-Lag Optimize?									· · · · · · · · · · · · · · · · · · ·			0.0
ehicle Extension (s)												
	3.0	3.0	* **		3.0	3.0	3.0	3.0	3.0	3.0		2.0
Valk Time (s)		None			None	Min	Min	Min	Min	Min		3.0
loch Destaut	5.0	5.0			5.0	5.0	5.0	5.0	5.0			Min
lash Dont Walk (s)	11.0	11.0			And the second second	11.0	11.0	11.0	11.0	5.0		5.0
edestrian Calls (#/hr)	0	0			0	0	0	0		11.0		11.0
ct Effct Green (s)		62.0	==				22.0		0	0		0
ctuated g/C Ratio		0.48					0.17	22.0	22.0	34.1		34.1
c Ratio		1.04						0.17	0.17	0.26		0.26
niform Delay, d1		34.0			23.5			0.49		1.03	1.8	0.40
elay		64.6			23.8			48.9	and the control of the control of the	48.0		5.1
OS		E			C C					76.1	-1	8.1
oproach Delay		64.6				Α	D	D	F	E		Α
oproach LOS		E			15.7 B		_ 1	76.0				

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM

	۶	-	*	1	-	4	4	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WEL	WBT	WER	NBL	NBT	NBR	SEL	SET	SAD
Queue Length 50th (ft)		~493			261	28	53	121	~615	~431		18
Queue Length 95th (ft)	******	#628			320	56	100	193	#839	#561		88
Internal Link Dist (ft)		770			1084	: 3		491	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1622	- 00
50th Up Block Time (%)		(1.1) (1							28%			
95th Up Block Time (%)			LVE L			=188		3	48%		·····	a Pari
Turn Bay Length (ft)		··· i• ····i• ···										i
50th Bay Block Time %					7	514, 1, 8	. 88.18	84 E 170				12 3 XX
95th Bay Block Time %		*************	********									
Queuing Penalty (veh)			1100	34					ğ 121.			
Intersection Summary												
Area Type: Ot	her	1 11									•••••	
Cycle Length: 130												
Actuated Cycle Length: 1	30	= 1 330	F W				55:1	5 m 5				
Natural Cycle: 130			***************									
Control Type: Actuated-U	Incoor	dinated	3000		- V-388				.5 85 1.1.			
Maximum v/c Ratio: 1.66			*****************									
Intersection Signal Delay	68.5	=		1	ntersect	tion LOS	ŧΕ	143 V				
Intersection Capacity Util	ization	101.0%	, D		,	el of Ser						
 Volume exceeds cap 												
Queue shown is maxi	mum a	fter two	cycles	en erene erene erene erene. Og erene	***************************************		****************					
# 95th percentile volun	e exce	eds ca	pacity, (queue r	nay be	onger,		E L 1 2	•••••		Seal of C	
Queue shown is maxi	mum a	fter two	cycles	ren arabaranan da	s accorde sacción si	annad er ain di					***************************************	

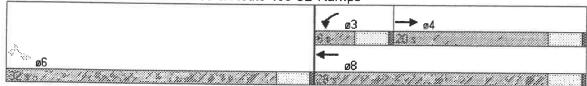

Splits and Phases: 6: Route 109 & Beaver Street

♦ ø2	a4
254 394	66 s
	◆
	66.4

	*	-	7	1	-	4	4	†	*	1		
Lane Group	EBL.	EET	EBR	WBI	. WBT	WBR					*	~
Lane Configurations		44	and the second of the	~~~~~	***************	VVDR	NBL	NBT	NBR	SBL	SBT	SE
Ideal Flow (vphpl)	1900	1900	1900			4000	1000	na ili di deleta		16.00		
Total Lost Time (s)	4.0	4.0	4.0	or	file transfer to a file Time,	1900	1900	1900	1900	1900	1900	. 190
Leading Detector (ft)		50	4.0	50		4.0	4.0	4.0	4.0	4.0	4.0	4
Trailing Detector (ft)	** * * * * * * *	0		***	je a statil					50		= 5
Turning Speed (mph)	15			15		an region	1 mm			0		
Lane Util. Factor	1.00	0.95	1.00		eren in a fire and	9	15	å	9	15		
Frt		0.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	0.91	1.0
Flt Protected				0.950			,				ti mir	0.85
Satd. Flow (prot)	0	3574	0							0.950		545 C. T.
Flt Permitted		5574	U			0	0	0	. 0	3467	0	159
Satd. Flow (perm)	0	3574	0	0.950			**** ** *********			0.950		
Right Turn on Red	e de la de	3374		1787	3574	0	0	0	0	3467	-0	159
Satd. Flow (RTOR)			Yes			Yes			Yes	11.04		Υe
Headway Factor	1.00	1.00	1.00	4 66								4
Link Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Link Distance (ft)		30			30			30	E ME B		30	347. 13
Travel Time (s)		1164			1273			553			471	
Volume (vph)		26.5			28.9			12.6		·····	10.7	
Peak Hour Factor	0 07	440	0	74	985	0	0	0	0	208	0	59
Heavy Vehicles (%)	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.9
Adj. Flow (vph)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	19
Lane Group Flow (vph)	0	454	0	76	1015	0	0	0	0	214	. 0	61
Turn Type	0	454	0	76	1015	0	0	0	0	214	0	61
Protected Phases				Prot						ustom		uston
Permitted Phases		4		3	8				····· ···			AGLOT.
Detector Phases										6		(
Minimum Initial (s)		4		3	8					6	••••••	
Minimum Split (s)		4.0		4.0	4.0			······································		4.0		4.0
Fotal Split (s)	1100acann	20.0		8.0	20.0					20.0		20.0
Fotal Split (%)	0.0	20.0	0.0	8.0	28.0	0.0	0.0	0.0	0.0	27.0	0.0	27.0
Maximum Green (s)	0%	36%	0%	15%	51%	0%	0%	0%	0%	49%	0%	49%
ellow Time (s)		16.0		4.0	24.0			8 7 70		23.0	0 70	23.0
Il Dod Time (s)		3.5		3.5	3.5			*		3.5		3.5
ill-Red Time (s) ead/Lag		0.5		0.5	0.5		ES			0.5		0.5
end I an Onti-		Lag		Lead				********				
ead-Lag Optimize? /ehicle Extension (s)		Yes		Yes								
Recall Mode		3.0		3.0	3.0		*************			3.0		3.0
		Vone		None	None	· · · · · · · · · · · · · · · · · · ·			7	coord		
Valk Time (s)		5.0			5.0	****************	**** **********************************			5.0		oord
lash Dont Walk (s)		11.0			11.0					11.0	:	5.0
edestrian Calls (#/hr)		0			0					n		11.0
ct Effct Green (s)	69 ¹³ .	13.9		4.0	20.3				***************************************	26.7		0
ctuated g/C Ratio		0.25		0.07	0.37					0.49		26.7
c Ratio		0.50		0.58	0.77							0.49
niform Delay, d1		17.6		25.5	14.6					0.13		0.76
elay		17.7		28.4	16.0					8.2		11.1
OS		В		С	В					8.8		19.1
pproach Delay		17.7			16.9				*******	Α		В
pproach LOS		В			В	A.						

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM

	1	-	*	1	4	*	4	†	-	1	1	1
Lane Group	EBL	EBT	EBR	WBL	WET	WBR	NBL	NRT	NRR	SRI	SBT	SBF
Queue Length 50th (ft)	wit = E	68		20	185					18	~~!	139
Queue Length 95th (ft)		98		m#63	246					38		#346
Internal Link Dist (ft)		1084			1193			473	~==:		391	#34C
50th Up Block Time (%)				· · · · · · · · · · · · · · · · · · ·	· Alteration	settime to a						·
95th Up Block Time (%)				, ,	- 8 8 4	- TE		T-W	·····			
Turn Bay Length (ft)										•		
50th Bay Block Time %		-1257 - 200				: 4 44. 4						
95th Bay Block Time %			***************************************			***************************************			A			
Queuing Penalty (veh)				7	1. j. T.			,				
Intersection Summary												
	ther		=11									
Cycle Length: 55			**************				*****************	***************************************		***************************************		
Actuated Cycle Length: 5	55	- 30	1.33				ÿ	***************************************			Tar Harana	
Offset: 0 (0%), Reference Natural Cycle: 55	ed to pl	hase 2:	and 6:5	SBL, Sta	art of G	reen						*************
Natural Cycle: 55										,		
Control Type: Actuated-C	Coordin	ated				*************						
Waxii iiulii V/C Rallo: U. / /												
Intersection Signal Delay	: 16.9		*****************	Ir	ntersect	ion LOS	S: B					
Intersection Capacity Util	lization	72.5%		10	2U Lev	el of Se	rvice C					
# 95th percentile volum	ne exce	eds car	pacity, o	queue n	nay be l	onger						
Queue shown is maxi	mum a	fter two	cycles									
m Volume for 95th per	centile	queue i	s meter	ed by u	pstrean	n signal.						
Splits and Phases: 7: F	Doute 1	00 2 0	outo 40	E CD D								
- File and Filesco. 7. F	Voute 1	09 & R	Jule 49	2 20 K	amps							

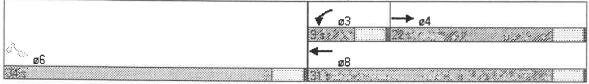


	▶	-	7	•	-	4	4	†	<i>j</i> =	1	1	
Lane Group	EBL	EBT	EBR	WBL	. WBT	WBR	100000	i Name		(11011110000000000000000000000000000000	*	
Lane Configurations		ት ት	and the second of the second	7		AAISIE	NBL	NBT	NBR	SBL	SBT	SB
Ideal Flow (vphpl)	1900	1900	1900			1900	1000	- 12000°	1 3366	100		
Total Lost Time (s)	4.0	4.0	4.0		400	4.0	1900		1900		1900	190
Leading Detector (ft)		50		50		4.0	4.0	4.0	4.0	4.0	4.0	4
Trailing Detector (ft)		0	•	C	7.7					50		4
Turning Speed (mph)	15		9	_	_	9	15			0		
Lane Util. Factor	1.00	0.95	1.00			1.00	1.00	4.00	4 00	15		=
Frt					0.33	1.00	1.00	1.00	1.00	0.97	0.91	1.0
Flt Protected				0.950					1 = =	0.050		0.85
Satd. Flow (prot)	0	3574	0		3574	0	Λ		41 JUNE 1 10 11	0.950		
FIt Permitted		er i i e i i e i e i e i e i e i e i e i		0.950			U	U	0		0	159
Satd. Flow (perm)	.0	3574	0					- 0		0.950		
Right Turn on Red	****	· · · · · · · · · · · · · · · · · · ·	Yes			Yes		U	0	3467	0	
Satd. Flow (RTOR)						163			Yes	Maria de Conservadores.	and the second	Υe
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00	4.00			2
Link Speed (mph)		30	kye hin	1.00	30	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Link Distance (ft)		1164			1273			30			30	
Travel Time (s)	- 333	26.5		· · · · · · · · · · · · · · · · · · ·	28.9			553		***************************************	471	
Volume (vph)	0	507	0	85	1136	0		12,6			10.7	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0 0.97	0	0	240	0	68
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%		0.97	0.97	0.97	0.97	0.9
Adj. Flow (vph)	0	523	0	88	1171	176	1%	1%	1%	1%	1%	19
Lane Group Flow (vph)	0	523	0	88	1171	0	0	0	0	247	0	70
Turn Type				Prot	1171			0	0	247	0	70
Protected Phases		4		3	8				·C	ustom	C	uston
Permitted Phases												
Detector Phases		4		3	8			· 4		D		
Minimum Initial (s)		4.0	j. =	4.0	4.0					6 4.0		
Minimum Split (s)		20.0		8.0	20.0					Contract Con		4.0
Total Split (s)	0.0	20.0	0.0	8.0	28.0	0.0	0.0	0.0	0.0	20.0		20.0
Total Split (%)	0%	33%	0%	13%	47%	0%	0%	0%	0.0	32.0	0.0	32.0
Maximum Green (s)		16.0		4.0	24.0	0 70	U /0	U%	0%	53%	0%	53%
Yellow Time (s)		3.5		3.5	3.5			.w. b		28.0		28 (
All-Red Time (s)		0.5		0.5	0.5				······································	3.5		3.5
_ead/Lag		Lag		Lead						0.5		0.5
ead-Lag Optimize?		Yes		Yes								
/ehicle Extension (s)		3.0		3.0	3.0					0.0		1
Recall Mode		None			None					3.0	·	3.0
Valk Time (s)		5.0		TATAMA,	5.0					Coord	C	oord
lash Dont Walk (s)	E. IIII	11.0			11.0				=	5.0		5.0
Pedestrian Calls (#/hr)		0		and Was	0				:	11.0		11.0
ct Effct Green (s)	= 18	16.9		4.0	23.2					0		0
ctuated g/C Ratio		0.28		0.07	0.39					28.8	. I I I E	28.8
/c Ratio		0.52		0.74	0.85			·		0.48		0.48
Iniform Delay, d1		18.2	*******	28.3	16.1		i. ii. i i			0.15		0.91
elay		18.9	117	52.4	18.5					9.2		14.6
OS		В		D	В					9.2		28.1
pproach Delay		18.9			20.8					Α		С
pproach LOS		В			C							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	۶	-	*	1	←	*	4	†	-	-	ļ.	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NRR	SRI	SRT	CRD
Queue Length 50th (ft)	i in itaa	85		32	191					24	500 St. 1	198
Queue Length 95th (ft)		128		#99	#271					42	ffrinn	#437
Internal Link Dist (ft)		1084						473			301	7731
50th Up Block Time (%)				A	aka melek	8 t		: W.E.E			991	ma mind
95th Up Block Time (%)					- 1 - E		- 800					2204
Turn Bay Length (ft)		*****************				i :::::::.:.:		1	.::::::::::::::::::::::::::::::::::::::	**************	11	44.70
50th Bay Block Time %			8=5.87	-X4 :				JEVI-Tow				
95th Bay Block Time %		***************************************							A		:::::::	i
Queuing Penalty (veh)								. 54	*** ** **			
Intersection Summary										10.000000		
	her											·
Cycle Length: 60							*****************			!!!	:::	
Actuated Cycle Length: 6	0				5.	V 1000 1000 1000			**************************************			
Offset: 0 (0%), Reference	ed to pl	nase 2:	and 6:5	SBL, Sta	art of G	reen		and an artist	***************************************		•••••••	
tvaturar Cycle, 50				* I E		· · · · · · · · · · · · · · · · · · ·						
Control Type: Actuated-C	oordin	ated										
Maximum v/c Ratio: 0.91												
Intersection Signal Delay				li	ntersect	ion LOS	8: C				*************	
Intersection Capacity Util	ization	82.6%		40	CU Lev	el of Sei	rvice D	:				
# 95th percentile volum	e exce	eds cap	pacity, o	queue n	nay be l	longer.						
Queue shown is maxii	num a	fter two	cycles									

Splits and Phases: 7: Route 109 & Route 495 SB Ramps

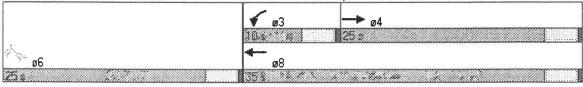


	*	-	7	1	-	*	4	1	1	-	\downarrow	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ		¥5	44					36,36		74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)		50		50	50					50		50
Trailing Detector (ft)	,	0		0	0				***	0		0
Turning Speed (mph)	15		9	15		9	1.5		9	15		9
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	0.91	1.00
Frit	£.,		-1.55				-11 15-					0.850
Flt Protected			***************************************	0.950						0.950		
Satd, Flow (prot)	0	3574	0	1787	3574	. 0	0	. 0	0	3467	0	1599
FIt Permitted		*****		0.950						0.950		
Satd. Flow (perm)	0	3574	0	1787	3574	.0	0	0	0	3467	0	1599
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)												10
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1164			1273			553			471	
Travel Time (s)	8, 8	26.5			28.9			12.6	- 8		10.7	- 1 - 881.88
Volume (vph)	0	507	0	85	1364	0	0	0	0	240	0	683
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	0	523	0	88	1406	0	0	0	0	247	0	704
Lane Group Flow (vph)	0	523	0	88	1406	0	0	0	0	247	0	704
Turn Type				Prot					(custom	1	custom
Protected Phases	*************	4		3	8							
Permitted Phases									au = 3	6	W 8 8	6
Detector Phases		4		3	8					6		6
Minimum Initial (s)		4.0		4.0	4.0					4.0		4.0
Minimum Split (s)		20.0		8.0	20.0					20.0		20.0
Total Split (s)	0.0	22.0	0.0	9.0	31.0	0.0	0.0	0.0	0.0	34.0	0.0	34.0
Total Split (%)	0%	34%	0%	14%	48%	0%	0%	0%	0%	52%	0%	52%
Maximum Green (s)		18.0	4_ WILL	5.0	27.0				*	30.0		30.0
Yellow Time (s)		3.5		3.5	3.5					3.5		3.5
All-Red Time (s)		0.5		0.5	0.5					0.5		0.5
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes								
Vehicle Extension (s)		3.0		3.0	3.0					3.0		3.0
Recall Mode		None		None	None					Coord		Coord
Walk Time (s)		5.0			5.0					5.0		5.0
Flash Dont Walk (s)		11.0			11.0		3			11.0		11.0
Pedestrian Calls (#/hr)		0			0					0		0
Act Effct Green (s)		19.8		5.0	27.0					30.0		30.0
Actuated g/C Ratio		0.30		0.08	0.42					0.46		0.46
v/c Ratio		0.48		0.64	0.95					0.15		0.95
Uniform Delay, d1		18.4		30.1	17.5					10.6		17.2
Delay		19.5		42.0	27.8					10.3		33.5
LOS		В		D	С					В		С
Approach Delay	==	19.5			28.6		,					
Approach LOS		В			C							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	۶		*	1	←	*	1	†	-	1	Į.	1
Lane Group	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		92		35	271	15 a - 3				27		228
Queue Length 95th (ft)		135	****************	#97	#417				***************	46		#473
Internal Link Dist (ft)		1084	. Hr.—Vani,	me arda d	1193		E- 11-5	473	11.		391	
50th Up Block Time (%)	_	***************************************									and district the second	
95th Up Block Time (%)	· ≅ ī = _			- § W	Ser 12-88					=		29%
Turn Bay Length (ft)											****************	
50th Bay Block Time %						45000000	Barell e					
95th Bay Block Time %											*************	
Queuing Penalty (veh)			I = INU#3									
Intersection Summary												
Area Type: O	her					- 5.2233				11111		
Cycle Length: 65		***************************************	***************************************								•••••	
Actuated Cycle Length: 6	5	el e s						:Y				# F ##
Actuated Cycle Length: 6 Offset: 0 (0%), Reference Natural Cycle: 65	ed to p	hase 2:	and 6:S	BL, Sta	art of G	reen						
Natural Cycle: 65					-		4					
Control Type: Actuated-0	Coordin	ated						•				
Maximum v/c Ratio: 0.95			X									
Intersection Signal Delay	: 26.6			11	ntersect	ion LOS	S: C					
Intersection Capacity Util	ization	89.1%		10	CU Lev	el of Se	rvice D					
# 95th percentile volum	ne exce	eds cap	pacity, q	ueue n	nay be	onger.						
Queue shown is maxi	mum a	ifter two	cycles.									

Splits and Phases: 7: Route 109 & Route 495 SB Ramps



			аптро								3/1	0/200
200000000000000000000000000000000000000	*	-	->	1	-	*	4	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	en		MANAGAMANAN AN
Lane Configurations		44		*				1403	NO.	SBL	SBT	SB
ideal Flow (vphpl)	1900	1900	1900	1900		1900	1900	1000	4000	75	111111111	V 1 4 4 4
Total Lost Time (s)	4.0	4.0	4.0	4.0	f +44.65%	4.0	erice of a contraction of	1900	1900		1900	190
Leading Detector (ft)		50		50	4	4.0	4.0	4.0	4.0	4.0	4.0	4.
Trailing Detector (ft)		0	om ha saa .	0	* 5 * * * * * * * * * * * * * * * * * *					50	11.	5
Turning Speed (mph)	15		Q	15	_					0	*****	
Lane Util. Factor	1.00	0.95	1.00	1.00		4.00	15		9	15		
Fit		7.00	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	0.91	1.0
Flt Protected				0.950							4	0.85
Satd. Flow (prot)	0	3574	. 0		0.534					0.950		
Flt Permitted		55/4	U		3574	0	0	0	0	3467	0	159
Satd. Flow (perm)	0	3574		0.950						0.950		*****
Right Turn on Red		33/4	0	1/8/	3574	0	0	0	0	3467	0	1599
Satd. Flow (RTOR)			Yes			Yes			Yes			Ye
Headway Factor	1.00	4.00	4.00						11 35 X	X Y a	-87, E2	188
Link Speed (mph)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Distance (ft)		30			30			30			30	
Travel Time (s)		1164			1273			553			471	
Volume (vph)		26.5			28.9		WF - 1 - 1	12.6		38	10.7	
Post User Face	0	1068	0	140	673	0	0	0	0	286	0	586
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0 97	0.9
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	0	1101	0	144	694	0	0	0	0	295	0	604
Lane Group Flow (vph)	0	1101	0	144	694	0	0	0	0	295	0	604
Turn Type				Prot	53.41.1338.6					ustom		uston
Protected Phases		4		3	8			**************		GOLOTH		naton
Permitted Phases									8 22 8	6		6
Detector Phases		4		3	8		*************			6		
Minimum Initial (s)		4.0		4.0	4.0					4.0		6
Minimum Split (s)		20.0		8.0	20.0					20.0	************	4.0
Total Split (s)	0.0	25.0	0.0	10.0	35.0	0.0	0.0	0.0	0.0		0.0	20.0
Total Split (%)	0%	42%	0%	17%	58%	0%	0%	0%	ere ere ere er er er er er er er er er e	25.0	0.0	25.0
Maximum Green (s)		21.0		6.0	31.0			U /0	0%	42%	0%	42%
reliow Time (s)		3.5	*****************	3.5	3.5		•••••			21.0		21.0
All-Red Time (s)		0.5		0.5	0.5					3.5		3.5
_ead/Lag		Lag		Lead	9 . 4					0.5		0.5
_ead-Lag Optimize?		Yes		Yes								,
/ehicle Extension (s)	***************************************	3.0		3.0	3.0	v	· i · · · · · · · · · · · · · · · · · ·					
Recall Mode		None	e	None				v	************	3.0		3.0
Valk Time (s)		5.0		None	None					Coord	(Coord
lash Dont Walk (s)		11.0			5.0					5.0		5.0
Pedestrian Calls (#/hr)		0			11.0					11.0		11.0
Act Effct Green (s)		20.6	*****	0.0	0					0		0
ctuated g/C Ratio		to the first terms of the contract of the cont		6.0	30.6					21.4		21.4
/c Ratio		0.34		0.10	0.51	***************************************				0.36		0.36
Iniform Delay, d1		0.90		0.80	0.38					0.24	=170	0.87
elay		18.7		26.4	8.9					13.5		12.1
OS		23.5		33.6	12.0					13.9		22.8
pproach Delay		С		С	В					В	- 11 -	C
		23.5			15.7	W				_		
pproach LOS		C			В							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

		\rightarrow	1	1		,	1	T		-	+	4
ane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Queue Length 50th (ft)		192		51	110					38		129
Queue Length 95th (ft)		#305		m#105	176			***************		63		#333
nternal Link Dist (ft)		1084			1193			473			391	1115
50th Up Block Time (%)									,,			
95th Up Block Time (%)												
Turn Bay Length (ft)										***************************************		
50th Bay Block Time %							- 12					
95th Bay Block Time %												
Queuing Penalty (veh)												
ntersection Summary				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Area Type: Oth	ner			233 (= -7	T 8008-V							·····
Cycle Length: 60												
Actuated Cycle Length: 60):											
Offset: 0 (0%), Reference	d to p	hase 2:	and 6:	SBL, St	art of G	reen						
Natural Cycle: 60												
Control Type: Actuated-Co	oordir	nated										
Maximum v/c Ratio: 0.90												
ntersection Signal Delay:				Ī	ntersec	tion LOS	3: C					
ntersection Capacity Utili.	zatior	63.3%		1	CU Lev	el of Se	rvice B					
# 95th percentile volume	e exc	eeds ca	pacity,	queue r	nay be	longer.						
Queue shown is maxin							.,					1 18
m Volume for 95th perc					ıpstrear	n signal						

Splits and Phases: 7: Route 109 & Route 495 SB Ramps

	*	→	*	1	-	4	4	†	1	1	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †		35	个个					100		77
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)		50		50	50					50	Wen.	50
Trailing Detector (ft)		0		0	0					0		0
Turning Speed (mph)	15		9	15		9	15		9	15	Transport	9
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	0.97	0.91	1.00
Frt							**					0.850
Flt Protected				0.950						0.950		
Satd. Flow (prot)	0	3574	0	1787	3574	0	0	0	0	3467	0	1599
Flt Permitted		e en		0.950						0.950		
Satd. Flow (perm)	0	3574	0		3574	0	0	0	0	3467	0	1599
Right Turn on Red		a none was	Yes			Yes			Yes		• • • • • • • • • • • • • • • • • • • •	Yes
Satd. Flow (RTOR)					87 11 = 11						8 i - "8 i	145
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1164			1273			553			471	
Travel Time (s)		26.5			28.9			12.6			10.7	
Volume (vph)	0	1232	0	161	776	0	0	0	0	330	0	676
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	1 70	1270	0	166	800	0	0	0	0	340	0	697
Lane Group Flow (vph)	0	1270	0	166	800	0	0	0	0	340	0	697
Turn Type		1270	U	Prot	000					custom		custom
Protected Phases		A		3	8					CUSTOTT		Custom
Permitted Phases		4		<u> </u>	0					8		8
Detector Phases				2	8					6 6		6 6
		4.0		3 4.0	4.0					4.0		4.0
Minimum Initial (s)			•••••	and the second state of the second						20.0		20.0
Minimum Split (s)	0.0	20.0	0.0	8.0	20.0	0.0	0.0	0.0	0.0	39.0	0.0	39.0
Total Split (s)	0.0	38.0	0.0	13.0	51.0	0.0	and a second second	0%	0.0	43%	0.0	43%
Total Split (%)	0%	42%	0%	14%	57%	0%	0%	U%	0%		070	35.0
Maximum Green (s)		34.0		9.0	47.0					35.0		
Yellow Time (s)		3.5		3.5	3.5					3.5 0.5		3.5 0.5
All-Red Time (s)		0.5	×	0.5	0.5					0.5		0.5
Lead/Lag		Lag		Lead								
Lead-Lag Optimize?		Yes		Yes			A					0.0
Vehicle Extension (s)		3.0		3.0	3.0		· · · · · · · · · · · · · · · · · · ·			3.0		3.0
Recall Mode		None		None	None			×		Coord		Coord
Walk Time (s)		5.0	. 7		5.0					5.0		5.0
Flash Dont Walk (s)		11.0			11.0					11.0		11.0
Pedestrian Calls (#/hr)		0			0					0		0
Act Effct Green (s)		33.7		9.0	46.7					35.3		35.3
Actuated g/C Ratio		0.37		0.10	0.52					0.39		0.39
v/c Ratio		0.95		0.93	0,43			<u> </u>		0.25		0.97
Uniform Delay, d1		27.3		40.1	13.4					18.4		21.2
Delay		36.1		80.6	13.5				ΥТ	18.7		45.3
LOS		D		F	В					В		D
Approach Delay		36.1			25.1				138			
Approach LOS		D			С							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	۶	-	*	•	—	*	1	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		360		95	139					65		306
Queue Length 95th (ft)		#504		#216	184		***********		***************************************	97		#573
Internal Link Dist (ft)		1084		, i seesa e	1193	_ 88=	H-ELE	473		7.00.0	391	
50th Up Block Time (%)												
95th Up Block Time (%)					/#=- ==				-			35%
Turn Bay Length (ft)			****************				*************			****************		
50th Bay Block Time %							не п					-1 118
95th Bay Block Time %			***************			*************				****************	*****************	
Queuing Penalty (veh)		Ψ				1 38-1						
Intersection Summary												
Area Type: O	ther	1 1					=	27 II.				
Cycle Length: 90									***************			
Actuated Cycle Length: 9	90					WILLIAM						
Offset: 0 (0%), Referenc	ed to p	hase 2:	and 6:5	SBL, Sta	art of G	reen						
Natural Cycle: 90												
Control Type: Actuated-0	Coordin	ated					***********					
Maximum v/c Ratio: 0.97												
Intersection Signal Delay				I	ntersect	tion LOS	S: C			***************************************		
Intersection Capacity Util	lization	71.9%				el of Se						
# 95th percentile volun	ne exce	eds ca	pacity, o	queue n	nay be	longer.	ten asett den					***************************************
Queue shown is maxi	mum a	ifter two	cycles			= = = = = = = = = = = = = = = = = = = =						

Splits and Phases: 7: Route 109 & Route 495 SB Ramps

	€ ø3	→ ø4
A	13:	38 s
Ø6 39 s	ø8 51.s	

		Ц

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 1
Lane Configurations AA
Ideal Flow (vphpl)
Total Lost Time (s) 4.0 50 50 Tuming Speed (mph) 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <
Leading Detector (ft) 50 50 50 50 50 Trailing Detector (ft) 0 0 0 0 0 0 Turning Speed (mph) 15 9 15 9 15 9 15 9 Lane Util. Factor 1.00 0.95 1.00 1.00 1.00 1.00 0.97 0.91 1.00 Fit Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 0 3574 0 1787 3574 0 0 0 3467 0 1599 0.950
Trailing Detector (ft) 0 0 0 0 0 Turning Speed (mph) 15 9 15 9 15 9 15 9 Lane Util. Factor 1.00 0.95 1.00 1.00 0.95 1.00 0.97 0.91 1.00 Fit Fit Protected 0.950 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 0.950 </td
Turning Speed (mph) 15 9 15 9 15 9 15 9 Lane Util. Factor 1.00 0.95 1.00 1.00 1.00 1.00 0.97 0.91 1.00 Fit Fit Protected 0.950 0.950 0.950 Satd. Flow (prot) 0 3574 0 1787 3574 0 0 0 3467 0 1599 Satd. Flow (perm) 0 3574 0 1787 3574 0 0 0 3467 0 1599 Right Turn on Red Yes Yes Yes Yes Yes
Lane Util. Factor 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.97 0.91 1.00 Fit Protected 0.950
Fit
Fit Protected 0.950 0.950 Satd. Flow (prot) 0.3574 0.1787 3574 0.0 0.3467 0.1599 Fit Permitted 0.950 0.950 0.950 Satd. Flow (perm) 0.3574 0.1787 3574 0.0 0.3467 0.1599 Right Turn on Red Yes Yes Yes Yes Yes
Satd. Flow (prot) 0 3574 0 1787 3574 0 0 0 3467 0 1599 Flt Permitted 0.950 0.950 Satd. Flow (perm) 0 3574 0 1787 3574 0 0 0 3467 0 1599 Right Turn on Red Yes Yes Yes Yes
Fit Permitted 0.950 0.950 Satd. Flow (perm) 0.3574 0.1787 3574 0.0 0.3467 0.1599 Right Turn on Red Yes Yes Yes Yes Yes
Satd. Flow (perm) 0 3574 0 1787 3574 0 0 0 0 3467 0 1599 Right Turn on Red Yes Yes Yes Yes
Right Turn on Red Yes Yes Yes Yes
ics ies ies
Satd, Flow (RTOR)
Hoodway Foster
Link Speed (mph) 30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
Link Distance (ft) 1164 1273 553 471
Volume (, , b)
A DESCRIPTION OF THE PROPERTY
4 DE 1991 DE 1
Protected Phases 4 3 8
Datastor Phonon
Minimum Outli (1)
T-1-1 ()-13 (0)
270 4070 470 470
V-II- 7" /)
Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 0.5 0.5 0.5 0.5 0.5
Lead/Lag Lag Lead
Lead-Lag Optimize? Yes Yes
Vohiolo Extension (a)
DARKE MARKET
Walk Time (a)
Pedestrian Calls (#/br)
3 14 H FA 14 15 15 15 15 15 15 15 15 15 15 15 15 15
Ashiolada (O.B.)
7. Barre
Halfarra Dalay III
50.50
108
Approach Delay 36.1 24.9 Approach LOS D C

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	۶	-	7	1	-	*	1	†	-	1	1	1
Lane Group	EBL	EST	EBR	WAR	WET	MARR	NRI	NET	NIPD	CDI	SBT	688
Queue Length 50th (ft)		360		95	145		33444		100102400	65	ODI	SBR
Queue Length 95th (ft)		#504		#216	191		1			97		311
Internal Link Dist (ft)	W- 1	1084	1 3		1193	W.,		472	E	91	204	#580
50th Up Block Time (%)								#.I.J			281	o danii
95th Up Block Time (%)		311										2007
Turn Bay Length (ft)												30%
50th Bay Block Time %												
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary												
Area Type: Ot	her							1 11				
Cycle Length: 90												
Actuated Cycle Length: 9	0									H-304 8		(Vejas)
Offset: 0 (0%), Reference	ed to p	hase 2:	and 6:5	BL. Sta	art of Gr	een				- 77		
I MEDICAL PROPERTY OF THE PARTY				- 20, 300								
Control Type: Actuated-C	oordin	ated									*************	
Maximum v/c Ratio: 0.98				× ;								
Intersection Signal Delay	: 33.3		******	lr.	ntersect	ion LOS	· C					
Intersection Capacity Util		72.6%	***************************************			el of Ser					25.00 11.192	×
# 95th percentile volum	e exce	eds car	acity.	neue n	nav be l	onger	*****				·	
Queue shown is maxii	mum a	fter two	cycles		,							
		www.co10100000.										
Splits and Phases: 7: F	Route 1	109 & R	oute 49	5 SB R	amps							

	, ,	-	*	1	+	*	4	†	-	1	1	١
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	AIDT	**************************************		***************************************	
Lane Configurations	35	44			44	- Walterly	141217	NBT	NBR	SBL	SBT	SBR
ideal Flow (vphpl)	1900		1900	1900		1900		1900		*000	on sia aran	tin was arrest o
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	ere ere a a a a a a a a a a a a a a a a	1900	1900	1900
Leading Detector (ft)	50	50		Market A	50	4.0	50	4.0	4.0	4.0	4.0	4.0
Trailing Detector (ft)	0	0		over a Barre	0		0		50			
Turning Speed (mph)	15	Y. I.	9	15		9	15		0	· · · · · · · · · · · · · · · · · · ·		
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	9	15		9
Frt		······································				1,00	0.97	1.00	1.00	1.00	1.00	1.00
Flt Protected	0.950		*****************				0.950		0.850			
Satd. Flow (prot)	1787	3574	0	0	3574	0	3467	0	1500	w	<u></u>	
Flt Permitted	0.950		·· ··· ·· · · · · · · · · · · · · · ·	····· · · · · · · · · · · · · · · · ·			0.950	U	1599	- 0	0	0
Satd. Flow (perm)	1787	3574	0	0	3574	0	3467	0	4500			
Right Turn on Red	******	and the state of the second	Yes			Yes	3407	0	1599	U	0	0
Satd, Flow (RTOR)				~		169	••••••		Yes			Yes
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	216	4.00		
Link Speed (mph)		30		1.00	30	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Distance (ft)	**** ***********	1273			877			30			30	
Travel Time (s)		28.9			19,9			535			448	
Volume (vph)	179	455	0	0	557	0	200	12.2			10.2	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0 0.97	398	0	210	0	0	0
Heavy Vehicles (%)	1%	1%	1%	1%	1%	o	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	185	469	0	0	574	1%	1%	1%	1%	1%	1%	1%
Lane Group Flow (vph)	185	469	0	0	574	0	410	Ō	216	0	0	. 0
Turn Type	Prot	3 3			3/4	0	410	0	216	0	0	0
Protected Phases	7	4				·C	ustom	C	ustom			
Permitted Phases	······································				8		5	****************		***************		
Detector Phases	7	4					5		2			
Minimum Initial (s)	4.0	4.0			8 4.0		5		2			
Minimum Split (s)	8.0	20.0					4.0		4.0			
Total Split (s)	15.0	35.0	0.0	0.0	20.0		8.0	***************************************	20.0			
Total Split (%)	27%	64%	0%	0.0	20.0	0.0	20.0	0.0	20.0	0.0	0.0	0.0
Maximum Green (s)	11.0	31.0	U%	0%	36%	0%	36%	0%	36%	0%	0%	0%
Yellow Time (s)	3.5	3.5			16.0		16.0		16.0			
All-Red Time (s)	0.5	0.5			3.5		3.5		3.5			
_ead/Lag	Lead	0.5			0.5		0.5		0.5	:		- 43
ead-Lag Optimize?	Yes				Lag		*****************					
/ehicle Extension (s)	3.0	2.0			Yes							
Recall Mode	NAME AND ADDRESS OF THE OWNER, AND ADDRESS O	3.0			3.0		3.0		3.0			
Valk Time (s)	NUITE	None			None	,	None	C	Coord	Take =		
lash Dont Walk (s)		5.0			5.0				5.0			
Pedestrian Calls (#/hr)		11.0	W 1.		11.0				11.0		Y / W 8	
ct Effct Green (s)	0.6	0			0				0			
ctuated g/C Ratio	9.5	24.8	· · · · · · · · · · · · · · · · · · ·		13.5		22.2		22.2			
/c Ratio	0.17	0.45	,		0.25	**********	0.40		0.40	*****************		
Iniform Delay, d1	0.60	0.29		×	0.66		0.29		0.28			-0.33
Pelay	22.2	9.0			18.6		11.7		0.0			
OS	12.9	8.0		hillini	18.4		13.6		3.0			
pproach Delay	В	Α			В		В		Α		**	
pproach LOS		9.4			18.4							
PPI OGOIT EOS		Α			В					******		

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

	۶	-	*	-	◄	1	4	†	-	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	55	63			88	rode.	48	100	0		W III =	
Queue Length 95th (ft)	107	86			125		87		36			
Internal Link Dist (ft)		1193		:=	797			455		1	368	
50th Up Block Time (%)											**** **** *** *.	
95th Up Block Time (%)	W - 14											
Turn Bay Length (ft)												
50th Bay Block Time %	Xw. II	7787										
95th Bay Block Time %	,											
Queuing Penalty (veh)												
Intersection Summary			1611							1 11 11		
Area Type: O	ther			1 361 C		, 81			LANZA FEREN	: 11.21	sie vivi	
Cycle Length: 55					****************							
Actuated Cycle Length: !	55	311111 38		MEQUEN E							3 1 2 ×	
Offset: 0 (0%), Reference		hase 2:	NBR ar	nd 6:, St	art of G	reen						
Natural Cycle: 55					X = V , 12 X ,							
Control Type: Actuated-0	Coordin	nated										
Maximum v/c Ratio: 0.66				8 1/2 1/1/ ¹								
Intersection Signal Delay				1	ntersect	ion LOS	S: B					
Intersection Capacity Uti		47.8%			CU Lev							.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Splits and Phases: 8: Route 109 & Route 495 NB Ramps

. ²	→ ø4	
20 ts		and the second
5	<u>▶</u> @7	⋖ ── ø8
80	15 s	20 s

	۶	-	*	1	←-	*	1	†	-	-	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	366	44			44		أيوايو		71	- Collegio (
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50		50		50		7.0	4.0
Trailing Detector (ft)	0	0			0		0	ar Pottiani	0			
Turning Speed (mph)	15		9	15	markini.	9	15		9	15		۵
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt		5.00			0,00	1.00			0.850	1.00	1.00	1.00
Flt Protected	0.950						0.950					
Satd. Flow (prot)	1787	3574	0	n	3574	.0	3467	0	1599	0	n	0
Flt Permitted	0.950		1.13				0.950	xiii.:Mi.	,000			9
Satd. Flow (perm)	1787	3574	0	0	3574	0	3467	0	1599	0	0	٥
Right Turn on Red	&#U\\.</td><td>. 1 % TV. &</td><td>Yes</td><td></td><td></td><td>Yes</td><td> ~7.</td><td></td><td>Yes</td><td></td><td></td><td>Yes</td></tr><tr><td>Satd. Flow (RTOR)</td><td></td><td></td><td>100</td><td></td><td></td><td>103</td><td></td><td></td><td>249</td><td></td><td></td><td>163</td></tr><tr><td>Headway Factor</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td></tr><tr><td>Link Speed (mph)</td><td></td><td>30</td><td>1.00</td><td>1.00</td><td>30</td><td>1.00</td><td>1.00</td><td>30</td><td>1.00</td><td>1.00</td><td>30</td><td>1.00</td></tr><tr><td>Link Distance (ft)</td><td></td><td>1273</td><td></td><td></td><td>877</td><td></td><td></td><td>535</td><td></td><td></td><td>448</td><td></td></tr><tr><td>Travel Time (s)</td><td></td><td>28.9</td><td></td><td></td><td>19.9</td><td></td><td></td><td>12.2</td><td></td><td></td><td>10.2</td><td></td></tr><tr><td>Volume (vph)</td><td>206</td><td>525</td><td>0</td><td>0</td><td>642</td><td>0</td><td>459</td><td>0</td><td>242</td><td>0</td><td>0</td><td>0</td></tr><tr><td>Peak Hour Factor</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td><td>0.97</td></tr><tr><td>Heavy Vehicles (%)</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>1%</td><td>*********</td></tr><tr><td>Adj. Flow (vph)</td><td>212</td><td>541</td><td>0</td><td></td><td>662</td><td>0</td><td>473</td><td>0</td><td>249</td><td></td><td></td><td>1%</td></tr><tr><td>Lane Group Flow (vph)</td><td>212</td><td>541</td><td>0</td><td>0</td><td>662</td><td>0</td><td>473</td><td>0</td><td>249</td><td>0</td><td>0</td><td>0</td></tr><tr><td>Turn Type</td><td>Prot</td><td>JT1</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>002</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td>0</td></tr><tr><td>Protected Phases</td><td>7</td><td>4</td><td></td><td></td><td>0</td><td></td><td>custom</td><td>3</td><td>custom</td><td></td><td></td><td></td></tr><tr><td>Permitted Phases</td><td></td><td>4</td><td></td><td></td><td>8</td><td></td><td>5</td><td></td><td>9</td><td></td><td></td><td></td></tr><tr><td>Detector Phases</td><td>7</td><td>4</td><td></td><td></td><td>8</td><td>••••</td><td>ອ 5</td><td></td><td>2</td><td>•</td><td></td><td></td></tr><tr><td>Minimum Initial (s)</td><td>4.0</td><td>4.0</td><td></td><td></td><td>4.0</td><td></td><td>4.0</td><td></td><td>2 4.0</td><td></td><td></td><td></td></tr><tr><td>Minimum Split (s)</td><td>8.0</td><td>20.0</td><td></td><td></td><td>20.0</td><td></td><td>8.0</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Total Split (s)</td><td>15.0</td><td>35.0</td><td>0.0</td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td>20.0</td><td></td><td>0.0</td><td>0.0</td></tr><tr><td>Total Split (%)</td><td>27%</td><td>e a a a a e e abrellada a abrilla e e e</td><td></td><td>0.0</td><td>20.0</td><td>0.0</td><td>20.0</td><td>0.0</td><td>20.0</td><td>0.0</td><td>0.0</td><td>0.0</td></tr><tr><td>Maximum Green (s)</td><td></td><td>64%</td><td>0%</td><td>0%</td><td>36%</td><td>0%</td><td>36%</td><td>0%</td><td>36%</td><td>0%</td><td>0%</td><td>0%</td></tr><tr><td>Yellow Time (s)</td><td>11.0 3.5</td><td>31.0</td><td>S</td><td></td><td>16.0</td><td></td><td>16.0</td><td></td><td>16.0</td><td></td><td></td><td></td></tr><tr><td>All-Red Time (s)</td><td>0.5</td><td>3.5 0.5</td><td></td><td></td><td>3.5 0.5</td><td></td><td>3.5 0.5</td><td></td><td>3.5</td><td>·····</td><td></td><td></td></tr><tr><td>Lead/Lag</td><td></td><td>0.5</td><td></td><td></td><td></td><td></td><td>0.5</td><td></td><td>0.5</td><td></td><td></td><td></td></tr><tr><td></td><td>Lead</td><td></td><td></td><td></td><td>Lag</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Lead-Lag Optimize?</td><td>Yes</td><td>2.0</td><td></td><td></td><td>Yes</td><td></td><td></td><td></td><td></td><td></td><td></td><td>. =</td></tr><tr><td>Vehicle Extension (s) Recall Mode</td><td>3.0</td><td>3.0</td><td></td><td></td><td>3.0</td><td></td><td>3.0</td><td></td><td>3.0</td><td></td><td>y</td><td></td></tr><tr><td>Walk Time (s)</td><td>None</td><td>None</td><td>wii a</td><td>A. 10</td><td>None</td><td></td><td>None</td><td></td><td>Coord</td><td></td><td></td><td>ø</td></tr><tr><td></td><td></td><td>5.0</td><td></td><td></td><td>5.0</td><td></td><td></td><td>,</td><td>5.0</td><td></td><td></td><td></td></tr><tr><td>Flash Dont Walk (s)</td><td></td><td>11.0</td><td></td><td></td><td>11.0</td><td></td><td></td><td></td><td>11.0</td><td></td><td></td><td></td></tr><tr><td>Pedestrian Calls (#/hr)</td><td>28.8</td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td></tr><tr><td>Act Effct Green (s)</td><td>10.0</td><td>28.3</td><td></td><td></td><td>14.4</td><td> %</td><td>18.7</td><td></td><td>18.7</td><td></td><td></td><td>1.4</td></tr><tr><td>Actuated g/C Ratio</td><td>0.18</td><td>0.51</td><td></td><td></td><td>0.26</td><td>••</td><td>0.34</td><td></td><td>0.34</td><td></td><td></td><td></td></tr><tr><td>v/c Ratio</td><td>0.65</td><td>0.29</td><td></td><td></td><td>0.71</td><td> 3</td><td>0.40</td><td></td><td>0.35</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td></tr><tr><td>Uniform Delay, d1</td><td>20.9</td><td>7.6</td><td></td><td>,</td><td>18.4</td><td></td><td>13.9</td><td></td><td>0.0</td><td>*****</td><td></td><td></td></tr><tr><td>Delay</td><td>21.6</td><td>7.2</td><td></td><td></td><td>18.3</td><td> 4</td><td>15.1</td><td></td><td>2.9</td><td></td><td></td><td></td></tr><tr><td>LOS</td><td>С</td><td>Α</td><td></td><td></td><td>В</td><td></td><td>В</td><td></td><td>Α</td><td></td><td></td><td></td></tr><tr><td>Approach Delay</td><td></td><td>11.3</td><td></td><td></td><td>18.3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>Approach LOS</td><td></td><td>В</td><td></td><td></td><td>В</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>											

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	۶	-	*	1	-	4	4	†	-	-	1	1
Lane Group	EBL	EST	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	64	42			98		64		0		1 1 3	
Queue Length 95th (ft)	#124	64			146		101		39			
Internal Link Dist (ft)	•	1193			797			455			368	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %	1											
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary												
Area Type: O	ther				= = 1						88	
Cycle Length: 55												
Actuated Cycle Length:	55											
Offset: 0 (0%), Reference	ed to p	hase 2:	NBR ar	nd 6:, St	tart of G	reen						
Natural Cycle: 55						.,						
Control Type: Actuated-	Coordin	nated					11		,			
Maximum v/c Ratio: 0.7												
Intersection Signal Dela						tion LOS					.,	
Intersection Capacity Ut					and the second of the	el of Se	rvice A					
# 95th percentile volume					may be	longer.						
Queue shown is max	dmum:	after two	cycles	X								

Splits and Phases: 8: Route 109 & Route 495 NB Ramps

€ ø2	→ ø4	
20 s	35 1 //	Elimina de la companya della companya della companya de la companya de la companya della company
₹ ø5	ø7	ø8
20 s	#5% //	20:3

	*	-	-	1	-	•	4	†	-	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	196	44			44		16.16		Ħ			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50		50	7.0	50	4.0 EJE	4.0 19:11:11	4.0
Trailing Detector (ft)	0	0	and the	Salla es si la M	0	***************************************	0	mill strain.	0			% #
Turning Speed (mph)	15		9	15		9	15		9	15		0
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt				1.00	0.00	1.00	0.07	1.00	0.850	1.00	1.00	1.00
Fit Protected	0.950						0.950		4.000			
Satd. Flow (prot)	1787	3574	0	n	3574	. 0		n	1599	0	n	0
Flt Permitted	0.950			.ii 🎆			0.950		. 1000	······································		9
Satd. Flow (perm)	1787	3574	0	0	3574	0	3467	- 0	1599	0	0	0
Right Turn on Red			Yes			Yes	. 970	91	Yes			Yes
Satd. Flow (RTOR)			103			103			249			1 65
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00	1.00	1.00 30	1.00
Link Distance (ft)		1273			877			535			448	
Travel Time (s)		28.9			19.9			12.2			10.2	
Volume (vph)	206	525	0	Λ	642	^	607		242			
Peak Hour Factor	0.97	0.97	0,97	0 0.97	0.97	0.97	687	0	242	0	0	0
Heavy Vehicles (%)	1%	1%	1%	1%	1%		0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	212	541				1%	1%	1%	1%	1%	1%	1%
Lane Group Flow (vph)	212	541	0	0	662	0	708	0	249	0	0	0
Turn Type	Prot	341	0	0	662	0	708	0	249	0	0	0
Protected Phases		A				3	ustom		custom			
Permitted Phases	7				8		5					
Detector Phases	7						2		2			
Minimum Initial (s)	4.0	4			8		5		2			**********
Minimum Split (s)	8.0	4.0			4.0		4.0	·····	4.0			
Total Split (s)		20.0	0.0		20.0		8.0		20.0			
Total Split (%)	14.0	34.0	0.0	0.0	20.0	0.0	21.0	0.0	21.0	0.0	0.0	0.0
Maximum Green (s)	25%	62%	0%	0%	36%	0%	38%	0%	38%	0%	0%	0%
Yellow Time (s)	10.0	30.0			16.0		17.0		17.0			
All-Red Time (s)	3.5 0.5	3.5			3.5		3.5		3.5			
Lead/Lag		0.5			0.5		0.5		0.5			
	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s) Recall Mode	3.0	3.0			3.0	*************	3.0		3.0			
	None	None			None		None		Coord	4		
Walk Time (s)		5.0	***********		5.0				5.0			
Flash Dont Walk (s)		11.0			11.0				11.0			
Pedestrian Calls (#/hr)		0			0				. 0			
Act Effct Green (s)	9.5	27.8			14.4		19.2		19.2			
Actuated g/C Ratio	0.17	0.51			0.26		0.35		0.35			
v/c Ratio	0.69	0.30			0.71		0.59		0.35			
Uniform Delay, d1	21.3	7.9		*******	18.4		14.7		0.0			
Delay	25.3	7.6		and and	18.3		15.8		2.7			
LOS	С	Α			В		В		Α			
Approach Delay		12.6			18.3							
Approach LOS		В			В							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	×	-	*	1	-	*	1	†	-	1	1	1
Lane Group	EBL	EBT	EBR	WEL	WBT	WBR	NBL	NBT	NER	SBL	SBT	SBR
Queue Length 50th (ft)	65	44	n Livew E		98		101		0			
Queue Length 95th (ft)	#144	67			146		151	errer gazage i	38			
Internal Link Dist (ft)		1193		**********	797			455	56		368	
50th Up Block Time (%)												
95th Up Block Time (%)	B 188	. 33			1993							
Turn Bay Length (ft)							**********					
50th Bay Block Time %												
95th Bay Block Time %												
Queuing Penalty (veh)					.v			T=				
Intersection Summary												
Area Type: C	ther											
Cycle Length: 55												
Actuated Cycle Length:	55											
Actuated Cycle Length: Offset: 0 (0%), Reference	ced to p	hase 2:	NBR ar	nd 6:, St	art of C	Breen						
Natural Cycle: 55												
Control Type: Actuated-		nated										
Maximum v/c Ratio: 0.7												
Intersection Signal Dela				ļ	ntersec	tion LO	S: B					
Intersection Capacity Ut	tilizatio	1 60.3%		1	CU Le	el of St	ervice B					
# 95th percentile volu	me exc	eeds ca	pacity,	queue i	nay be	longer.						
Queue shown is max	kimum	after tw	o cycles	,								

Splits and Phases: 8: Route 109 & Route 495 NB Ramps

13	
\ a5	7 d8

	۶	-	•	1	4-	4	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	387	个个			^		ሻሻ		Ħ			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		Y 17	50		50		50			7.0
Trailing Detector (ft)	0	0		······································	0		0		0		Taller Marie	inhieri Ve
Turning Speed (mph)	15	Harrier E	9	15		9	15	v	9	15		۵
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Fit / /				1.00		1.00		1.00	0.850	1.00	1.00	1.00
Fit Protected	0.950						0.950					
Satd. Flow (prot)	1787	3574	n	0	3574	ก	3467	0	1599	0	٥	0
Flt Permitted	0.950				.007-7	<u>.</u>	0.950		1000		9	
Satd. Flow (perm)	1787	3574	٥	0	3574	0	3467	.0	1599	0	0	0
Right Turn on Red		9917	Yes	Ψ.	JJ, 4	Yes	9791		Yes			Yes
Satd. Flow (RTOR)			103			163			126	,		165
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00	1.00	30	1.00
Link Distance (ft)		1273			877			535			448	
Travel Time (s)		28.9	,		19.9			12.2			10.2	
Volume (vph)	200	952	^				0.44		400			
Peak Hour Factor	399 0.97	0.97	0	0	641	0	241	0	183	0	0	0
Heavy Vehicles (%)			0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Lane Group Flow (vph)	411	981	0	0	661	0	248	0	189	0	0	0
Turn Type	411	981	0	0	661	0	248	0	189	0	0	0
Protected Phases	Prot						custom		custom			x
	7	4			8		5					
Permitted Phases	<u>.</u>						5		2			
Detector Phases	7	4			8		5		2			
Minimum Initial (s)	4.0	4.0		18 88 5	4.0		4.0		4.0			
Minimum Split (s)	8.0	20.0			20.0	**************	8.0		20.0			
Total Split (s)	20.0	40.0	0.0	0.0	20.0	0.0	20.0	0.0	20.0	0.0	0.0	0.0
Total Split (%)	33%	67%	0%	0%	33%	0%	33%	0%	33%	0%	0%	0%
Maximum Green (s)	16.0	36.0	10	xx	16.0		16.0		16,0			
Yellow Time (s)	3.5	3.5			3.5		3.5		3.5			
All-Red Time (s)	0.5	0.5			0.5		0.5		0.5			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes							
Vehicle Extension (s)	3.0	3.0			3.0		3.0		3.0			
Recall Mode	None	None			None		None		Coord			
Walk Time (s)		5.0			5.0				5.0			
Flash Dont Walk (s)		11.0			11.0				11.0			
Pedestrian Calls (#/hr)		0			0				0			
Act Effct Green (s)	15.6	34.4			14.7		17.7		17.7	8 W W		X
Actuated g/C Ratio	0.26	0.57			0.25		0.30		0.30			
v/c Ratio	0.88	0.48			0.75		0.24	7.5	0.34			×
Uniform Delay, d1	21.3	7.5			20.9		16.1		5.2			
Delay	16.8	11.4		:	20.9		17.1		7.4			
LOS	В	В			С	******	В	*******	Α			
Approach Delay		13.0		==	20.9							
Approach LOS		В			С							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

	1	-	*	1	-	*	*	†	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	143	169	1 2 3 N		112		36	VS-L	0	i i i		
Queue Length 95th (ft) n	n#180	m199			164		62	1000000	57			
Internal Link Dist (ft)		1193			797			455			368	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %												
95th Bay Block Time %										, . ,		
Queuing Penalty (veh)										X		
Intersection Summary						011111111111111						
1.5000 Fig. 3.9. Danie	ther									- II		
Cycle Length: 60												
Actuated Cycle Length:											*****	
Offset: 0 (0%), Reference	ced to p	phase 2:	NBR ar	nd 6:, S	tart of G	Sreen						
Natural Cycle: 60		المراسية										
Control Type: Actuated-		nated										
Maximum v/c Ratio: 0.8			E		1-4	lian LOG	. D					
Intersection Signal Dela						tion LOS						
Intersection Capacity Ut	ilizatio	ก 58.1%				et of Se	ivice A					.8
# 95th percentile volu					may be	ionger.						
Queue shown is max					unctroo	m cianal						
m Volume for 95th pe	rcentile	queue	is mete	rea by	upstreat	n signal.	-					

Splits and Phases: 8: Route 109 & Route 495 NB Ramps

° ø2	→ ø4	
20 s		
√ ø5	≯ ₀₇	← ø8
20 s	20 s	20 s

	*	→	*	•	-	*		†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	387	44			44	ARROY BOUNDS - VICTOR	أيوليو	1119 <u>202</u> 201	7	4656	****	~~~~
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50		50		50			
Trailing Detector (ft)	0	0			0		0		0			ryn y r <u>y</u> r
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1,00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt							1.		0.850			
FIt Protected	0.950						0.950					
Satd. Flow (prot)	1787	3574	0	0	3574	0	3467	0	1599	0	0	0
Flt Permitted	0.950	3877.II					0.950					
Satd. Flow (perm)	1787	3574	- 0	0	3574	0	3467	0	1599	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)									95		as San	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	30	1.00	1.00	30			30		.,	30	
Link Speed (mph)					877	***************************************		535	.11		448	
Link Distance (ft)		1273			19.9			12.2			10.2	
Travel Time (s)		28.9					278	0	211	0	0	0
Volume (vph)	460	1098	0	0	739	0 07	0.97	0.97	0.97	0.97	0.97	0.97
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	1%	1%	1%	1%	1%	1%
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%				0	0	
Adj. Flow (vph)	474	1132	0	0	762	0	287	0	218	0	0	0
Lane Group Flow (vph)		1132	0	0	762	0	287	0		U.	U	
Turn Type	Prot						custom		custom			i
Protected Phases	7	4			8		5					
Permitted Phases							5					
Detector Phases	7	4			8		5		2			
Minimum Initial (s)	4.0	4.0			4.0		4.0		4.0	y		
Minimum Split (s)	8.0	20.0			20.0		8.0		20.0			
Total Split (s)	24.0	44.0	0.0	0.0	20.0	0.0	21.0	0.0	e figure and the angle and company of	0.0	0.0	
Total Split (%)	37%	68%	0%	0%	31%	0%	32%	0%		0%	0%	0%
Maximum Green (s)	20.0	40.0	······		16.0		17.0		17.0			
Yellow Time (s)	3.5	3.5			3.5		3.5		3.5			
All-Red Time (s)	0.5	0.5			0.5		0.5		0.5			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes				Yes						100	
	3.0	3.0			3.0		3.0		3.0			
Vehicle Extension (s)		None			None		None		Coord			
Recall Mode	None	CONTRACTOR CONTRACTOR			5.0				5.0			,
Walk Time (s)		5.0			11.0				11.0	1	_ X	
Flash Dont Walk (s)	i	11.0										
Pedestrian Calls (#/hr)		0			() 4 // 6		40 A		18.0	· · · · · · · · · · · · · · · · · · ·		
Act Effct Green (s)	19.2	39.0			15.8		18.0		0.28			
Actuated g/C Ratio	0.30	0.60			0.24		0.28		0.20			
v/c Ratio	0.90	0.53			0.88		0.30					
Uniform Delay, d1	21.9	7.6			23.7		18.5		10.4			
Delay	31.6	7.6			29.5) =	19.3		11.8			i
LOS	С	Α			C		В		Е			
Approach Delay		14.7	:		29.5	51						
Approach LOS	**********	В										

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	A		*	1	-	4	4	†	<i>p</i>	1	1	1
Lane Group	EBL	EET	ERR	WARI	MET	IA/RD	Alimi .	e Nichte		- CDI	V	
Queue Length 50th (ft)	175	115			152	3090441A	46	1401	NBR 37	OBL	551	SBR
Queue Length 95th (ft)	#332	158			#245		76		88			
Internal Link Dist (ft)		1193			797			455	00		260	
50th Up Block Time (%)				* * *** * ***				733			300	
95th Up Block Time (%)		1277	***************************************						=5: \(\) =\(\)\(\)			11111111111111
Turn Bay Length (ft)												
50th Bay Block Time %												
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary												WWW.
Area Type: Ot	her											
Cycle Length: 65									3	**** *********		
Actuated Cycle Length: 6	5											150-1.0001001
Offset: 0 (0%), Reference Natural Cycle: 65	ed to pl	hase 2:1	VBR an	d 6:. Sta	art of Gr	een			· ,			
Control Type: Actuated-C	oordin	ated				***************************************						
Maximum v/c Ratio: 0.90												
Intersection Signal Delay	: 18.9			lr	itersecti	on LOS	: B					
Intersection Capacity Utili	ization	65.5%		IC	Ulleve	of Ser	vice B		= 85		1 8.7 1 886	
# 95th percentile volum	e exce	eds cap	acity, o	ueue m	ay be lo	nger.	sanaatata					
Queue shown is maxii	mum a	fter two	cycles.									

Splits and Phases: 8: Route 109 & Route 495 NB Ramps

<u> </u>	→ ø4	
21 s	44 s	
ø 5	2 27 3 37 3 38	
21.3	20 s	

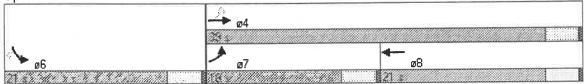
	A	\rightarrow	*	1	-	*		†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	37	ት ት			ተተ		16.14		7			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50			50		50		50			
Trailing Detector (ft)	0	0			0		0		0			
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	0.97	1.00	1.00	1.00	1.00	1.00
Frt			E		311				0.850			
FIt Protected	0.950			***************************************			0.950					
Satd. Flow (prot)	1787	3574	. 0	0	3574	0	3467	0	1599	0	- 0	0
FIt Permitted	0.950						0.950					
Satd. Flow (perm)	1787	3574	0	0	3574	0	3467	0	1599	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)									95			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30		X5	30	× -		30			30	
Link Distance (ft)		1273			877			535			448	
Travel Time (s)		28,9			19.9			12.2			10.2	
Volume (vph)	460	1098	0	0	739	0	302	0	211	0	0	0
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0 97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	474	1132	. 0	0	762	0	311	0	218	0	0	0
Lane Group Flow (vph)	474	1132	0	0	762	0	311	0	218	0	0	0
Turn Type	Prot	*				(custom		custom			
Protected Phases	7	4			8		5					
Permitted Phases							5		2 2			
Detector Phases	7	4			8		5		2			
Minimum Initial (s)	4.0	4.0			4.0		4.0		4.0			
Minimum Split (s)	8.0	20.0			20.0		8.0		20.0			
Total Split (s)	24.0	44.0	0.0	0.0	20.0	0.0	21.0	0.0	21.0	0.0	0.0	0.0
Total Split (%)	37%	68%	0%	0%	31%	0%	32%	0%	32%	0%	0%	0%
Maximum Green (s)	20.0	40.0			16.0		17.0		17.0			
Yellow Time (s)	3.5	3.5			3.5		3.5		3.5			
All-Red Time (s)	0.5	0.5	.:		0.5		0.5		0.5			
Lead/Lag	Lead				Lag							
Lead-Lag Optimize?	Yes			Yan Yan	Yes						- 1	
Vehicle Extension (s)	3.0	3.0			3.0		3.0		3.0			
Recall Mode	None	None		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	None		None		Coord			
Walk Time (s)		5.0			5.0				5.0			
Flash Dont Walk (s)		11.0			11.0				11.0			
Pedestrian Calls (#/hr)		0			. 0				0			.,,,,,,,,,,,,,,
Act Effct Green (s)	19.2	39.0			15.8		18.0		18.0		A	
Actuated g/C Ratio	0.30	0.60			0.24		0.28		0.28			
v/c Ratio	0.90	0.53			0.88		0.32		0.43			333116
Uniform Delay, d1	21.9	7.6			23.7		18.7		10.4			.,,
Delay	31.6	7.6			29.5	18.1	19.4		11.8			
LOS	С	Α			С		В		В			
Approach Delay		14.7	- 1: 11.1		29.5	X.	* v					
Approach LOS		В			С							

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	۶		7	1	←	1	1	†	1	-	1	4
Lane Group	EBL	EET	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	175	115			152		51	24 2	37	.2.		
Queue Length 95th (ft)	#332	158			#245		82		88			
Internal Link Dist (ft)		1193		F16 2	797			455			368	
50th Up Block Time (%)												
95th Up Block Time (%)			E VI									
Turn Bay Length (ft)												
50th Bay Block Time %	335 15.	7785										
95th Bay Block Time %												
Queuing Penalty (veh)												
Intersection Summary		eterol//Atr					=					# 100
Area Type: O Cycle Length: 65	ther											
Actuated Cycle Length:	65											
Offset: 0 (0%), Reference	ed to p	hase 2:	NBR ar	nd 6:, St	art of G	reen						
Natural Cycle: 65										*	Trail.	
Control Type: Actuated-	Coordii	nated			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Maximum v/c Ratio: 0.9		3	Па		= =							
Intersection Signal Delay	y: 18.9	.,		1	ntersect	ion LOS	S: B					
Intersection Capacity Ut	lization	1 66.2%			CU Lev	el of Se	rvice B					
# 95th percentile volur	ne exc	eeds ca	pacity,	queue r	nay be l	onger.						
Queue shown is max	imum	after two	cycles					A				

	*	→	4	*	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	387	1	1		95	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	0	a mili	Market Mark	0	150	0	
Storage Lanes	1			0	1	1	filmiðar - Mahalis Latinistar Vilmi stöfniður einni millit stör
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	ilia da 149 0.	50	50	inna tar Alx AlWaRasan anni innan minan minan
Trailing Detector (ft)	0	0	0		0	0	
Turning Speed (mph)	15			9	15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	31.00	0.984	1.00	1.00	0.850	
Flt Protected	0.950		0.504		0.950	0.030	
Satd. Flow (prot)	1668	1881	1851	0	1668	1492	
Flt Permitted		1001	1001	U		1492	
Satd. Flow (perm)	0.359	1004	1054	^	0.950	1400	
***************************************	630	1881	1851	0	1668	1492	
Right Turn on Red		:1		Yes	:	Yes	
Satd. Flow (RTOR)	4 00	4 88	12	2 2	4 88	264	
Headway Factor	1.09	1.00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30		30		
Link Distance (ft)		1841	804		855		
Travel Time (s)		41.8	18.3		19.4		
Volume (vph)	332	674	252	33	42	256	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	342	695	260	34	43	264	
Lane Group Flow (vph)	342	695	294	0	43	264	
Turn Type	pm+pt					Perm	
Protected Phases	7	4	8		6		
Permitted Phases	4					6	
Detector Phases	7	4	8		6	6	
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0		20.0	20.0	
Total Split (s)	15.0	35.0	20.0	0.0	20.0	20.0	
Total Split (%)	27%	64%	36%	0%	36%	36%	
Maximum Green (s)	11.0	31.0	16.0		16.0	16.0	
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5		0.5	0.5	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes		Yes	,			
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None		Min	Min	
Walk Time (s)	140110	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)					0	0	
	25.0	22.0	12.2				. —
Act Effct Green (s)	25.8	22.9	12.2	ware wegener	7.6	7.6	
Actuated g/C Ratio	0.59	0.58	0.31		0.19	0.19	
v/c Ratio	0.56	0.63	0.50		0.13	0.52	
Uniform Delay, d1	3.9	4.9	10.7		13.3	0.0	
Delay	4.6	5.6	12.9		15.5	3.3	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Existing AM ABENDASMAL-LT51

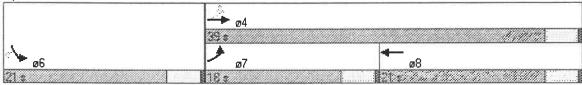

	۶	\rightarrow	←	*	1	1			
Lane Group	EBL.	EBT	WBT	WBR \$	SBL.	SBR			 18 11 - 21
LOS	Α	Α	В		В	Α			
Approach Delay		5.2	12.9		5.0				
Approach LOS		Α	В		Α				
Queue Length 50th (ft)	25	65	54		9	0			
Queue Length 95th (ft)	79	192	127		30	42			
Internal Link Dist (ft)		1761	724		775				
50th Up Block Time (%)									
95th Up Block Time (%)									
Turn Bay Length (ft)					150				
50th Bay Block Time %									
95th Bay Block Time %		= -11 -1							
Queuing Penalty (veh)									
Intersection Summary				***************************************			or news and one of a		
	ther								
Cycle Length: 55			80 30						
Actuated Cycle Length:	39.2								
Natural Cycle: 55								.4	
Control Type: Actuated-I	Uncoor	dinated							
Maximum v/c Ratio. 0.6									
Intersection Signal Delay						tion LOS:			
Intersection Capacity Ut		n 48.0%	>	ICL	J Lev	el of Serv	rice A		

	•	-	4	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	36	*	\$		34	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	0			0	150	0	
Storage Lanes	1			0	1	1	And
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	an error conce	50	50	
Trailing Detector (ft)	0	0		Heliana a man	0	0	
Turning Speed (mph)	15		M No	9	15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt			0.984	. TANDADADA	ertana.	0.850	
Fit Protected	0.950		FE LEN		0.950		
Satd. Flow (prot)	1668	1881	1851	0	1668	1492	
Fit Permitted	0.293				0.950		Constitut to To-Fire dust as the two Sections
Satd. Flow (perm)	514	1881	1851	0	1668	1492	
Right Turn on Red		.001	1001	Yes	1000	Yes	
Satd. Flow (RTOR)			11			304	
Headway Factor	1.09	1 00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30	1.00	30	1.44	
Link Distance (ft)		1841	804		855	11	
Travel Time (s)		41.8	18.3		19.4		· ×
Volume (vph)	383	777	290	38	48	295	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
					****** (10.00)		
Adj. Flow (vph) Lane Group Flow (vph)	395	801	299	39 0	49	304	
		801	338	Ų	49	304	
Turn Type	pm+pt					Perm	
Protected Phases		4	8		6	2	
Permitted Phases	4					6 6	
Detector Phases		4	8		6		
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0		20.0	20.0	
Total Split (s)	18.0	39.0	21.0	0.0	21.0	21.0	
Total Split (%)	30%	65%	35%	0%	35%	35%	
Maximum Green (s)	14.0	35,0	17.0		17.0	17.0	
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5		0.5	0.5	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes		Yes				
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None		Min	Min	
Walk Time (s)		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0	0		0	0	
Act Effct Green (s)	28.7	28.7	12.4		7.8	7.8	
Actuated g/C Ratio	0.64	0.64	0.28		0.17	0.17	F
v/c Ratio	0.62	0.67	0.65		0.17	0.59	The state of the s
Uniform Delay, d1	3.7	4.9	13.5		15.6	0.0	<u></u>
Delay	5.0	5.9	15.0		17.5	3.3	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline No Build AM ABENDASMAL-LT51

	۶	-	-	*	1	1	
Lane Group	EBL	EST	WBT	WBR	SBL	SBR	
LOS	Α	Α	В		В	Α	
Approach Delay		5.6	15.0		5.3		
Approach LOS		Α	В	17	A		
Queue Length 50th (ft)	31	85	74		12	0	
Queue Length 95th (ft)	116	259	165	=== " :	35	48	
Internal Link Dist (ft)		1761	724		775		
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)					150	=7	
50th Bay Block Time %							
95th Bay Block Time %							
Queuing Penalty (veh)							
Intersection Summary							
Area Type: O	ther						
Cycle Length: 60				-			
Actuated Cycle Length:	44.8						
Natural Cycle: 60					7732 741		
Control Type: Actuated-I	Uncoor	dinated					
Maximum v/c Ratio, 0.6							
Intersection Signal Delay					ntersect	ion LO	S: A
Intersection Capacity Ut		53 3%	r -		CU Lev	el of Se	ervice A

Splits and Phases: 4: Route 16 & Route 126 North

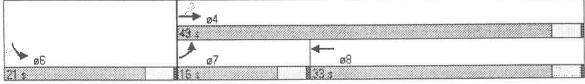


		-	4		-	4	
Lane Group	EBL	EBT	Wet	WBR	SBL	SBR	
Lane Configurations	383	4	ħ		95	79	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	u na unu di sectuli das Mila
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	0		gar, d i la	ō	150	Ö	
Storage Lanes	··· · · · · · · · · · · · · · · · · ·	af Literia.		0	1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	*
Leading Detector (ft)	50	50	50	ala la Trigre	50	50	
Trailing Detector (ft)	0	0	0		0	0	- 1- x
Turning Speed (mph)	15			9	15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	1.00	0.988	1.00	1.00	0.850	antanan manandia keduara masaman Kabibarah.
Fit Protected	0.050	************	0.500		0.050	0.000	
the contract of the contract o	0.950	4004	4050	_	0.950	4400	
Satd. Flow (prot)	1668	1881	1859	0	1668	1492	
Fit Permitted	0.190	4004	4050		0.950	4.400	<u>. 11 </u>
Satd. Flow (perm)	334	1881	1859	0	1668	1492	
Right Turn on Red	·			Yes	. F	Yes	
Satd. Flow (RTOR)			8	roomer agages	*******	352	
Headway Factor	1.09	1.00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30		30		
Link Distance (ft)	.x	1841	804		855		
Travel Time (s)		41.8	18.3		19.4		
Volume (vph)	389	787	381	38	48	341	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	· ·
Adj. Flow (vph)	401	811	393	39	49	352	
Lane Group Flow (vph)	401	811	432	0	49	352	
Turn Type	pm+pt					Perm	
Protected Phases	7	4	8		6		
Permitted Phases	4					6	
Detector Phases	7	4	8		6	6	
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0		20.0	20.0	
Total Split (s)	18.0	39.0	21.0	0.0	21.0	21.0	
Total Split (%)	30%	65%	35%	0%	35%	35%	
Maximum Green (s)	14.0	35.0	17.0		17.0	17.0	
Yellow Time (s)	3,5	3.5	3.5	7 4 = 4	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	****** *** ****	0.5	0.5	
Lead/Lag	Lead		Lag			74	
Lead-Lag Optimize?	Yes		Yes				
Vehicle Extension (s)	3.0	3.0			3.0	3.0	
Recall Mode	None	None	None		Min	Min	and the state of t
Walk Time (s)	140110	5.0	5.0		5.0	5,0	
Flash Dont Walk (s)	and said districts	11.0	11.0		11.0	11.0	<u></u>
		0	0			0	
Pedestrian Calls (#/hr)	24.0				. 0		
Act Effct Green (s)	31.8	31.8	14.8		8.3	8.3	
Actuated g/C Ratio	0.66	0.66	0.31		0.17	0.17	T. T.M. in
v/c Ratio	0.70	0.66	0.75	,	0.17	0.64	
Uniform Delay, d1	5.7	4.8	14.6		17.0	0.0	Jane D
Delay	12.6	6.2	20.3		17.9	3.0	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	≯	-	-	*	-	4				
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR			 ,	
LOS	В	Α	C	Am a	В	Α			- 33 11	
Approach Delay		8.3	20.3		4.8					
Approach LOS		Α	С		Α					
Queue Length 50th (ft)	45	88	102		13	0				
Queue Length 95th (ft)	#206	296	#271		35	. 50		2 24		
Internal Link Dist (ft)		1761	724		775					
50th Up Block Time (%)										
95th Up Block Time (%)										
Turn Bay Length (ft)					150					
50th Bay Block Time %										
95th Bay Block Time %										
Queuing Penalty (veh)										
Intersection Summary				and the state of the					 	
Area Type: O	ther									
Cycle Length: 60	. X . X . A									
Actuated Cycle Length:	48.3								 	
Natural Cycle: 60			· · · · · · · · · · · · · · · · · · ·				A.200		 ,	
Control Type: Actuated-I	Uncoor	dinated							 	
Maximum v/c Ratio: 0.7				1 222 9					 	
Intersection Signal Delay	y: 10.1			lı	ntersect	ion LOS	8: B		 	
Intersection Capacity Ut	lization	58.6%	. ========	þ	CU Lev	el of Sei	rvice A			
# 95th percentile volur	ne exc	eds ca	pacity,	queue n	nay be I	onger.			 	
Queue shown is max	imum a	fter two	cycles			π	Afrika -	Blee - H	 	
		.,							 	

Splits and Phases: 4: Route 16 & Route 126 North

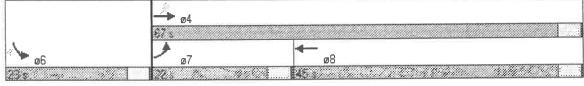


	*		←	4	1	1	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	387	4	\$		34	#	•
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	0		g si l in	. 0	150	Ö	
Storage Lanes	1	at the plan T	Richards	0	1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50		50	50	
Trailing Detector (ft)	0	0	0		0	0	
Turning Speed (mph)	15			9	15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt			0.994			0.850	
Flt Protected	0.950		0.004		0.950	0.000	
Satd. Flow (prot)	1668	1881	1870	0	1668	1492	
Fit Permitted	0.121				0.950	1732	
Satd. Flow (perm)	212	1881	1870	0	1668	1492	
Right Turn on Red			1070	Yes	1000	Yes	
Satd. Flow (RTOR)			4		naftan	420	
Headway Factor	1.09	1.00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30	1.00	30		
Link Distance (ft)		1841	804		855		· · · · · · · · · · · · · · · · · · ·
Travel Time (s)		41.8	18.3		19.4		
Volume (vph)	304	252	621	31	33	419	yy
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	313	260	640	32	34	432	
Lane Group Flow (vph)		260	672	0	34	432	
Turn Type	pm+pt	200	914			Perm	
Protected Phases	7	4	8		6	1 61111	······································
Permitted Phases	4				9	6	
Detector Phases	7	4	8		6	6	······································
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0		20.0	20.0	
Total Split (s)	16.0	49.0	33.0	0.0	21.0	21.0	
Total Split (%)	23%	70%	47%	0.0	30%	30%	······································
Maximum Green (s)	12.0	45.0	29.0	U 70	17.0	17.0	
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5		0.5	0.5	
Lead/Lag	Lead	0.3			0.5	0.5	
Lead-Lag Optimize?	Yes		Lag Yes				
Vehicle Extension (s)	3.0	3.0	3.0		3.0	2 വ	
Recall Mode	None	None		. 26			
Walk Time (s)	HOHE	5,0	None 5.0		Min 5.0	Min 5.0	
Flash Dont Walk (s)		11.0	11.0				
Pedestrian Calls (#/hr)		0.11			11.0	11.0 0	
Act Effct Green (s)	20.6		22.0		0		
**************	39.6	39.6	23.9		8.8	8.8	
Actuated g/C Ratio v/c Ratio	0.70	0.70	0.42		0.16	0.16	
	0.70	0.20	0.85		0.13	0.74	
Uniform Delay, d1 Delay	8.8	2.9	14.4		20.5	0.6	
	19.3	3.6	20.4		22.0	3.6	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Existing PM ABENDASMAL-LT51

	1		-	*	1	1		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		· · · · · · · · · · · · · · · · · · ·
LOS	В	Α	C		С	Α		
Approach Delay		12.2	20.4		5.0			
Approach LOS		В	С		Α			
Queue Length 50th (ft)	50	18	178		11	0		
Queue Length 95th (ft)	#208	68	#453		32	70		e e e e e
Internal Link Dist (ft)		1761	724		775			
50th Up Block Time (%)								
95th Up Block Time (%)							- Andrew	
Turn Bay Length (ft)				100	150			
50th Bay Block Time %								
95th Bay Block Time %								
Queuing Penalty (veh)								
Intersection Summary							estatement of the second of th	
	Other							
Cycle Length: 70								
Actuated Cycle Length:	56.7							
Natural Cycle: 70					= 35 80			
Control Type: Actuated-	Uncoor	dinated						
Maximum v/c Ratio: 0.8								
Intersection Signal Dela	y: 13.4			11	ntersect	ion LOS	В	
Intersection Capacity U		1 69 0%	1	1	CU Lev	el of Ser	/ice B	
# 95th percentile volu				queue r	nay be	onger.		
Queue shown is max								
	a care dele e e e e e e e e e e e e e e e e e		e a a comencia de la constitución de la constitució					

Splits and Phases: 4: Route 16 & Route 126 North

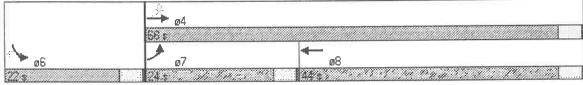


		\rightarrow	_		1	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	38	*	\$		*	7*	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	O		ga e ita	0	150	່ດ	
Storage Lanes	1	War i Ana	Main ur	0	1.50	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50		50	50	
Trailing Detector (ft)	0	0	0		0	0	
Turning Speed (mph)	15	U		9		9	
Lane Util, Factor		1.00	1.00	1.00	15 1.00		
Frt	1.00	1.00		1.00	1.00	1.00	
Fit Protected	0.050		0.994		0.050	0.850	
	0.950	4004	4070		0.950	4.400	
Satd. Flow (prot)	1668	1881	1870	0	1668	1492	
Fit Permitted	0.089	4004	4070		0.950	4 400	
Satd. Flow (perm)	156	1881	1870	0	1668	1492	
Right Turn on Red				Yes	:	Yes	
Satd. Flow (RTOR)		erter eginezigezen	4			422	
Headway Factor	1.09	1.00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30		30		
Link Distance (ft)	S	1841	804		855		
Travel Time (s)		41.8	18.3		19.4		
Volume (vph)	350	290	716	35	38	483	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	361	299	738	36	39	498	
Lane Group Flow (vph)	361	299	774	0	39	498	
Turn Type	pm+pt					Perm	
Protected Phases	7	4	8		6		
Permitted Phases	4	*********		***************************************	Was	6	<u> </u>
Detector Phases	7	4	8		6	6	
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	Α
Minimum Split (s)	8.0	20.0	20.0		20.0	20.0	
Total Split (s)	22.0	67.0	45.0	0.0	23.0	23.0	
Total Split (%)	24%	74%	50%	0%	26%	26%	
Maximum Green (s)	18.0	63.0	41.0	7.59	19.0	19.0	
Yellow Time (s)	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5		0.5	0.5	
Lead/Lag	Lead	0.0	Lag		0.5	3.3	
Lead-Lag Optimize?	Yes		Yes				<u> </u>
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Recall Mode				in in an in			ililing and the state of the st
Walk Time (s)	None	None	None		Min	Min	
Flash Dont Walk (s)		5.0	5.0		5.0	5.0	
		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	55.0	0	0		<u>v</u> .	0	
Act Effct Green (s)	55.8	55.8	34.5		11.8	11.8	
Actuated g/C Ratio	0.73	0.73	0.45		0.16	0.16	
v/c Ratio	0.80	0.22	0.91		0.15	0.85	
Uniform Delay, d1	17.2	3.1	18.6		27.6	4.4	
Delay	31.5	3.9	27.0		29.6	8.4	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline No Build PM ABENDASMAL-LT51

	*	→	—	4	1	1				
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR			 	
LOS	С	Α	C		С	Α			1000	
Approach Delay		19.0	27.0		10.0					
Approach LOS		В	С		Α					100
Queue Length 50th (ft)	126	34	326		18	35				
Queue Length 95th (ft)	#309	82	#635		45	#162				
Internal Link Dist (ft)		1761	724		775				 	
50th Up Block Time (%)							- S			
95th Up Block Time (%)										
Turn Bay Length (ft)					150					
50th Bay Block Time %									 	
95th Bay Block Time %						8%			 	
Queuing Penalty (veh)						1				
Intersection Summary						er, a erie a medelle i di i de a		### ### ### ### ### ##################	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Area Type: C	ther									
Cycle Length 90				W. W. W.					 	
Actuated Cycle Length:	76								 	
Natural Cycle: 90										
Control Type: Actuated-	Uncoor	dinated							 	
Maximum v/c Ratio: 0 9	1			N -3333 3						
Intersection Signal Dela	y: 19.7				Intersec	tion LOS	S: B		 ***********************	
Intersection Capacity Ut	ilization	78.5%			ICU Lev	el of Se	ervice C			
# 95th percentile volu				queue	may be	longer.			 	
Queue shown is max						.,				
Splits and Phases: 4:	Davida	16 0 D	oute 126	2 North						

Splits and Phases: 4: Route 16 & Route 126 North



	*	→	4-	*	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	385	4	ħ		387	7*	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	10	12	12	12	10	10	
Storage Length (ft)	0		ng samisin	0	150	0	
Storage Lanes	1	et ek er er eller		0	1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	WANTA	50	50	
Trailing Detector (ft)	0	0	0		0	0	
Turning Speed (mph)	15		*** *** ******************************	9	15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt		era e na antina	0.994			0.850	
Flt Protected	0.950	Kalu			0.950		** -
Satd. Flow (prot)	1668	1881	1870	0	1668	1492	
Fit Permitted	0.091				0.950		
Satd. Flow (perm)	160	1881	1870	0	1668	1492	
Right Turn on Red				Yes		Yes	
Satd. Flow (RTOR)			3			442	
Headway Factor	1.09	1.00	1.00	1.00	1.09	1.09	
Link Speed (mph)		30	30		30	2.533.	
Link Distance (ft)	3	1841	804		855	······································	
Travel Time (s)		41.8	18.3		19.4		
Volume (vph)	402	393	726	35	38	488	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	414	405	748	36	39	503	
Lane Group Flow (vph)		405	784	0	39	503	
Turn Type	pm+pt	and a series of the Series of				Perm	
Protected Phases	7	4	8		6		
Permitted Phases	4	·				6	
Detector Phases	7	4	8		6	6	
Minimum Initial (s)	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0	20.0	V8.	20.0	20.0	
Total Split (s)	24.0	68.0	44.0	0.0	22.0	22.0	
Total Split (%)	27%	76%	49%	0%	24%	24%	
Maximum Green (s)	20.0	64.0	40.0		18.0	18.0	
Yellow Time (s)	3.5	3.5	3.5	×	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5		0.5	0.5	
Lead/Lag	Lead		Lag				
Lead-Lag Optimize?	Yes	%	Yes				
Vehicle Extension (s)	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None		Min	Min	
Walk Time (s)		5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	······································	11.0	11.0		11.0	11.0	annana and anno maint a mananio an allano a 'a mananio
Pedestrian Calls (#/hr)	······································	0	0		0	0	**************************************
Act Effct Green (s)	59.6	59.6	36.1		11.3	11.3	
Actuated g/C Ratio	0.75	0.75	0.46		0.14	0.14	
v/c Ratio	0.84	0.29	0.92		0.16	0.85	enn a sammar anna e a seath sam an ta annaile athreas ann tha annaidht
Uniform Delay, d1	18.7	3.0	19.8	4 7	29.6	3.7	
Delay	36.4	3.8	31.2		30.7	7.9	
					00.7	1.5	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	*	-	4	4	-	4					
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR					
LOS	D	Α	С		C	Α		-	I see See		200
Approach Delay		20.3	31.2		9.5						
Approach LOS		С	С		A			THE RESIDENCE			
Queue Length 50th (ft)	153	46	344		18	28		, ,		**************************	
Queue Length 95th (ft)	#359	109	#662		46	#153					
Internal Link Dist (ft)		1761	724		775						
50th Up Block Time (%)											
95th Up Block Time (%)											
Turn Bay Length (ft)					1.50						
50th Bay Block Time %											
95th Bay Block Time %						7%			i		
Queuing Penalty (veh)						1					
Intersection Summary											
	ther										
Cycle Length: 90	7 7		1 1111111111111111111111111111111111111					.1-1.63			
Actuated Cycle Length:	79.2										
Natural Cycle: 90											
Control Type: Actuated-	Uncoor	dinated									
Maximum v/c Ratio: 0.9											
Intersection Signal Dela				li	ntersec	tion LOS:	С				
Intersection Capacity Ut		79.4%) <u>.</u>		CU Lev	el of Serv	ice C				
# 95th percentile volui											
Queue shown is max											

Splits and Phases: 4: Route 16 & Route 126 North

	-	1	1	←		
Viovement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ą	74	3%	4	N/F	
Sign Control	Free		in a fin	Free	Stop	
Grade	0%		ene a e e e i i i i i i i i i i i i i i i	0%	0%	
Volume (veh/h)	1093	230	189	464	64	243 4 3 4 3 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (veh/h)	1127	237	195	478	66	251
Pedestrians		*******	* £ = 17		addin Allin	
Lane Width (ft)		**************************************				
Walking Speed (ft/s)		**** **********	· 4.			
Percent Blockage		marka y		geren		
Right turn flare (veh)				V		
Median type				2, 92 (200) (110) 3 (4)	None	
Median storage veh)		····· · · · · · · · · · · · · · · · ·				
vC, conflicting volume		Y	1364		1995	1127
vC1, stage 1 conf vol						
vC2, stage 2 conf vol			······································			
C, single (s)			4.1		6.4	6.2
C, 2 stage (s)						
tF (s)	·····		2.2		3.5	3.3
p0 queue free %			62		0.0	0 =
cM capacity (veh/h)			507		41	250
Direction, Lane#	er a			3.8.46565		
Volume Total	EB 1	EB 2	WB 1	WB 2	NB 1	
	1127	237	195	478	316	
Volume Left	0	0	195	0	66	
Volume Right	0	237	0	0	251	
cSH	1700	1700	507	1700	121	
Volume to Capacity	0.66	0.14	0.38	0.28	2.61	
Queue Length (ft)	0	0	45	0	714	
Control Delay (s)	0.0	0.0	16.5	0.0	803.3	
Lane LOS			С			
Approach Delay (s)	0.0		4.8		803.3	
Approach LOS					F	
ntersection Summary	······································					
Average Delay		1	109.4	_1_12		
Intersection Capacity Uti	ilization	`	99.2%	I	CLLLOW	el of Service E

Anne Configurations		-	*	1	4	1	1					
Sign Control Free 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Movement	EBT	EBR	WBL	WBT	NBL	NBR					
Grade 0% 0% 0% 0% 0% 0% 0% 0/0 0/0 1261 265 218 535 73 280 0.00 0% 0/0 0.00 0.00 0.00 0.00 0.00 0	Lane Configurations	4	7	7	Ť	N/F				, ,		
Volume (veh/h) 1261 265 218 535 73 280 Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 Pedek Hour Factor 0.97 0.97 0.97 0.97 0.97 Pedestrians Lane Width (ff) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Wedian type None Wedian storage veh) VC, conflicting volume VC, conflicting volume VC, siage 1 conf vol VC2, stage 2 conf vol VC3, stage 2 conf vol VC3, stage 2 conf vol VC4, stage 3 conf vol VC5, stage 4 conf vol VC4, stage 4 conf vol VC5, stage 5 conf vol VC5, stage 6 conf vol VC6, stage 8 conf vol VC7, stage 9 conf vol VC9, stage 9 conf vol VC9, stage 1 conf vol VC9, stage 9 conf vol VC9, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 3 conf vol VC9, stage 4 conf vol VC9, stage 6 conf vol VC9, stage 1 conf vol VC9, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 1 conf vol VC9, stage 2 conf vol VC9, stage 2 conf vol VC9, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC2, stage 1 conf vol VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 1 conf vol VC2, stage 2 conf vol VC2, sta	Sign Control	Free			Free	Stop						
Peak Hour Factor 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Grade	0%			0%	0%						
Hourly flow rate (veh/h) 1300 273 225 552 75 289 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) WC, conflicting volume WC1, stage 1 conf vol WC2, stage 2 conf vol WC3, stage 2 conf vol WC4, stage 1 conf vol WC5, stage 2 conf vol WC6, stage 2 conf vol WC7, stage 2 conf vol WC8, stage 2 conf vol WC9,	Volume (veh/h)	1261	265	218	535	7.3	280					
Pedestrians ane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol CC, siage (s) F (s) Direction Lane # EB1 EB2 WB1 WB2 NB1 Volume Total Volume Right Direction Lane # 1700 1700 422 1700 76 Volume to Capacity (76 0.16 0.53 0.32 5.22 Queue Length (ft) Donotrol Delay (s) Lane LOS Approach LOS F (s) Donotrol Summary Average Delay 1342.9	Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97					
Cane Width (ft) Walking Speed (ft/s)	Hourly flow rate (veh/h)	1300	273	225	552	75	289	****				
Walking Speed (ff/s) Percent Blockage Right turn flare (veh) None Median type None Median storage veh) VC, conflicting volume 1573 2301 1300 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage (s) C, 2 stage (s) F (s) 2.2 3.5 3.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	Pedestrians											
Percent Blockage Right turn flare (veh) Median type	Lane Width (ft)											
Right turn flare (veh) Median type Median storage veh) VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol CC, single (s) C, 2 stage (s) F (s) 2.2 3.5 3.3 00 queue free % 47 0 0 0 0 00 00 00 00 00 00 00 00 00 00	Walking Speed (ft/s)											
Wedian type None Wedian storage veh) VC, conflicting volume 1573 2301 1300 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol C, single (s) 4.1 6.4 6.2 C, 2 stage (s) F(s) 2.2 3.5 3.3 DO queue free % 47 0 0 CM capacity (veh/h) 422 20 198 Direction, Lane # EB1 EB2 WB1 WB2 NB1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 SSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (fft) 0 0 76 0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F F </td <td>Percent Blockage</td> <td></td> <td>F 8 9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Percent Blockage		F 8 9									
Wedian type None Wedian storage veh) VC, conflicting volume 1573 2301 1300 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol C, single (s) 4.1 6.4 6.2 C, 2 stage (s) F(s) 2.2 3.5 3.3 DO queue free % 47 0 0 CM capacity (veh/h) 422 20 198 Direction, Lane # EB1 EB2 WB1 WB2 NB1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 SSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (fft) 0 0 76 0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F F </td <td>Right turn flare (veh)</td> <td></td> <td> ,</td> <td></td> <td></td> <td></td> <td></td> <td>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td> <td></td> <td></td> <td></td>	Right turn flare (veh)		,					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage (s) vC1, stage (s) vC2, stage (s) vC2, stage (s) vC3, stage (s) vC3, stage (s) vC4, vC4, vC5, vC6, vC6, vC6, vC6, vC6, vC6, vC6, vC6	Median type					None			= a			
vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage (s) vC1, stage (s) vC2, stage (s) vC2, stage (s) vC3, stage (s) vC3, stage (s) vC4, vC4, vC5, vC6, vC6, vC6, vC6, vC6, vC6, vC6, vC6									*** * * * *			
vC1, stage 1 conf vol vC2, stage 2 conf vol C, single (s) C, 2 stage (s) F (s) C, 2 stage (s) C, 3 stage (s) C, 4 stage (s) C, 5 stage (s) C, 5 stage (s) C, 6 stage (s) C, 7 stage (s) C, 6 stage (s) C, 7 stage (s) C, 7 stage (s) C, 8 stage (s) C, 9 stage (s)		, ,		1573		2301	1300					
## C2, stage 2 conf vol ### C2, stage (s) ### C3, configuration of the c							86 (1477) 1574					
C, single (s) 4.1 6.4 6.2 C, 2 stage (s) F (s) 2.2 3.5 3.3 D queue free % 47 0 0 CM capacity (veh/h) 422 20 198 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 CSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach LOS F Intersection Summary Average Delay 1342.9				N I N								
C, 2 stage (s) F (s) 2.2 3.5 3.5 00 queue free % 47 0 0 0 CM capacity (veh/h) 422 20 198 Direction, Lane # EB 1 EB 2 WB 1 WB 2 NB 1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 0 273 0 0 289 CSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9				4.1		6.4	6.2					
## F (s)	and the second s					W - 104,W						
DO queue free % 47 0 0 0 CM capacity (veh/h) 422 20 198 Direction Lane # EB 1 EB 2 WB 1 WB 2 NB 1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 CSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (fft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	tF (s)			2.2		3.5	3.3					
CM capacity (veh/h) 422 20 198 Direction Lane # EB I FB 2 WB 1 WB 2 NB 1 Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 CSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9												
Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 cSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ff) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	cM capacity (veh/h)			" ""		a married accountries				*****	***************************************	
Volume Total 1300 273 225 552 364 Volume Left 0 0 225 0 75 Volume Right 0 273 0 0 289 cSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ff) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1						
Volume Right 0 273 0 0 289 cSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	Volume Total	1300	273	225	552							
Volume Right 0 273 0 0 289 cSH 1700 1700 422 1700 70 Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	Volume Left	0	0	225	0	75						
SH		0	273	0		289	****************			************		
Volume to Capacity 0.76 0.16 0.53 0.32 5.22 Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	cSH	1700	1700	422	1700	70						
Queue Length (ft) 0 0 76 0 Err Control Delay (s) 0.0 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	Volume to Capacity	0.76										
Control Delay (s) 0.0 0.0 22.9 0.0 Err Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9												
Lane LOS C F Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9						contract to Millson a						
Approach Delay (s) 0.0 6.6 Err Approach LOS F Intersection Summary Average Delay 1342.9	Lane LOS							900				
Approach LOS Intersection Summary Average Delay 1342.9	The Court Chair side contract the contract to	0.0				Err						
Average Delay 1342.9	Approach LOS		Will			F						
Average Delay 1342.9	Intersection Summary				=0.0							
Intersection Capacity Utilization 112.8% ICU Level of Service G	Average Delay		11 ²	1342.9								
	Intersection Capacity Ut	ilization	1	12.8%	ŀ	CU Lev	el of Servi	ce		G		

	\rightarrow	*	1		1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	4	77	37	4	14		N	
Sign Control	Free		gapyri.	Free	Stop			
Grade	0%			0%	0%	o o todoviene ve		
Volume (veh/h)	1277	270	218	672	119	280		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97		
Hourly flow rate (veh/h)	1316	278	225	693	123	289		
Pedestrians						ara rille e e e e e e	indirection of the contract of	111.1
Lane Width (ft)								
Walking Speed (ft/s)		ere er	retreere de la		eren Artesta i en 192		······································	
Percent Blockage		····	x.				5.2.	
Right turn flare (veh)		ere e e e e e e e e e e e e e e e e e e					· · · · · · · · · · · · · · · · · · ·	
Median type					None			
Median storage veh)		· · · · · · · · · · · · · · · · · · ·			.: ::::::::::::::::::::::::::::::::::::	al Malara and and all and a	······································	
vC, conflicting volume			1595		2459	1316		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol	MUR ES			LILSVS.				
tC, single (s)			4 1		6.4	6.2		
tC, 2 stage (s)						0.2		
tF (s)	*		2.2		3.5	3.3		
p0 queue free %			46		0.0	0.0		
cM capacity (veh/h)			414		16	194		
Direction, Lane#	EB 1	EB 2		3.840.00		701		10003300
Volume Total			WB1	WB 2	NB 1			
Volume Left	1316	278	225	693	411			
Volume Right	0	0	225	0	123			
SH	4700	278 1700	0	0	289	***************************************		
Volume to Capacity	1700 0.77	0.16	414 0.54	1700	44			
Queue Length (ft)	0.77			0.41	9.40			
Control Delay (s)	0.0	0	79	0	Err			
Lane LOS	0.0	0.0	23.6	0.0	Err			
44 (45 W. 1. a Ave. 111 (60)	0.0		C	•••••	E			
Approach Delay (s)	0.0		5.8		Err			
Approach LOS		ara ilirili.			F			
ntersection Summary								
Average Delay			1408.6	3-1, 1-1				
ntersection Capacity Uti	lization	1	16.3%	10	LLLeve	l of Service	G	

	\rightarrow	7	1	—	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4	7.5	37	†	14		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	551	154	283	941	128	197	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Hourly flow rate (veh/h)	568	159	292	970	132	203	
Pedestrians							
Lane Width (ft)	: : ::						
Walking Speed (ft/s)							
Percent Blockage		8.					
Right turn flare (veh)					Thi		
Median type					None		
Median storage veh)							
vC, conflicting volume			727		2122	568	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol						<u>.</u>	<u> </u>
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			67		0	61	P
cM capacity (veh/h)			881		37	524	
Direction, Lane#	EB 1	EB 2	WB 1	WB 2	NB 1		
Volume Total	568	159	292	970	335		
Volume Left	0	0	292	0	132		
Volume Right	0	159	0	0	203		
cSH	1700	1700	881	1700	85		
Volume to Capacity	0.33	0.09	0.33	0.57	3.94		
Queue Length (ft)	0	.0	36	0	Err		
Control Delay (s)	0.0	0.0	11.1	0.0	Err		
Lane LOS			В		F		
Approach Delay (s)	0.0		2.6		Err		
Approach LOS					F		·
Intersection Summary						l de disease	
Average Delay			1443.1		4		
Intersection Capacity U	tilizatior	1	77.5%		CU Lev	el of Se	ervice C

	\rightarrow	7	1	4	4	1	
Movement	EBT	EBR	WBL	WET	NBL	NBR	
Lane Configurations	†	75	ħ	*	N/		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		tata da anti-article de la compania
Volume (veh/h)	635	177	326	1085	147	227	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Hourly flow rate (veh/h)	655	182		1119		234	
Pedestrians		(1) (1) (1)	1 Ti E. T	. 12 11. 1.11.111	Lui of Time.		
Lane Width (ft)	*: == :		:				
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)				********			
Median type		1::		*****	None		
Median storage veh)					: ''च.'!!चैं		······································
vC, conflicting volume			837	::	2445	655	44
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	- 31 52		· w · · · · · · · · · · · · · · · · · ·				ž.
tC, single (s)			4 1		6.4	6.2	
C, 2 stage (s)	Es -W	WA Jese			·····	U.L	
tF (s)		*******	2.2		3.5	3.3	
p0 queue free %			58	:	0.0	50	
cM capacity (veh/h)			801		20	468	
Direction, Lane #	EB 1	EB 2	WB 1	WB 2		100	
Volume Total	655	182			NB 1		
Volume Left	033	102	336 336	1119	386		
Volume Right	0	182		0	152		
SH	1700	1700	0	4700	234		
Volume to Capacity	0.39	0.11	801 0.42	1700 0.66	48		
Queue Length (ft)	0.39	0.11	52	0.00	8.04		
Control Delay (s)	0.0	0.0		*************	Err		
Lane LOS	0.0	0.0	12.7	0.0	Err		
Approach Delay (s)	0.0		В		F		
Approach LOS	0.0		2.9	************	Err		
		- 31					
ntersection Summary	11.01						
Average Delay			1441.6				
Intersection Capacity Uti	ilization		88.3%	- 10	CU Leve	el of Service	D

	-	*	1	-	4			
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	Ŷ	্ৰ	35	4	N/F			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	790	229	326	1100	152	227		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97		-1
Hourly flow rate (veh/h)	814	236	336	1134	157	234		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage							and the state of t	
Right turn flare (veh)								
Median type					None		×	
Median storage veh)								
vC, conflicting volume			1051		2621	814		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol			- ×		WELL I	The same of the		
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)		a story						
tF (s)			2.2		3.5	3.3		
p0 queue free %			50		0	38		
cM capacity (veh/h)			666		13	379		
Direction, Lane#	EB 1	EB 2	WB 1	WB 2	NB 1			
Volume Total	814	236	336	1134	391			
Volume Left	-0	0	336	0	157			
Volume Right	0	236	0	0	234			
cSH	1700	1700	666	1700	31		EEE milks and an include	
Volume to Capacity	0.48	0.14	0.50	0.67	12.44			
Queue Length (ft)	0	0	71.	0	Err			
Control Delay (s)	0.0	0.0	15.8	0.0	Err		.,	
Lane LOS			C	8 4 9	F			
Approach Delay (s)	0.0		3.6		Err			
Approach LOS					F			
Intersection Summary	31 101910				e ongen			
Average Delay	- V 388		1343.8	es A				
Intersection Capacity Ut	ilization		94.5%	1	CU Lev	el of Servic	E	

	\rightarrow	-	1	4	4	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	13			र्स	79	الم		
Sign Control	Free			Free	Stop			
Grade	2%			2%	2%			
Volume (veh/h)	714	35	180	472	45	432		=0. 21 25
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97		
Hourly flow rate (veh/h)	736	36	186	487	46	445		
Pedestrians							****	The state of the s
Lane Width (ft)				- 1	_ # 1			
Walking Speed (ft/s)								
Percent Blockage			·····			= 5, 7 4 -7-4-5		
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			772	7:	1612	754		V
vC1, stage 1 conf vol								
vC2, stage 2 conf vol		7	W =# =					
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)							= \ =	
tF (s)			2.2		3.5	3.3		
p0 queue free %	# WIII 193		78		48	0		
cM capacity (veh/h)			847		90	411		***************************************
Direction, Lane #	EB 1	WB 1	NB 1	NB 2				
Volume Total	772	. 672	46	445				
Volume Left	0	186	46	0		Y	Lue.	45
Volume Right	36	0	0	445				
cSH	1700	847	90	411				
Volume to Capacity	0.45	0.22	0.52	1.08				
Queue Length (ft)	0	21	56	382				
Control Delay (s)	0.0	5.2	81.5	101.0				
Lane LOS	5.8- W	Α	F	F		X1W 17 X		
Approach Delay (s)	0.0	5.2	99.2					
Approach LOS			F					· · · · ·
Intersection Summary				*	22.		110 lbs. ************************************	· · · · · · · · · · · · · · · · · · ·
Average Delay			27.0					
Intersection Capacity Uti	lization		90.1%	le	CUTeve	el of Service	E	
				3 4		2. 2. 30.7.00		

	-	1	1	4-	4	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	1>			લી	34	7			
Sign Control	Free			Free	Stop				
Grade	2%			2%	2%				
Volume (veh/h)	823	40	207	544	51	498			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97			
Hourly flow rate (veh/h)	848	41	213	561	53	513	· · · · · · · · · · · · · · · · · · ·	***************************************	
Pedestrians					F.J				
Lane Width (ft)		g · · · · · · · · · · · ·							
Walking Speed (ft/s)		30							
Percent Blockage									
Right turn flare (veh)									
Median type					None				
Median storage veh)					!! • • • • • • • • • • • • • • • • •			a manimum alla anna laciny.	*** ******
vC, conflicting volume			890		1857	869			
vC1, stage 1 conf vol		*******							
vC2, stage 2 conf vol									
tC, single (s)			4 1		6.4	6.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %			72		10	0			
cM capacity (veh/h)	**********		766		59	353			
Direction, Lane#	EB 1	WB 1	NB 1	NB 2					
Volume Total	890	774	53	513					
Volume Left	0	213	53	0					
Volume Right	41	0	0	513					,,
cSH	1700	766	59	353					
Volume to Capacity	0.52	0.28	0.90	1.46					
Queue Length (ft)	0	29	102	680)				
Control Delay (s)	0.0	6.6	202.5	249.0					
Lane LOS	W 1000M	Α	F	F					
Approach Delay (s)	0.0	6.6	244.7					***************************************	
Approach LOS	-		F		4E == 1				
Intersection Summary									
Average Delay			64.4						
Intersection Capacity Ut	ilization	1	101.8%		CLLLev	el of Service			

	-	*	•	←	4	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ħ			स	97	7	
Sign Control	Free			Free	Stop		
Grade	2%			2%	2%		
Volume (veh/h)	849	51	207	773	142	498	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Hourly flow rate (veh/h)	875	53	213	797	146	513	tienen until erlitte erin elektrik bin de ma
Pedestrians						ti i para iti pi i grapoti a ci sa a tech	and the state of the supplementation of the s
Lane Width (ft)		9.1 . Ve-s					
Walking Speed (ft/s)		.,				erren erren er et de erren de erren de erren de	
Percent Blockage				······································			
Right turn flare (veh)	******************	*****************					
Median type	- 3	······		7	None		
Median storage veh)							
vC, conflicting volume		4 17, 1	928		2125	902	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol			3	A	×		
tC, single (s)		****************	4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			71		0	0	f
cM capacity (veh/h)			741		39	338	
Direction, Lane#	EB 1	WB 1	NB 1	NB 2			
Volume Total	928	1010	146	513			
Volume Left	0	213	146	0			
Volume Right	53	0	0	513			
cSH	1700	741	39	338			
Volume to Capacity	0.55	0.29	3.73	1.52			
Queue Length (ft)	0	30	Err	717	***************************************		
Control Delay (s)	0.0	7.5	Err	277.6			
Lane LOS		Α	F	F			
Approach Delay (s)	0.0		2434.5		•••••		
Approach LOS		*	F				
Intersection Summary			***************************************		***************************************		
Average Delay			621.2				
Intersection Capacity Uti	ilization	1	21.1%		CHLEV	el of Servi	ice H
	Zalioi		∠1,1/0		JO LEVI	ei oi Geivi	I.I.

	-	7	1	-	4	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	10			ન	*	7			
Sign Control	Free			Free	Stop	n v -1/22		-51/51/-	
Grade	2%			2%	2%				
Volume (veh/h)	505	76	533	733	87	255			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97			
Hourly flow rate (veh/h)	521	78	549	756	90	263			# v = 11
Pedestrians									
Lane Width (ft)		V.W			= = =				
Walking Speed (ft/s)								*** ** ****	
Percent Blockage					E-15 X		14-3-0 3-3	×	
Right turn flare (veh)		***************				*******			
Median type					None				_ =
Median storage veh)				. 6	REPORT PORTS				
vC, conflicting volume			599		2414	560			
vC1, stage 1 conf vol			566555						
vC2, stage 2 conf vol		84x = 100x						1 w T - 2 v xo	
tC, single (s)			4 1		6.4	6.2			
tC, 2 stage (s)								W 1 - V	
tF (s)			2.2		3.5	3.3			
p0 queue free %	2		44		0	50			
cM capacity (veh/h)			983		16	530			
Direction, Lane#	EB 1	WB 1	NB 1	NB 2					
Volume Total	599	1305	90	263					
Volume Left	0	549	90	0					
Volume Right	78	0	0	263	***************				
cSH	1700	983	16	530					
Volume to Capacity	0.35	0.56	5.63	0.50					
Queue Length (ft)	0	89	Err	68					
Control Delay (s)	0.0	13.3	Err	18.3				***** ** * ******** **	
Lane LOS		В	F	С		- w = ==			
Approach Delay (s)	0.0		2557.3						
Approach LOS		, T	F						
Intersection Summary									
Average Delay			407.2		,				
Intersection Capacity Ut	ilizatio	1 1	17.3%	Ī	CILLevi	el of Serv	ico	G	

202		•	•					
Movement	EBT	EBR	WBL	WBT	NBL	NBR	3000 0000 n n 19	
Lane Configurations	ħ	*******		4	365	7		
Sign Control	Free			Free	Stop			
Grade	2%			2%	2%			
Volume (veh/h)	582	87	615	845	100	294		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97		
Hourly flow rate (veh/h)	600	90	634	871	103	303		
Pedestrians								
Lane Width (ft)					.=	1,7=TV F		
Walking Speed (ft/s)								***************************************
Percent Blockage				=				
Right turn flare (veh)								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Median type					None			· · · · · · · · · · · · · · · · · · ·
Median storage veh)					e a como estra de la colonia de como			
vC, conflicting volume		*	690	-fi-300-	2784	645		
vC1, stage 1 conf vol								***************************************
vC2, stage 2 conf vol							esti ne ka ini	
C, single (s)			4.1		6.4	6.2		
C, 2 stage (s)	****		7.08.18				_ 3 2 5 1 _ 1 _ 1 _ 2	
F (s)			2.2	***************************************	3.5	3.3		
00 queue free %		L 37	30		0	36		
cM capacity (veh/h)			910		6	474		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2				12
/olume Total	690	1505	103	303	X			
/olume Left	000	634	103	0				×
Volume Right	90	0	0	303				
SH	1700	910	6	474			······································	
Volume to Capacity	0.41	0.70	16.28	0.64				
Queue Length (ft)	0.41	147	Err	110				
Control Delay (s)	0.0	21.9	Err	25.1				
ane LOS	0.0	21.5 C	F	23.1 D				
Approach Delay (s)	0.0		2556.6	البا				
Approach LOS	0.0	۷۱.5	200.0 E		*** - * - * - *			
	**********		× 11-1					
ntersection Summary								
Average Delay			411.9					
ntersection Capacity Ut	ilizatior	າ 1	33.7%	10	CU Leve	of Service	Н	

	-	7	1	-	4	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	1>			4	7	7"			
Sign Control	Free			Free	Stop				
Grade	2%			2%	2%				
Volume (veh/h)	841	190	615	869	110	294			
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97			
Hourly flow rate (veh/h)	867	196	634	896	113	303			
Pedestrians									
Lane Width (ft)	X	TE VENT							
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type					None				
Median storage veh)									
vC, conflicting volume		24	1063		3129	965	SA BLOOD E		
vC1, stage 1 conf vol									
vC2, stage 2 conf vol				See Sue					
tC, single (s)			4.1		6.4	6.2			
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %	188		4	Ev E	0	2			200
cM capacity (veh/h)			659		0	310			
Direction, Lane#	EB 1	WB 1	NB 1	NB 2					
Volume Total	1063	1530	113	303					
Volume Left	0	634	113	0					
Volume Right	196	0	0	303					
cSH	1700	659	0	310					
Volume to Capacity	0.63		237.72	0.98					
Queue Length (ft)	0	348	Err	255		A (1)			= 10 f 0 f v
Control Delay (s)	0.0	82.2	Err	82.9				***************************************	
Lane LOS	w 1172	F	F	F			U.E ==#V-2 .		
Approach Delay (s)	0.0	82.2	2782.8						Tanada danimina (
Approach LOS			F						
Intersection Summary									
Average Delay			426.9						
Intersection Capacity U	tilizatio	n '	156.0%	ı	CU Lev	el of Service)	Н	

	-	*	1	-	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4	7		ત	7	7	
Sign Control	Free			Free			The state of the s
Grade	0%	*		0%	0%		
Volume (veh/h)	743	165	54	468	21	4	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Hourly flow rate (veh/h)	766	170	56	482	22	4	
Pedestrians	to the construction of the	A		iniesm			
_ane Width (ft)	•••••						
Walking Speed (ft/s)	***************						
Percent Blockage	ж				· .		v
Right turn flare (veh)					internal attenues		
Median type					None		
Median storage veh)							
C, conflicting volume	Keen - F		936		1360	766	
vC1, stage 1 conf vol	***************						
C2, stage 2 conf vol	V						E
C, single (s)			4.2		6.5	6.3	X
C, 2 stage (s)		= = = = = = = = = = = = = = = = = = = =	· · · · · · · · · · · · · · · · · · ·	***************************************	0.0		
F (s)			2.3		3,6	3.4	
00 queue free %			92		85	99	
cM capacity (veh/h)	***************************************		700		145	390	
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	NB 2		
/olume Total	766	170	538	22	4		
/olume Left	0	0	56	22	Ó		
/olume Right	0	170	0	0	4		
SH	1700	1700	700	145	390		
olume to Capacity	0.45	0.10	0.08	0.15	0.01		
Queue Length (ft)	0	0	6	13	1		
Control Delay (s)	0.0	0.0	2.1	34.2	14.3		
ane LOS	Ww. E		A	D	В		
Approach Delay (s)	0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.1	31.0			
Approach LOS				D	M. W		
ntersection Summary							
verage Delay			1.3				
ntersection Capacity Uti	lization		82.1%	1/	CLLL ove	l of Servic	æ D

		*	1	-	1	1				
viovement	EBT	EBR	WBL	WBT	NBL	NBR				
ane Configurations	4	7		सी	35	7				
Sign Control	Free			Free	Stop					
Grade	0%			0%	0%					
Volume (veh/h)	857	165	54	540	21	4				
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97				
Hourly flow rate (veh/h)	884	170	56	557	22	4				
Pedestrians										
ane Width (ft)	1									
Nalking Speed (ft/s)										
Percent Blockage		W								
Right turn flare (veh)										
Median type					None					
Median storage veh)										
vC, conflicting volume			1054		1552	884				
vC1, stage 1 conf vol										, .
vC2, stage 2 conf vol										
tC, single (s)			4.2		6.5	6.3		********		
tC, 2 stage (s)	= = 88.78									
tF (s)			2.3		3.6	3.4				
p0 queue free %			91		80	99				
cM capacity (veh/h)			631		109	333				
Direction, Lane#	EB 1	EB 2	WB 1	NB 1	NB 2		100)			
Volume Total	884	170	612	22	4					
Volume Left	0	0	56	22	0		- Still 8 - 8			
Volume Right	0	170	0	0	4					
cSH	1700	1700	631	109	333	·			······	
Volume to Capacity	0.52	0.10	0.09	0.20	0.01					
Queue Length (ft)	0	0	7	17	1					
Control Delay (s)	0.0	0.0	2.4	46.0	15.9					
Lane LOS		Z 2	Α	· · E	С	148 = 1 = Lv	Vise I			
Approach Delay (s)	0.0		2.4	41.2					***************************************	
Approach LOS				E						
Intersection Summary										
Average Delay			1.5							
Intersection Capacity U	Itilization	1	92.2%		CU Lev	vel of Service		E		

	\rightarrow	*	1	4	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	Ą	7	*1	*	*	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width (ft)	12	10	12	15	12	12	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	50	50	50	
Trailing Detector (ft)	0	0	0	0	0	0	
Turning Speed (mph)		9	15	a consideration	15	9	
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	xveren	0.850	Premine.		6 1 707	0.850	
FIt Protected			0.950		0.950		10
Satd. Flow (prot)	1881	1370	1641	2069	1641	1468	
It Permitted		,	0.083		0.950		
Satd. Flow (perm)	1881	1370	143	2069	1641	1468	
Right Turn on Red	. 501	Yes	1-0		, 9-1	Yes	
Satd. Flow (RTOR)		608				42	
leadway Factor	1.00	1.09	1.00	0.88	1.00	1.00	
ink Speed (mph)	30	1.03	1.00	30	30	1.00	
ink Distance (ft)	698	=		1860	1054		
Travel Time (s)	15.9			42.3	24.0		
Volume (vph)	857	758	374	540	89	44	
Peak Hour Factor						41	
	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	10%	10%	1%	10%	10%	
Adj. Flow (vph)	884	781	386	557	92	42	
ane Group Flow (vph)	884	781	386	557	92	42	
Turn Type		Perm	pm+pt			pm+ov	
Protected Phases	4		3	8	2	3	
Permitted Phases		4	8			2	
Detector Phases	4	4	3	8	2	3	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	······································
/linimum Split (s)	20.0	20.0	8.0	20.0	20.0	8.0	
Fotal Split (s)	48.0	48.0	21.0	69.0	21.0	21.0	
Total Split (%)	53%	53%	23%	77%	23%	23%	
Maximum Green (s)	44.0	44.0	17.0	65.0	17.0	17.0	
Yellow Time (s)	3.5	3.5	= 3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	
_ead/Lag	Lag	Lag	Lead			Lead	
Lead-Lag Optimize?	Yes	Yes	Yes			Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	Min	None	
Nalk Time (s)	5.0	5.0		5.0	5.0	¥ .	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		
Pedestrian Calls (#/hr)	0	0		0	0		
Act Effct Green (s)	42.1	42.1	63.2	63.2	9.8	30.9	
Actuated g/C Ratio	0.52	0.52	0.78	0.78	0.12	0.38	
//c Ratio	0.91	0.78	0.90	0.35	0.46	0.07	
Jniform Delay, d1	17.6	2.7	20.8	2.7	33.1	0.0	
Delay	26.5	4.6	45.8	3.1	34.0	5.5	
LOS	C	A	D	Α	C	A	
Approach Delay	16.2	100		20.5	25.1		

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build AM ABENDASMAL-LT51

	\rightarrow	7	1	+	4	1	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Approach LOS	В		w St	С	С		The state of the s
Queue Length 50th (ft)	381	45	148	63	45	0	
Queue Length 95th (ft)	#698	231	#344	126	91	0	
Internal Link Dist (ft)	618			1780	974		
50th Up Block Time (%)							
95th Up Block Time (%)	18%						
Turn Bay Length (ft)							
50th Bay Block Time %							
95th Bay Block Time %							
Queuing Penalty (veh)							
Intersection Summary		•					
Area Type: C	ther						
Cycle Length: 90	- H			CELL			
Actuated Cycle Length:	81						
Natural Cycle 90							
Control Type: Actuated-	Uncoor	dinated					
Maximum v/c Ratio: 0.9	1						
Intersection Signal Dela					ntersecti		
Intersection Capacity Ut	ilization	1 82.9%		ļ.	CU Leve	l of Serv	vice D
# 95th percentile volui	me exc	eeds ca	pacity,	queue r	nay be lo	onger.	
Queue shown is max	imum a	after two	cycles	4			
Splits and Phases: 1:	Route	16 & Ho	opping E	Brook R	oad		
4 △ .	1						

Opins and I hases	5. 1. INDUILE 10 & 11	oppling Brook Road
₹ 0 6 2	₹ ₹ ø3	⊕
21.4	21.6	Min Min
	1 ø8	
I.	E+4-2	

		*	1	4	1	1										
Movement	EBT	EBR	WBL	WBT	NBL	NBR										
Lane Configurations	†	7		र्स	196	7	****									
Sign Control	Free			Free	Stop			 :								
Grade	0%			0%	0%			 								
Volume (veh/h)	526	12	11	814	156	73		 								
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97										
Hourly flow rate (veh/h)	542	12	11	839	161	75		 	, , , , , , , , , , , , , , , , , , , ,							
Pedestrians																
Lane Width (ft)		VECTOR				÷		 					B	v	5 - S	Visit in the second of the sec
Walking Speed (ft/s)																
Percent Blockage								 					3.	3.0		
Right turn flare (veh)																
Median type					None			 <-	· · · · · · · · · · · · · · · · · · ·	* * * * * * * * * * * * * * * * * * * *	*	**************************************			***************************************	* * * * * * * * * * * * * * * * * * * *
Median storage veh)																
vC, conflicting volume	Ş	1	555		1404	542										
vC1, stage 1 conf vol																
vC2, stage 2 conf vol				- ×, ,												
tC, single (s)			4.2		6.5	6.3		 								
tC, 2 stage (s)								 								
tF (s)			2.3		3.6	3.4		 								
p0 queue free %			99		0	86				le in Ti	Tallia a tu (Ti	Te au Ei	Te au Gi	Tanada (Files)	Telescon En	Tanada (Filia)
cM capacity (veh/h)			977		146	525										
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	NB 2											
Volume Total	542	12	851	161	75			 								
Volume Left	0	0	11	161	0											
Volume Right	0	12	0	0	75			 								
cSH	1700	1700	977	146	525											
Volume to Capacity	0.32	0.01	0.01	1.10	0.14											
Queue Length (ft)	0	0	1	219	12	A								NATE OF THE PARTY		NATIONAL PROPERTY OF THE STATE
Control Delay (s)	0.0	0.0	0.3	165.5	13.0											
Lane LOS			Α	- F	В	*										
Approach Delay (s)	0.0		0.3	116.9												
Approach LOS				F				 		\$:	:	:	\$ 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
Intersection Summary							00000	1 1								
Average Delay			17.0		ш											
Intersection Capacity Ut	ilization		70.0%	ļ	CU Lev	el of Service			С	С	С	С	С	С	С	С

	\rightarrow	*	*	-	4	1				
Movement	EBT	EBR	WBL	WET	NBL	NBR				
Lane Configurations	A	7		હૌ	18	77		***************************************		
Sign Control	Free		4	Free	Stop					
Grade	0%			0%	0%			****		
Volume (veh/h)	607	12	11	939	156	73	- 1,230, 330,	SWARE .		
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97				
Hourly flow rate (veh/h)	626	12	11	968	161	75				
Pedestrians	e com la l'establique								***************************************	
Lane Width (ft)		3 - 33 U -	a M 88	· · · · · · · · · · · · · · · · · · ·				L= 388. 18		885,W 3
Walking Speed (ft/s)		***************************************						*****************		
Percent Blockage						H==-	L. I.			
Right turn flare (veh)									***************************************	
Median type		E		E	None	TATE TO SERVICE THE				
Median storage veh)					. The Control of the control					
vC, conflicting volume			638		1616	626				3
vC1, stage 1 conf vol									***************************************	
vC2, stage 2 conf vol					38.3	***************************************	E			
tC, single (s)			4.2		6.5	6.3				
tC, 2 stage (s)				X = 1 X						
tF (s)			2.3		3.6	3.4			***************************************	
p0 queue free %			99	91 = 18	0	84				
cM capacity (veh/h)			908		108	470				
Direction, Lane#	EB 1	EB 2	WB 1	NB 1	NB 2					
Volume Total	626	12	979	161	75					
Volume Left	0_0	0	11	161	. 0					
Volume Right	0	12	0	0	75	.,				
cSH	1700	1700	908	108	470					
Volume to Capacity	0.37	0.01	0.01	1.49	0.16					
Queue Length (ft)	0.07	0.01	1	294	14					
Control Delay (s)	0.0	0.0	0.4	335.9	14.1					
Lane LOS	0.0	5.0	Α.	555.9 F	В.					
Approach Delay (s)	0.0		0.4	233.4						
Approach LOS	0.0		U.T	233.4 F		Ж. П , Е. 1				
Intersection Summary										
Average Delay			29.9							
Intersection Capacity Ut	ilization	1	78.4%	1	CLLLev	el of Servi	`	C		

	-	-	1	•	1		
Lane Group	EBT	EBR	WBL	WBT	NBL.	NBR	
Lane Configurations	4	7	387	4	38	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	Carrier Commence of the Commen
Lane Width (ft)	12	10	12	15	12	12	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	50	50	50	
Trailing Detector (ft)	0	0	0	0	0	0	
Turning Speed (mph)		9	15		15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	······································
Frt		0.850	1,00	1.00	- 1.00	0.850	
Fit Protected	······································	0.000	0.950		0.950	0.000	
Satd. Flow (prot)	1881	1370		2060	*********	4.400	
It Permitted	1001	13/0	1641	2069	1641	1468	
Satd. Flow (perm)	1001	4270	0.082	2000	0.950	4 400	
Right Turn on Red	1881	1370	142	2069	1641	1468	
Satd. Flow (RTOR)	*********	Yes				Yes	
The state of the s	4 00	77	2.00		na na nagaraga a	120	
Headway Factor	1.00	1.09	1.00	0.88	1.00	1.00	11 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
ink Speed (mph)	30		•••••	30	30		
ink Distance (ft)	698			1860	1054		
Travel Time (s)	15.9		14	42.3	24.0		
/olume (vph)	607	75	45	939	828	435	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
leavy Vehicles (%)	1%	10%	10%	1%	10%	10%	
\dj. Flow (vph)	626	77	46	968	854	448	
ane Group Flow (vph)	626	77	46	968	854	448	
Turn Type		pm+ov	pm+pt			pm+ov	
Protected Phases	4	2	3	8	2	3	
Permitted Phases		4	8			2	
Detector Phases	4	2	3	8	2	3	
Ainimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	
/linimum Split (s)	20.0	20.0	8.0	20.0	20.0	8.0	
otal Split (s)	49.0	63.0	8.0	57.0	63.0	8.0	
otal Split (%)	41%	53%	7%	48%	53%	7%	······································
/laximum Green (s)	45.0	59.0	4.0	53.0	59.0	4.0	
ellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	X A
II-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	
ead/Lag	Lag		Lead			Lead	X
ead-Lag Optimize?	Yes		Yes			Yes	
ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	Min	None	None	Min	None	
Valk Time (s)	5.0	5.0	140110	5.0	5.0		······································
lash Dont Walk (s)	11.0	11.0		11.0	11.0	`::	
edestrian Calls (#/hr)	0	0			0		
ct Effct Green (s)	45.0	108.0	53.0	53.0		67.0	
ctuated g/C Ratio	0.38	0.90	0.44		59.0	67.0	
/c Ratio	0.89			0.44	0.49	0.56	
Iniform Delay, d1		0.06	0.41	1.06	1.06	0.51	
relay	35.1	0.0	19.2	33.5	30.5	11.3	522- X
OS	42.2	0.1	19.5	72.5	70.9	11.8	
	27.6	A	_ B	E	E	В	
pproach Delay	37.6			70.1	50.6		

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build PM ABENDASMAL-LT51

	-	*	1	4-	4	1	
Lane Group	EBT	EBR	WBL	WBT	NBL.	NBR	
Approach LOS	D			Ε	D.		
Queue Length 50th (ft)	450	0	20	~824	~726	139	, ,
Queue Length 95th (ft)	#666	3	43	#1074	#970	223	
Internal Link Dist (ft)	618			1780	974		
50th Up Block Time (%)							
95th Up Block Time (%)	12%				5%		
Turn Bay Length (ft)							
50th Bay Block Time %							
95th Bay Block Time %							<u></u>
Queuing Penalty (veh)							
Intersection Summary				e distribution de la constitución			
Area Type: O	ther						
Cycle Length: 120							
Actuated Cycle Length:	120						
Natural Cycle: 120							
Control Type: Actuated-	Uncoor	dinated					
Maximum v/c Ratio: 1.0	6			A			
Intersection Signal Dela					ntersect		
Intersection Capacity Ut	ilizatio	1 104.9°	6		CU Leve	el of Se	ervice F
 Volume exceeds ca 					nfinite.		
Queue shown is max							
# 95th percentile volu					may be I	onger.	
Queue shown is max	dmum	after tw	cycle:	S.			
_	_						
Splits and Phases: 1:	Route	16 & H	opping	Brook R	load		
3 ø2				l l	€ a →	· a4	
63.				3	49 2	<u> </u>	
W)# (P				4			
					ø8		

Proposed & Recommended Improvements

				Π
;				
				11
			6	

	≯		7	•	-	*	4	†	1	-	ļ	4
Lane Group	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	36	1>		18/18	4	7	100	1	77	100	To the	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	50	50	50	
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15		9	15		. 9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt		0.990	==			0.850			0.850		0.989	F 03
Fit Protected	0.950	***************************************		0.950			0.950			0.950		
Satd, Flow (prot)	1787	1862	0	3467	1881	1599	1787	1881	1599	3467	1860	0
Flt Permitted	0.950			0.950			0.950			0.950		
Satd. Flow (perm)	1787	1862	0	3467	1881	1599	1787	1881	1599	3467	1860	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				304			55		3	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30	- 1		30			30			30	
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9	E		41.5			58.9	*		22.8	
Volume (vph)	32	508	38	598	266	295	18	122	331	1016	463	35
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	33	524	39	616	274	304	19	126	341	1047	477	36
Lane Group Flow (vph)	33	563	0	616	274	304	19	126	341	1047	513	0
Turn Type	Prot	= 1 1:		Prot		Perm	Prot		pt+ov	Prot		v
Protected Phases	7	4		3	8		5	2	23	1	6	
Permitted Phases						8	× 1					× y
Detector Phases	7	4		3	8	8	5	2	2 3	1	6	
Minimum Initial (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	20.0	20.0	20.0		20.0	20.0	
Total Split (s)	10.0	47.0	0.0	33.0	70.0	70.0	6.0	14.0	47.0	56.0	64.0	0.0
Total Split (%)	7%	31%	0%	22%	47%	47%	4%	9%	31%	37%	43%	0%
Maximum Green (s)	6.0	43.0		29.0	66.0	66.0	2.0	10.0		52.0	60.0	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5		0.5	0.5	0.5	0.5	0.5	V.3	0.5	0.5	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes	7_0	Yes	Yes	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	a a a a series a constituir de la filia de la constituir de la constituir de la constituir de la constituir de	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Min	Min		Min	Min	
Walk Time (s)		5.0		7. 7 700-000	5.0	and the second	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)		11.0			11.0			11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0	.,	0	0	
Act Effct Green (s)	5.9	43.2		28.1	67.5		2.0	10.0	42.3	48.2	56.2	
Actuated g/C Ratio	0.04	0.30		0.19	0.46		0.01	0.07	0.29			
v/c Ratio	0.46	1.02		0.92	0.31			0.98	0.68		ARREST ARRESTS	
Uniform Delay, d1	69.8	50.9		58.0	24.9	a contract the second	71.9	67.9	38.0	47.2		
Delay	70.8	91.0		67.4	26.2			126.6	39.1	48.4	38.0	4 ²
LOS	70.0 E	51.0 F		E	C			 F	D	D		
Approach Delay		89.9			41.5			66.7			45.0	
Approach LOS		09.9 F			T.1.9			E			D	
Approach LOS												

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build AM \sim / \sim changes ABENDASMAL-LT51

	۶	→	7	1	-	4	4	†	1	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NET	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	32	~597		308	174	0	19	~126	252	494	369	
Queue Length 95th (ft)	71	#836		#417	246	56	#75	#266	371	586	492	
Internal Link Dist (ft)		1279	-28	100 000	1745			2511			924	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %	11 888 8											
95th Bay Block Time %												
Queuing Penalty (veh)		= =						April 1				
Intersection Summary												
Area Type: O	ther											
Cycle Length: 150												
Actuated Cycle Length:	145.5											
Natural Cycle: 150		e a a reservición										
Control Type: Actuated-		rdinated										
Maximum v/c Ratio: 1.0		,,,			gen cognition (1991).	200 LUTTO -	A. B.					
Intersection Signal Dela	y: 53.6			-	Intersec	tion LO	ט ט					
Intersection Capacity Ut	ilizatio	n 97.4%)			el of Se	ervice E					
~ Volume exceeds ca	pacity,	queue i	s theor	etically	intinite.							
Queue shown is max	dimum	after tw	o cycle:	S.								
# 95th percentile volu	me ex	ceeds ca	pacity,	queue	may be	longer.						
Queue shown is max	kimum	after tw	o cycle:	S.								

Splits and Phases: 3: Route 85 & Dilla Street

01	№ ø2	€ ø3	→ ø4
56 a	14 6	39.5	1 14/ 8
♦ ₩ Ø6		ø ø8	
6 s 64 s		10 6 70 6	

	۶	→	*	•	-	*	1	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	36	₽		100	4	7	38	4	7	36 36	T	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50		50	50	50	50	50	50	50	50	2
Trailing Detector (ft)	0	0		0	0	0	0	0	0	0	0	
Turning Speed (mph)	15	N : 17 17.	9	15	·	9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Frt		0.979				0.850	ray kingarana Kinada, d		0.850		0.982	
Flt Protected	0.950	. W. T. L. W		0.950			0.950			0.950		
Satd. Flow (prot)	1787	1842	0	3467	1881	1599	1787	1881	1599	3467	1847	0
Flt Permitted	0.950			0.950		Dell' Tempe	0.950	er i de ar er e		0.950		
Satd. Flow (perm)	1787	1842	0	3467	1881	1599	1787	1881	1599	3467	1847	0
Right Turn on Red			Yes			Yes		stanting and an	Yes			Yes
Satd. Flow (RTOR)		7				382		34.2	191		7	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	1.00	30	1.00	1.00	30	1.00		30			30	
Link Distance (ft)		1359			1825			2591			1004	
Travel Time (s)		30.9	*		41.5			58.9			22.8	
No habitual research to the following the consequence of the consequen	EO	220	36	362	565	804	88	587	676	402	322	45
Volume (vph)	58	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Peak Hour Factor	0.97	0.97 1%	1%	1%	1%	1%	1%	1%	1%	1%	1%	1%
Heavy Vehicles (%)	1%		37	373	582	829	91	605	697	414	332	46
Adj. Flow (vph)	60	227		373	582	829	91	605	697	414	378	0
Lane Group Flow (vph)	60	264	0		302	Perm	Prot		pm+ov			
Turn Type	Prot		8	Prot	0	Leitte	5	2	3	1 101	6	
Protected Phases	7	4		3	8				2			
Permitted Phases	·····	A			0	8 8	5	2	3	1	6	
Detector Phases	7	4		4.0	8 4.0	4.0	4.0	40	4.0	4.0	4,0	
Minimum Initial (s)	4.0	4.0		*** * * * * * * * * * * * * * * * * * *	e a a e e e e e e e e e e e e e e e e e	20.0	20.0	20.0	8.0	20.0	20.0	
Minimum Split (s)	8.0	20.0		8.0	20.0	43.0	20.0	39.0	22.0	20.0	39.0	0.0
Total Split (s)	8.0	29.0	0:0	22.0	43.0		18%	35%	20%	18%	35%	0%
Total Split (%)	7%	26%	0%	20%	39%	39%	16.0	35.0	18.0	16.0	35.0	0 /0
Maximum Green (s)	4.0	25.0		18.0	39.0	39.0		3.5	3.5	3.5	3.5	
Yellow Time (s)	3.5	3.5		3.5	3.5	3.5 0.5	3.5 0.5	0.5	0.5	0.5	0.5	
All-Red Time (s)	0.5	0.5		0.5	0.5				***	Lead	Lag	
Lead/Lag	Lead	Lag		Lead	Lag	Lag	Lead	Lag Yes	Lead Yes	Yes	Yes	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes		and the second of the second	3.0	3.0	3.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0			Min	V3 - 5532
Recall Mode	None	None	2	None	None	None	Min	Min	None	Min 5.0	5.0	
Walk Time (s)		5.0		····×·:::	5.0	5.0	5.0	5.0			11.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	0	
Pedestrian Calls (#/hr)		0		المحاصون المالة	0	0	0	0	- FEW	0		
Act Effct Green (s)	4.0	26.1		16.9	39.0	39.0		35.0	55.9	15.5	39.9	
Actuated g/C Ratio	0.04	0.24		0.15	0.36	0.36		0.32	0.51	0.14	0.36	
v/c Ratio	0.92	0.59		0.70	0.87	1.02	0.52	1.01	0.77	0.84	0.56	
Uniform Delay, d1	52.6	35.9		44.0	32.9	18.7	47.0	37.3	14.9	45.8	27.2	
Delay	124.6	37.2		44.0	39.6	49.4		68.6	15.6	50.6	28.6	
LOS	F	D		D	D	D	D	E	В	D	С	
Approach Delay		53.4			45.1			40.7			40.1	
Approach LOS		D			D			D			D	

Hopping Brook Business Park, Holliston, MA 3/5/2003 Baseline Build PM ~/ (ame change)
ABENDASMAL-LT51

	*	-	7	1	4-		4	†	-	-	1	1
Lane Group	EBL	EET	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	43	164	1,000 1.	128	381	~434	62	distance of the first	279	147	206	:
Queue Length 95th (ft)	#129	253		179	#581	#676	111	#667	224	#222	323	
Internal Link Dist (ft)		1279			1745			2511			924	
50th Up Block Time (%)												
95th Up Block Time (%)												
Turn Bay Length (ft)												
50th Bay Block Time %												
95th Bay Block Time %	7											
Queuing Penalty (veh)												
Intersection Summary										16 1000 000		
and the country of the control of th	ther											
Cycle Length: 110												
Actuated Cycle Length:	109.6					89.71.25						
Natural Cycle: 110												
Control Type: Actuated-		dinated										
Maximum v/c Ratio: 1.0	2					annan an talah sa						
Intersection Signal Dela						tion LOS						
Intersection Capacity Ut						el of Se	rvice E					
 Volume exceeds ca 	pacity,	queue i	s theore	etically i	nfinite.							
Queue shown is max	dimum :	after two	cycles	5.								
# 95th percentile volu	me exc	eeds ca	ipacity,	queue i	may be	longer.						
Queue shown is max	kimum	after two	o cycles	5.								

Splits and Phases: 3: Route 85 & Dilla Street

10	↑ ø2	₹ ₹ ø3	→ 64
20 s		22 1	29 %
\$ ø5	₽ Ø6	<i>▶</i> _{ø7} ** _{ø8}	}
20 s	39.4	8× 43:	

	\rightarrow	*	1	-	1	<i>*</i>
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Ť	78	35	4	**	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	
Trailing Detector (ft)	0	0	0	0	0	:
Turning Speed (mph)		9	15		15	9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
and the second s	1.00	0.850	1.00	1.00	0.905	1.00
Frt Destanted		0.030	0.950		0.985	
Fit Protected	3003	4700		4004		0
Satd. Flow (prot)	1881	1599	1787	1881	1677	<u></u>
FIt Permitted	110.02.219011		0.060	marana arri	0.985	
Satd. Flow (perm)	1881	1599	113	1881	1677	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	1.	226			104	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	30			30	30	
Link Distance (ft)	2040			1841	1269	
Travel Time (s)	46.4			41.8	28.8	
Volume (vph)	1277	270	218	672	119	280
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%
Adj. Flow (vph)	1316	278	225	693	123	289
		278	225	693	412	0
Lane Group Flow (vph)	1316			093	412	
Turn Type		Perm	pm+pt			xxx
Protected Phases	4		3	8	2	
Permitted Phases		4	8			
Detector Phases	4	4	3	8	4.0	
Minimum Initial (s)	4.0	4.0	4.0	4.0		
Minimum Split (s)	20.0	20.0	8.0	20.0	20.0	
Total Split (s)	67.0	67.0	10.0	77.0	23 0	
Total Split (%)	67%	67%	10%	77%	23%	0%
Maximum Green (s)	63.0	63.0	6.0	73.0	19.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	
Lead/Lag	Lag	Lag	Lead			
Lead-Lag Optimize?	Yes	Yes	Yes			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
		None		None	Min	
Recall Mode	None	*	INOLIG	5.0	5.0	121111111111111111111111111111111111111
Walk Time (s)	5.0	5.0		11.0	11.0	the contraction of the first engineering and the contraction of the co
Flash Dont Walk (s)	11.0	11.0				
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	63.0	63.0	73.0	73.0	19.0	
Actuated g/C Ratio	0.63	0.63	0.73	0.73	0.19	
v/c Ratio	1.11	0.25		0.50	1.02	
Uniform Delay, d1	18.5	1.3	20.7	5.8	30.1	
Delay	71.5	1.8	125.0	6.0	69.7	
LOS	Ε	Α	F	Α	Е	
Approach Delay	59.4			35.2	69.7	
Approach LOS	E	*****		D	Ε	**** *****

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build AM w/ 514 mm ABENDASMAL-LT51

	-	*	V	4-						60804264466
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR				
Queue Length 50th (ft)	~965	12	~127	161	~208					
Queue Length 95th (ft)	#1220	42	#278	230	#414					
Internal Link Dist (ft)	1960	F.,		1761	1189					
50th Up Block Time (%)										
95th Up Block Time (%)										
Turn Bay Length (ft)										
50th Bay Block Time %										
95th Bay Block Time %										
Queuing Penalty (veh)								S BA'A		
Intersection Summary										
	Other							=w =		
Cycle Length: 100								.,		
Actuated Cycle Length:	100								*** *********** *****	
Natural Cycle: 100										
Control Type: Actuated	-Uncoo	rdinate	d							
Maximum v/c Ratio: 1.2	23					v401001111111111	00.0			
Intersection Signal Dela	ay: 53.2	2			Intersec					
Intersection Capacity U	Itilizatio	n 116.3	3%				Service C	5		
~ Volume exceeds ca	apacity,	queue	is theor	etically	infinite.					
		after to	10 OLC C	i.C						
# 95th percentile volu	ume ex	ceeds c	apacity	, queue	may be	ionge	f.			
Queue shown is ma	vimum	after ty	vo cycle	es.						

	\rightarrow	7	1	-	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	Ą	7	J.	4	N/W		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	50	50	50	50		
Trailing Detector (ft)	0	0	0	0	0		
Turning Speed (mph)	1.15	9	15		15	9	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Ed		0.850	months and the		0.919		
Flt Protected			0.950		0.980		
Satd. Flow (prot)	1881	1599	1787	1881	1694	0	
Flt Permitted			0.098		0.980		
Satd. Flow (perm)	1881	1599	184	1881	1694	0	
Right Turn on Red		Yes		.,, . , ,,,,,,		Yes	
Satd. Flow (RTOR)		236			87		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Link Speed (mph)	30			30	30		
Link Distance (ft)	2040		**********	1841	1269		
Travel Time (s)	46.4			41.8	28.8		and the second of the second o
Volume (vph)	790	229	326	1100	152	227	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	814	236	336	1134	157	234	
Lane Group Flow (vph)	814	236	336	1134	391	0	
Turn Type			pm+pt				
Protected Phases	4		3	8	2		
Permitted Phases		4	8				
Detector Phases	4	4	3	8	2		
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	IFE SE	
Minimum Split (s)	20.0	20.0	8.0	20.0	20.0		
Total Split (s)	41.0	41.0	17.0	58.0	22.0	0.0	
Total Split (%)	51%	51%	21%	73%	28%	0%	
Maximum Green (s)	37.0	37.0	13.0	54.0	18.0		
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5		
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5		
Lead/Lag	Lag	Lag	Lead		0.0		
	Yes	Yes	Yes				
Lead-Lag Optimize? Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		
			None	None	Min		
Recall Mode	None	None	INOHE		5.0		
Walk Time (s)	5.0	5.0		5.0 11.0	11.0.		
Flash Dont Walk (s)	11.0	11.0					
Pedestrian Calls (#/hr)	0	0	E4 0	0	0 16.5		
Act Effet Green (s)	34.6	34.6	51.0	51.0	0.22		
Actuated g/C Ratio	0.46	0.46	0.67	0.67			
v/c Ratio	0.95	0.27	0.88	0.89	0.89		, E-
Uniform Delay, d1	19.5	0.0	16.8	10.0	22.0		
Delay	32.2	2.0		15.6			
LOS	C	Α	С	B	C		
Approach Delay	25.4			19.6			
Approach LOS	С			В	С		

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build PM \sim / ς , ς \sim \sim ABENDASMAL-LT51

	\rightarrow	7	1	4-		-			
ane Group	EBT	EBR	WBL	WET	NBL	NBR		(m	
Queue Length 50th (ft)	369	0	111	397	142				
Queue Length 95th (ft)	#614	36	#258	#761	#309		,,,	 	,,
nternal Link Dist (ft)	1960			1761	1189				
50th Up Block Time (%)									
95th Up Block Time (%)									
Turn Bay Length (ft)									
50th Bay Block Time %									
95th Bay Block Time %									
Queuing Penalty (veh)									
Intersection Summary						101			
Area Type: O	ther							 	
Cycle Length: 80								 	
Actuated Cycle Length:	75.6			C					
Natural Cycle: 80								 	
Control Type: Actuated-	Uncoor	dinated						 	
Maximum v/c Ratio: 0.9	5							 	
Intersection Signal Dela	y: 23.6				Intersect			 	
Intersection Capacity Ut	ilizatior	94.5%					ervice E	 	
# 95th percentile volui	me exc	eeds ca	pacity,	queue	may be I	onger.		 	
Queue shown is max	dimum a	after two	o cycles	5.					

Splits and Phases: 3: Route 16 & Central Street

62	€ ø3	> ø4
22 s	177	41 s
	★ 98	
	58%	

	\rightarrow	*	1	4	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	\$		100	4	37	7	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Grade (%)	2%			2%	2%		
Storage Length (ft)		0	150		50	0	
Storage Lanes	**** * ***	0	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
Leading Detector (ft)	50	e en estado en e	50	50	50	50	
Trailing Detector (ft)	0		0	0	0	0	
Turning Speed (mph)		9	15		15	9	
Lane Util. Factor	1.00	1.00	1,00	1.00	1.00	1.00	
Frt	0.992			h. h." DeSe	'. STC TIME.	0.850	
Fit Protected			0.950	· · · · · · · · · · · · · · · · · · ·	0.950		
Satd. Flow (prot)	1847	0	1769	1862	1769	1583	
Fit Permitted	10-11		0.085		0.950		
Satd. Flow (perm)	1847	0	158	1862	1769	1583	
Right Turn on Red	1047	Yes	100		1700	Yes	
Satd. Flow (RTOR)	6	1,00				127	
Headway Factor	1.01	1.01	1.01	1.01	1.01	1.01	
	30	1.91	1.01	30	30	13001	
Link Speed (mph)	1860			2040	1126		
Link Distance (ft)				46.4	25.6		
Travel Time (s)	42.3 849	51	207	773	142	498	
Volume (vph)	and the second section of the second		207	0.97	0.97	0.97	
Peak Hour Factor	0.97	0.97	0.97	1%	1%	1%	
Heavy Vehicles (%)	1%	1%	1%	and the same of th			
Adj. Flow (vph)	875	53	213	797	146	513	
Lane Group Flow (vph)	928	0	213	797	146	513	
Turn Type			pm+pt			pm+ov	
Protected Phases	4		3	8	2	3	<u> </u>
Permitted Phases			8			2	
Detector Phases	4		3	8	2	3	
Minimum Initial (s)	4.0		4.0	4.0	4.0	4.0	
Minimum Split (s)	20.0		8.0	20.0	20.0	8.0	
Total Split (s)	47.0	0.0	12.0	59.0	21.0	12.0	
Total Split (%)	59%	0%	15%	74%	26%	15%	
Maximum Green (s)	43.0		8.0	55.0	17.0	8.0	
Yellow Time (s)	3.5		3.5	3.5	3.5	3.5	
All-Red Time (s)	0.5		0.5	0.5	0.5	0.5	
Lead/Lag	Lag		Lead	¢		Lead	
Lead-Lag Optimize?	Yes		Yes			Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Recall Mode	None		None	None	Min	None	
Walk Time (s)	5.0		4	5.0	5.0		
Flash Dont Walk (s)	11.0			11.0	11.0		
Pedestrian Calls (#/hr)	0		T	0	0		
Act Effct Green (s)	37.7		49.8	49.8	10.9	22.9	
Actuated g/C Ratio	0.55		0.72	0.72		0.33	
v/c Ratio	0.92	1.1. : ::	0.71	0.59	0.52	0.84	
Uniform Delay, d1	13.7	www.	9.7	4.5	26.5	15.7	
Delay	21.7		22.8	5.4	28.5	20.2	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build AM $\,\omega/\,$ S. 1204 ABENDASMAL-LT51

	-	*	1	4-	1	P			
Lane Group		EBR	WBL	WBT	NBL	NBR			
LOS	С		С	Α	C	C			
Approach Delay	21.7		27 9 44	9.1	22.1		v-1		
Approach LOS	C			Α	С				
Queue Length 50th (ft)	326		43	129	63	161			
Queue Length 95th (ft)	#667		#161	273	116	#340			
Internal Link Dist (ft)	1780			1960	1046				
50th Up Block Time (%)									
95th Up Block Time (%)									
Turn Bay Length (ft)		i in	150		50				
50th Bay Block Time %				5%	24%	46%			
95th Bay Block Time %			14%	18%	48%	53%			
Queuing Penalty (veh)			54	24	370	72			
Intersection Summary									
Area Type: C	ther								
Cycle Length: 80									
Actuated Cycle Length:	68.9							,	
Natural Cycle: 80		3							
Control Type: Actuated-	Uncoor	dinated							********
Maximum v/c Ratio, 0.9									
Intersection Signal Dela						tion LOS: B			
Intersection Capacity Ut	tilization	1 87 7%				el of Service I)		
# 95th percentile volu				queue r	nay be	longer.			
Queue shown is max					8 H 8				

Splits and Phases: 2: Route 16 & Route 126 South

₹ 02	€ ø3	→ ø4
21 s	(2) (II)	47 \$
	4 − − 8	
	59.1	

Page 2

	\rightarrow	*	1	4-			
ane Group	EBT	EBR	WBL	WBT	NBL	NBR	
ane Configurations	\$		37	4	*	7	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Grade (%)	2%	erent de decembre	and the state of the second	2%	2%		
Storage Length (ft)		0	150		50	0	
Storage Lanes		0	1	2	1	1	
otal Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	
eading Detector (ft)	50		50	50	50	50	
railing Detector (ft)	0		0	0	0	0	
urning Speed (mph)		9	15		15	9	•
ane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
rt	0.975		1.00			0.850	
It Protected	0.975	88.2	0.950		0.950		п =
Satd. Flow (prot)	1816	0	1769	1862	1769	1583	
It Permitted	1010		0.049	1002	0.950		
	1816	0	91	1862	1769	1583	
Satd. Flow (perm)	1010	Yes	91	1002	1703	Yes	
Right Turn on Red	4.4	165				117	
Satd. Flow (RTOR)	11	4.04	4.04	1.01	1.01	1.01	7
leadway Factor	1.01	1.01	1.01	30	30	1.01	
ink Speed (mph)	30				1126		
ink Distance (ft)	1860			2040	****		
ravel Time (s)	42.3		0.45	46.4	25.6	294	
/olume (vph)	841	190	615	869	110	********	đ.
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	
teavy Vehicles (%)	1%	1%	1%	1%	1%	1%	
Adj. Flow (vph)	867	196	634	896	113	303	
Lane Group Flow (vph)	1063	0	634	896	113	303	
Turn Type			pm+pt			m+ov	
Protected Phases	4		- 3	8	2	3	
Permitted Phases			8			2	
Detector Phases	4		3	8	2	3	
Minimum Initial (s)	4.0		4.0	4.0	4.0	4.0	
/linimum Split (s)	20.0		8.0	20.0	20.0	8.0	
Total Split (s)	81.0	0.0	48.0	129.0	21.0	48.0	
Fotal Split (%)	54%	0%	32%	86%	14%	32%	
Maximum Green (s)	77.0		44.0	125.0	17.0	44.0	
rellow Time (s)	3.5		3.5	3.5	3.5	3.5	Y
All-Red Time (s)	0.5		0.5	0.5	0.5	0.5	
_ead/Lag	Lag		Lead			Lead	
Lead-Lag Optimize?	Yes		Yes			Yes	
Vehicle Extension (s)	3.0	3	3.0	3.0	3.0	3.0	
Recall Mode	None		None	None	Min	None	
Nalk Time (s)	5.0	1100		5.0	5.0		
Flash Dont Walk (s)	11.0			11.0	11.0		
Pedestrian Calls (#/hr)	0			0	0		
Act Effct Green (s)	77.0		125.0	125.0	13.9	61.9	
Actuated g/C Ratio	0.52		0.85	0.85		0.42	
v/c Ratio	1.11		1.09	0.57	0.68	0.41	
Uniform Delay, d1	34.6		44.2	3.1	64.3	17.3	
Delay	96.2		102.5	3.5	****	17.6	

Hopping Brook Business PArk, Holliston, MA 3/5/2003 Baseline Build PM ックラング ABENDASMAL-LT51

	-	*	1	4	1	*			
Lane Group	EBT	EBR	WBL	WBT	NBL	NER	14.14.14.46.16. 146.14.		
LOS	F		F	Α	E	В			. 7
Approach Delay	96.2			44.5	30.3				
Approach LOS	F			D	Ç			- 12	
Queue Length 50th (ft)	~1170		~640	201	106	116			
Queue Length 95th (ft)	#1470		#905	300	176	194			
Internal Link Dist (ft)	1780			1960	1046				
50th Up Block Time (%)									
95th Up Block Time (%)									
Turn Bay Length (ft)			150		50				
50th Bay Block Time %			56%	7%	50%	33%			
95th Bay Block Time %		3 3 4	64%	10%	65%	41%	- 11		
Queuing Penalty (veh)			539	55	346	41			
Intersection Summary		*******					1,000		
	Other					***************************************			
Cycle Length: 150		8. F					8		
Actuated Cycle Length:	147			*************					
Natural Cycle: 150									
Control Type: Actuated-		dinated				y			
Maximum v/c Ratio. 1.1									
Intersection Signal Dela	y: 60.8			1		ion LOS: E			
Intersection Capacity Ut						el of Service F			
 Volume exceeds ca 					nfinite.				
Queue shown is max	dmum a	after tw	o cycles						
# 95th percentile volu	me exc	eeds ca	apacity,	queue r	nay be	longer.	*************		
Queue shown is max	kimum a	after tw	o cycles						

Splits and Phases: 2: Route 16 & Route 126 South

√ ø2	₹ ø3	→ ø4
21 s	48 s	81 e
	₩ ø8	
	123 s	

APPENDIX B

Hopping Brook Air Quality Mesoscale Analysis

Hopping Brook Air Quality Mesoscale Analysis

Prepared for:

First Colony Development Co., Inc. 929 Boston Post Road East Marlboro, MA 01752

Prepared by:

Epsilon Associates, Inc. 150 Main Street, P.O. Box 700 Maynard, MA 01754-0700

June 19, 2003

	ř				
2					
-					
			9	57°	

Table of Contents

AIR QUALITY		2
1.0	Introduction	2
1.2	Mesoscale Analysis	2
1.3	Conclusion	4
1.4	Mitigation Measures and Conclusions	6

Table 1. Mesoscale Analysis Summary

Appendix A	Correspondence with	DEP Division of Air Quality Control
	Attachment A	Traffic Calculations
	Attachment B	MOBILE6 Input Parameter and Assumptions
Appendix B	DEP Memorandum da	ited February 12, 2003

AIR QUALITY

1.0 Introduction

A mesoscale analysis was performed for the Hopping Brook Industrial Park Project ("Project") based on the vehicle trips per day (tpd) generated will exceed the 3,000 tpd threshold for a mesoscale analysis. The analysis includes both an estimate of the volatile organic carbon (VOC) emissions associated with all project-related vehicle trips and a demonstration that the VOC emissions associated with the Build condition will be less than those from the Existing condition in both the short and long term. In the case where hydrocarbon emissions from the build condition are expected to be greater than the future No-Build, the analysis includes identification and review of all reasonable and feasible reduction/mitigation measures. Prior to proceeding with the analysis, consultation with the Massachusetts Department of Environmental Protection (MADEP) was conducted for guidance as well as confirmation of the study area

The Project consists of the expansion of the existing industrial park located on Route 16 in Holliston, Massachusetts. The expansion will result in an additional 15,000 new vehicle tpd. For a more detailed description of the Project, see Section 1.0 of the SEIR.

A mesoscale analysis was performed to assess the total volatile organic compounds (VOCs) emissions associated with motor vehicle emissions related to the Project. The modeling methodology for the mesoscale analysis was developed in accordance with the MADEP guidelines. A modeling protocol was submitted to MADEP on March 25, 2003 and approved by Keith Grillo, Regional Planner on April 3, 2003 (See Appendix A of this report). Travel demand management and other mitigation strategies to reduce air quality impacts are described in Section 4.0 and Appendix A of the SEIR.

1.2 Mesoscale Analysis

A mesoscale analysis was performed to assess the total VOCs associated with motor vehicle emissions from the project. A mesoscale analysis predicts the change in regional emissions due to the project. The total vehicle pollutant burden was estimated for the No Build and Build conditions for the future year 2008 based on the traffic analysis performed by Abend Associates(Abend).

For each condition modeled, the EPA MOBILE6 computer program was used to estimate motor vehicle emissions on the roadway network. Emission estimates derived from MOBILE6 for VOCs/NOx are based on summertime conditions.

Intersection Selection

Intersection selection criteria for a mesoscale analysis is typically based on a Level of Service (LOS) D where the project increases traffic volumes by 10 percent or greater, or if the intersection operates at LOS E or F and the project degrades the location.

Based on these criteria, eight intersections meet these thresholds for the mesoscale analysis. The intersections used in the analysis are as follows:

- 1. Route 16 at Hopping Brook Road;
- 2. Route 16 at Route 126 South;
- 3. Route 16 at Central Street;
- 4. Route 85 at Dilla/Fortune;
- 5. Route 85 at Route 495 northbound Ramps;
- 6. Route 85 at Route 495 southbound Ramps;
- 7. Route 109 at Beaver Street/Beaver Street Expansion; and
- 8. Route 16 at Route 109.

The traffic volumes and LOS calculations provided in Air Quality Appendix form the basis of the air quality study.

Emissions Calculations (MOBILE6)

For each case modeled, the EPA MOBILE6¹ computer program was used to estimate motor vehicle emissions on the roadway network. Emissions data calculated by the MOBILE6 model are based on motor vehicle operations typical of peak periods. The Commonwealth's statewide Annual Inspection and Maintenance (I&M) Program was included, as well as state specific vehicle age registration distribution. The MOBILE6 inputs are based on the latest guidance issued by DEP² regarding updated inputs to the model. MOBILE6 input parameters are listed in the modeling

¹ MOBILE6 is an EPA computer model that calculates emission factors for hydrocarbons, carbon monoxide, and oxides of nitrogen form gasoline and diesel fueled highway motor vehicles

² MADEP: February 12, 2003 memorandum for MOBILE6 inputs for performing microscale and mesoscale analysis.

protocol provided in the Air Quality Appendix. In addition, emission calculations are presented for the VOC Build and No-Build scenarios.

The mesoscale analysis predicts the change in regional emissions due to the project. This is accomplished by multiplying changes in traffic flow (in vehicle miles traveled³) by an emission factor (grams per vehicle mile traveled).

1.3 Conclusion

Results of the mesoscale analysis as presented in Table 1 show an increase in daily VOC emissions for the 2008 Build condition versus the No-Build condition. The 2008 Build condition results in an increase in AM and PM VOC emissions of 13% and 16%, respectively. The 2008 Build condition results in a decrease of VOC emissions when compared to the existing conditions due to cleaner more efficient vehicles. The decrease in the AM and PM VOC emissions are 28% and 22%, respectively versus the existing conditions.

Traffic mitigation measures designed to minimize the increase compared to the No-Build condition are discussed in the Traffic Appendix A of the SEIR.

³ Vehicle Miles Traveled (VMT) – the average daily traffic multiplied by the roadway link length.

Table .1: Mesoscale Analysis Summary

Pollufant	Ting the state of	Unifs	Existina	Full Build	No-Build	BD-NB	% Difference (BD-NB)	BD- Existing	% Difference (BD- existing)
VOC	AM	orams/hr	3.114.8	2.429.7	2.155.8	273.9	13%	-68511%	-28%
		tons/hr	0.00343	0.00268	0.00238	0.00030	13%		
		tons/day*	0.049	0.038	0.034	0.004	13%		
	PM Peak	grams/hr	3,338.5	2,736.8	2,369.5	367.3	16%	-60166%	-22%
		tons/hr	0.00368	0.00302	0.00261	0.00040	16%		
		tons/day*	0.041	0.034	0.029	0.004	16%		
×ON	AM Peak	grams/hr	6,916.5	5,172.6	4,589.6	583.1	13%	174384%	-34%
		tons/hr	0.00762	0.00570	0.00506	0.00064	13%		
		tons/day*	0.109	0.081	0.072	0.009	13%		
	PM Peak	grams/hr	7,413.1	5,826.5	5,044.6	781.9	16%	158666%	-27%
		tons/hr	0.00817	0.00642	0.00556	0.00086	16%		
		tons/day*	0.091	0.071	0.062	0.010	16%		

Tons/day estimated by multiplying hourly peak value by TRB Factor

1.4 Mitigation Measures and Conclusions

As is required when the mesoscale results show an increase in emissions from the No-Build to Build conditions, the proponent has identified and reviewed all reasonable and feasible reduction/mitigation measures to compensate for the increase in emissions associated with the 2008 Build scenario. Please refer to Traffic Appendix for a complete list of proposed mitigation measures.

APPENDIX A

1

MITT ROMNEY
Governor

KERRY HEALEY Lieutenant Governor

COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS DEPARTMENT OF ENVIRONMENTAL PROTECTION

ONE WINTER STREET, BOSTON, MA 02108 617-292-5500

ELLEN ROY HERZFELDER Secretary

> EDWARD P. KUNCE Acting Commissioner

April 3, 2003

Mr. Philip DeVita Epsilon Associates, Inc. 150 Main Street P.O. Box 700 Maynard, MA 01754-0700

Dear Mr.DeVita:

The Department of Environmental Protection (DEP) has reviewed the modeling protocol submitted for the Hopping Brook Industrial Park in Holliston. The intersections chosen within the study area satisfy DEP's requirements for a mesoscale air quality analysis. In addition the mobile 6 inputs presented meet DEP requirements.

Please contact Keith Grillo at (617) 292-5773 if you have any questions.

Sincerely,

Keith Grillo

Regional Planner

Kerth Grillo

/air/approtcl.doc

March 25, 2003

Mr. Keith Grillo
Department of Environmental Protection
Division of Air Quality Control
One Winter Street
Eighth Floor
Boston, MA 02108

Subject: Air Quality Modeling Protocol for Hopping Brook Industrial Park

Mesoscale Analysis

Dear Keith:

Epsilon Associates, Inc. (Epsilon) is submitting this modeling protocol for your review and approval for the proposed expansion to the existing Hopping Brook Industrial Park, in Holliston, Massachusetts. Epsilon is preparing the air quality analysis as part of the Supplemental EIR submittal.

As discussed, the Hopping Brook Industrial Park is an existing project located on Route 16. The proponent has acquired an adjacent 85 acre parcel which has been added to the site. The expansion will result in an additional 15,000 new vehicle trips per day. A mesoscale analysis is required since the vehicle trips per day are greater than the 3,000 vehicle trips per day threshold.

Intersection Selection

Abend Associates, Inc. (Abend) has analyzed project traffic data for approximately 13 intersections in the vicinity of the project. Intersections selection criteria for a mesoscale analysis typically are based on a Level of Service (LOS) D where the project increases traffic volumes by 10 percent or greater, or if the intersection operates at LOS E or F and the project degrades the location. Based on these criteria, Epsilon is proposing that 8 intersections be analyzed. The intersections proposed are as follows:

- 1. Route 16 at Hopping Brook Road; ⅓
- 2. Route 16 at Route 126 South;
- 3. Route 16 at Central Street;; /

PRINCIPALS

Peodore A. Barten, P.E.

Margaret B. Briggs

ichael E. Guski, CCM

Samuel G. Mygatt, L.L.B.

Dale T. Raczynski, P.E.

Cindy Schlessinger

Lester B. Smith, Jr.

Victoria H. Fletcher, RLA

- 4. Route 85 at Dilla/Fortune
- 5. Route 85 at Route 495 northbound Ramps;
- 6. Route 85 at Route 495 southbound Ramps;
- 7. Route 109 at Beaver Street/Beaver Street Expansion; and
- 8. Route 16 at Route 109

Figure 1 depicts the intersections studied by Abbend which include the proposed intersections locations for the mesoscale analysis. The traffic calculations are in Attachment A for your review.

Emissions Calculations (MOBILE5ah)

MOBILE6 input parameters are listed in Attachment B as proposed for this analysis based on the recent February 12, 2003 memorandum from DEP regarding the use of MOBILE6 for determining emission factors for use in the indirect source air quality analysis. MOBILE6 replaces MOBILE5ah for generating emission rates.

MOBILE6 is an EPA-approved program used to estimate emission rates for highway motor vehicles under a range of conditions.

Moving emissions are calculated based on actual speeds at which free-flowing vehicles travel through the intersections.

Mesoscale Analysis

The mesoscale analysis predicts the change in regional emissions due to the project. This is done by multiplying changes in traffic flow (in vehicle miles traveled based on link lengths) by an emission factor (in grams per vehicle mile traveled).

The mesoscale analysis will be based on the one intersection discussed above and the links leading into the intersections. The calculated VMT will be estimated based on peak hour traffic volumes and average vehicle speeds in the links and multiplied by the MOBILE6 emission factors to determine maximum hourly emissions. These peak hour emissions will be scaled based on a Transportation Research Board factor to account for daily vehicle miles traveled from an hourly value. A comparison of total NOx and VOC emissions for the Future Build versus No-Build scenarios will be evaluated.

As discussed above, emission factors will be calculated using the MOBILE6 model. Vehicle speeds input into MOBILE56 will be determined by dividing total VMT by total vehicle hours traveled (VHT).

If you have any questions or comments about this analysis, please contact me at 978-461-6233.

Sincerely,

EPSILON ASSOCIATES, Inc.

Philip M. DeVita

Senior Environmental Scientist, CCM

Attachments: Figures

Attachment A Attachment B

-	

Attachment A

Traffic Calculations

					Evening					
	20(2003 Existing	ing	2008	8 No Build	plin	20	2008 Build	PII	
	LOS	Delay ²	V/C3	LOS	Delay ²	V/C3	LOS	Delay ²	V/C3	
Route 85 at Route 495 nc	northbound Ramps	nd Ran	sdu							
· Overall	LL.	*	;							
Rte 85 EB LT	82	15	0.59			SEE SIGNALIZED	ALIZED			
Rte 495 NB LT	LL	*	×							
Rte 495 NB RT	60	10	0.18							
Route 85 at Route 495 southbound Ramps	uthbour	d Ram	Sq							
Overall	L	141	*	LL.	237	1	IL.	234	ì	
Rte 85 WB LT	£Ω	12	0.27	យ	14	0.35	U	17	0.44	
Rte 495 SB LT	ıL	172	0.53	ш,	464	1.07	Ľ.	*	1.85	
Rte 495 SB RT	ட	504	2.05	ц.,	843	2.80	ட	871	2.86	
Route 16 at Hopping Brook Road	k Road								•	
	4	4	ł	4	9	:	ᄠ	*	ì	í
Rte 16 WB LT/TH	A	۲ ۲	0.01	∢	1 >	0.01	∢	7	0.05	
Hopping Brook Rd LT	ш	8	09.0	ıL	112	0.81	и.,	*	*	
Hopping Brook Rd RT	ගු	13	0.11	ß	14	0.12	u.	23	0.91	
Route 16 at Route 126 South	uth									
Overail	ű.	*	;	u.	*	2	ш	*	ł	,I
Rte 16 WB LT/TH	ω	13	0.56	Ų	22	0.70	ı	82	0.96	
Rte 126 NB LT	ш,	ĸ	*	Œ	*	. ¥	u.	*	*	
Rte 126 NB RT	U	18	0.50	۵	25	0.64	ш,	83	86.0	
Route 16 at Central Street										
Overail	Ľ.	*	†	LL	*	ł	Ŀ	*	1	I
Rte 16 EB LT	ω	11	0.33	B	13	0.42	U	91	0.50	
Central St NB LT/RT	IL.	*	æ	Œ.	*	ж	u.	*	¥	

· 5.5

ARRIVA

f = 1

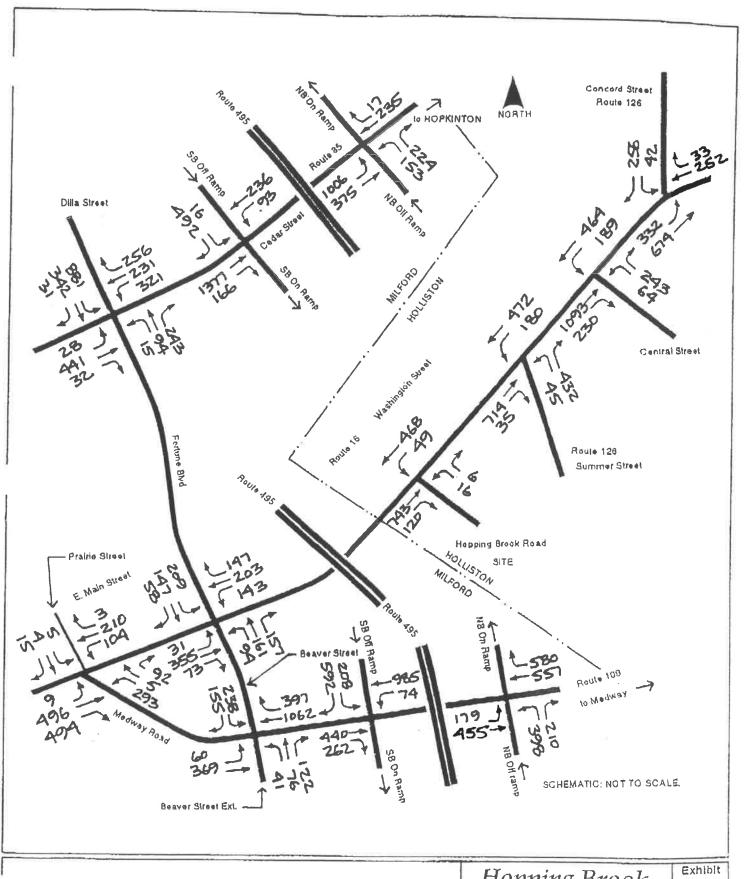
					Morning	ō			
É	20	2003 Existing	ing	200	2008 No Build	plin	2	2008 Build	<u>p</u>
	LOS	Delay ²	V/C³	10S1	Delay ² V/C ³	V/C³	LOS	Delay ²	V/C ³
Noute of at Route 495 northbound Kamps	ound Ka	sdu							
Overall	щ	*	!		•				
Route 85 EB LT	u	17	0.79						
Route 495 NB LT	ட	×	*			SFF STGNALTZEN	175		
Route 495 NB RT	ω	13	0.35						
Route 85 at Route 495 southbound Ramps	ound Rai	sdw							
Overall	∢	٠	i	∢	œ	:	Ĺ	26	1
Route 85 WB LT	U	16	0.23	U	21	0.33	، ر	3 5	25
Route 495 SB LT	u.	119	0.35	u	290	0.70) п	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.0
Route 495 SB RT	O	17	0.64	Ų	24	0.78	, u.	82	1.09
Route 16 at Hopping Brook Road	þ								
Overall	٧	-	:	4	1	ŧ	Ŀ.	358	
Route 16 WB LT/TH	∢	7	0.07	¥	7	90.0	· u	102	0.95
Hopping Brook Rd LT	۵	32	0.11	ш	43	0.15	Ŀ) - *#) }
Hopping Brook Rd RT	83	14	0.02	U	16	0.02	۵	28	0.22
Route 16 at Route 126 South									
Overall	۵	23	{	¥£.	4	1	L	109	i
Route 16 WB LT/TH	€	S	0.22	<<		0.28	- ∢	, a	, ני מר מ
Route 126 NB LT	ш.	83	0.52	ш.	203	0.90	(u	» *	62.0
Route 126 NB RT	և	101	1.08	ш	249	1.46	. u.	270	1.52
Route 16 at Central Street									
Overall	ш,	109	;	li,	*	ŀ	ų.	¥	
Route 16 EB LT	U	17	0.38	U	23	0.53	۔ ر	74	, ů
Central St NB LT/RT	Ŀ	803	2.61	i La.	*) } *	ט נ	t, x	f. *

* 1	94	10	_

		, .			- 2					
	07	2003 EXISTING	Ing	2008	S No Build		7	2008 Build	0	
	102	Delay	N/C	108	Delay	NC.	108	Delay	V/C²	
Route 85 at Dilla/Fortune										
Overall	U	25	1	U	32	1	۵	40	6 8	•
Route 85 EB LT	۵	52	0.55	w	75	0.72	ш	77	0.76	
Route 85 EB TH/RT	U	56	0.58	U	30	0.64	٥	38	0.79	
Route 85 WB LT	U	32	0.60	۵	40	0.76	O	34	0.59	
Route 85 WB TH	ပ	32	0.83	۵	47	9.0	Ω	49	0.93	
Route 85 WB RT	¥	6	08.0	60	10	0.92	U	23	0.93	
Fortune NB LT/TH	Ų	29	0.74	۵	38	0.87	۵	40	0.89	
Fortune NB RT	K	4	0.51	∢	9	0.63	U	28	0.95	
Dilla SB LTR	Q	39	0.85	۵	20	0.92	ш	2	96.0	
Route 85 at Route 495 northbound Ramps	d Ramps									
Overall	•	See		u.	86	ı	щ	95	:	
8		unsignalized	pez	Ç	22	0.88	ш,	121	1,19	
EB				¥	4	0.18	∢	2	0.16	
WB				Li.	234	1.65	u.	121	1.17	
Route 85 WB RT				U	23	0.05	B	19	0,04	
Route 495 NB LT				U	¥	9.0	ᄕ	86	0.94	
Route 495 NB RT				∢	9	0.41	∢	00	0.52	
Danie 100 at Boards Ctroot / Boards Choose	Stroop a	Extension	2							
מיייים של הכמעה היו הכול הכמעה	יו סחכר			L	ć		ı	507		
HULL 100 EB LT TH) u	9 0	1 2	L U	3 5	1 .	L U	7.00		
Route 109 WR TH	ט (2 00	3 7	. ر	133 34	77.7	L (34	÷ €	
Route 109 WB RT) ∢	2	0.46) ∢	3 2	0.50	> ∢	<u>,</u> m	3 7	
NB	v	29	0.14	۵	37	0.15	۵	33	0,16	
NB	O	30	0.28	۵	38	0.31	۵	45	0.34	
NB	ш	9	1.00	LL,	113	1.16	u.	150	1.28	
SB	ш	73	1.02	u,	130	1.20	LL	171	1.36	
Beaver St SB RT	∢	ιΛ	0.38	∢	2	0.42	∢	7	0.38	
Route 109 at Route 495 southbound Ramps	nd Ramp	Ā.								
Overall	Ç	20	1	U	33	ı	U	8	ı	
Route 109 EB LT	U	24	0.90	۵	36	0.95	٩	36	0.95	
Route 109 WB TH	U	¥	0.80	12.	81	0.93	u.	81	0.93	
Route 109 WB TH	£Δ	12	0.38	ď	14	0.43	ďΩ	14	0.44	
Route 495 SB LT	£О	14	0.24	CC)	61	0.25	ණ	19	0.25	
Route 495 SB RT	U	23	0.87	۵	45	0.97	۵	48	0.98	

	ı	la i	ı	1										1																							
	hiid	Delay ² V/C ³		ļ	0.41			0.37	0.37	0.53	0.85	1.16		1	1.07	0.24	1.03	0.08	0.59	0.69			0.67	0.95	0,68	0.10	0.18	0.27	0.64	0.41		1	0.48	0.64	0.95	0.15	0.95
				96	89	125	137	32	.~	, 2	26	119		26	69	7	112	21	64	7		20	9 5	32	5	21	22	Ŋ	56	4		27	20	42	28	10	34
0		1007		LL.	L	·	. L£	. U	<	(มม	U	ш.		m	m	¥	u_	U	ш	4		Œ) of	Ų	<	U	U	∢	U	∢		U	80	۵	U	ß	U
g g	Build	² V/C ³		ŀ	0.41	1.06	1.06	0.39	0.39	0.52	9,0	1.04		1	1.05	0.24	1.03	0.08	0.59	0.69		1	0.67	0.95	0.53	0.10	0.17	0.26	0.62	0.42		1	0.52	0.74	0.85	0.15	0.91
Amming	2008 No Build	Delay ²		71	88	86	114	35	4	2	32	62		51	61	2	112	21	64	7		21	19	32	2	21	21	S	56	4		21	19	25	19	6	28
	20	LOS		ш	ш	u_	ш	۵	4	ш	U	ŧц		۵	ш	∢	١Ł	U	ш	∢		U	- 20	U	٧	O	Ų	4	ပ	¥		U	83	۵	Ø	4	U
	ting	7 VC		1	0.32	26.0	0.97	0.35	0.36	0.40	0.74	0.94					zed					ı	0.65	0.95	0.52	0.07	0.13	0.21	0.55	0.39		1	0.50	0.58	0.77	0.13	0.76
O	\simeq 1	Delay		45	23	28	81	28	4	49	17	48	sdı				see unsignalized					21	19	33	2	17	18	S	24	4	mps	17	18	28	16	6	19
	25	LOS		Δ	Ω	ш	ഥ	ပ	∢	Δ	89	۵	ınd Ran				see					v	ď	U	4	മ	ф	¥	Ų	∢	und Ra	€	<u>aa</u>	U	m	∢	æ
			une	Overall	35 EB LT	В ТН/КТ	5 WB LT	S WB TH	5 WB RT	B LT/TH	e NB RT	SB LTR	Route 85 at Route 495 northbound Ramps	Overall	5 EB LT	5 EB TH	WB TH	WB RT	5 NB LT	S NB RT	treet	Overail	B LT/TH	WB TH	WB RT	. NB LT	. NB TH	NB RT	t SB LT	t SB RT	Route 109 at Route 495 southbound Ramps			WB TH		5 SB LT	S SB RT
			Route 85 at Dilla/Fortune		Route 8	Route 85 E	Route 8	Route 8.	Route 85	Fortune NB LT/TH	Fortune NB	Dilla SB	Route 495		Route 8	Route 8.	Route 85	Route 85 WB RT	Route 49	Route 49!	Route 109 at Beaver Street	•	ute 109 El	Route 109 WB TH	Route 109	aver St Ext	iver St Ext	Beaver St Ext. NB RT	Beaver S	Beaver St SB	Route 49	~	Route 109 EB	Route 109 WB	Route 109 WB	Route 495 SB	Route 495
			te 85 at			Œ.							te 85 at }								e 109 at		8			, ge	Bea	Bea			e 109 at						
			Roc										Rout								Rout										Rout						

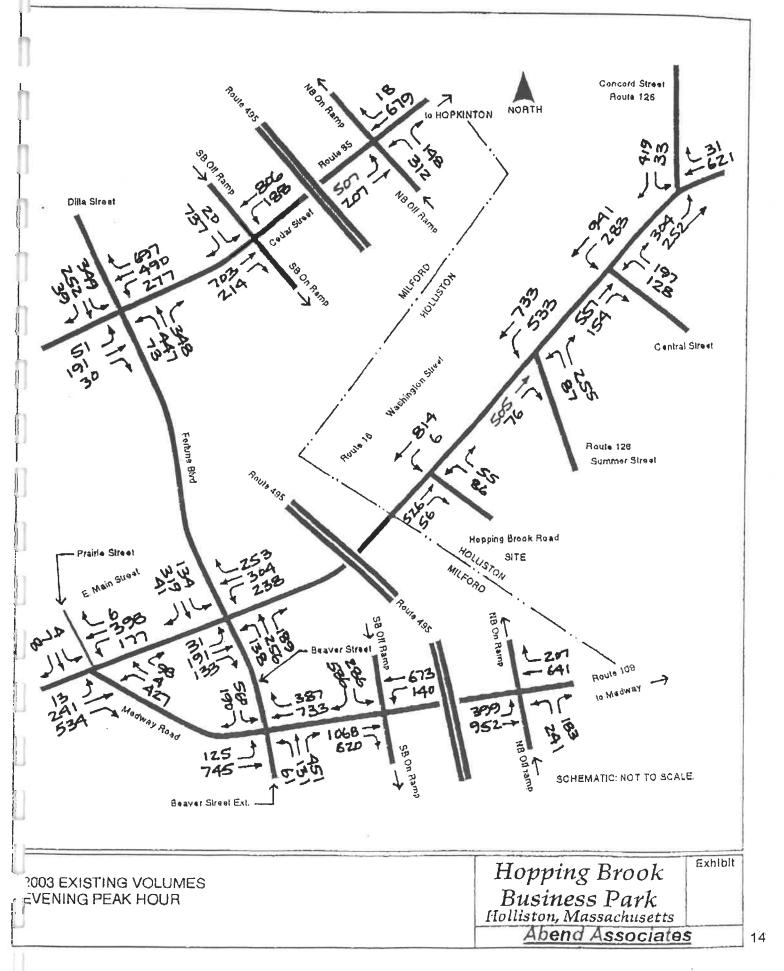
Morning

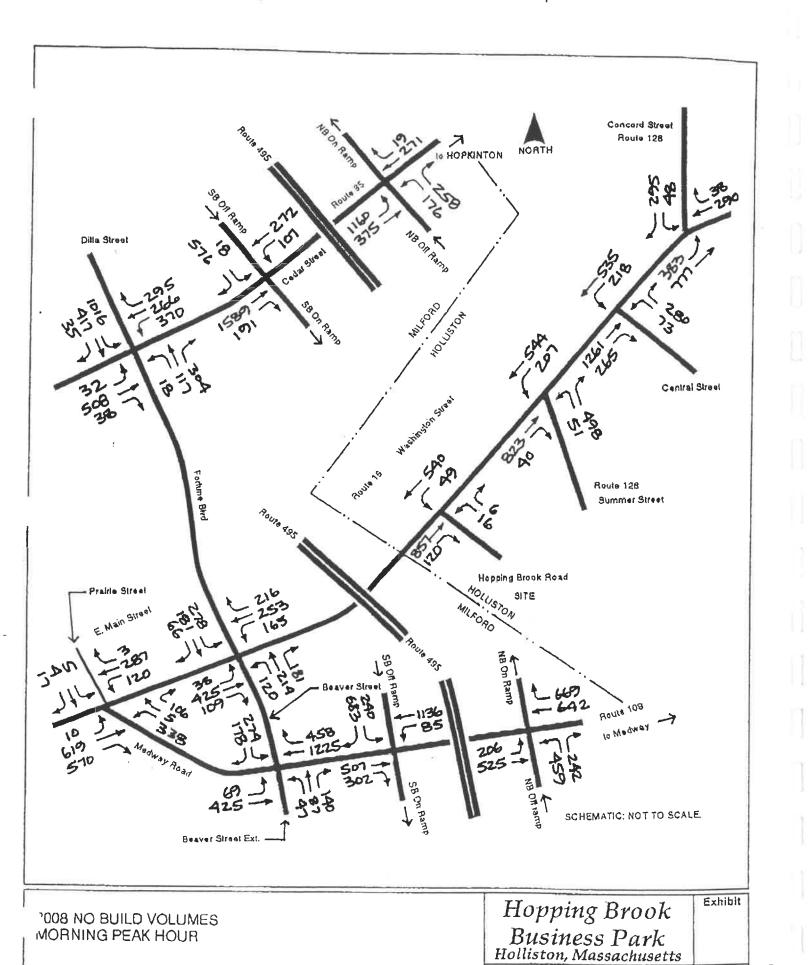

12733053	82	:	Π	Ţ

	20	2003 Existing	ng	200	2008 No Build	pild	2	2008 Build	P	
	1051	Delay ²	V/C ³	10S	Delay ²	V/C ³	<u> 108</u>	Delay ²	V/C	
Route 109 at Route 495 northbound Ramps	and Ra	mps								
Overali	Ф	12	1	æ	13	1	60	14	9 8	
Route 109 EB LT	Ω	13	09.0	U	22	0.65	O	25	69.0	
Route 109 EB TH	∢	œ	0.29	∢	7	0.29	٧	00	0.30	
Route 109 WB TH	6 0	18	99.0	60	18	0.71	ഥ	18	0.71	
Route 495 NB LT	Ω	14	0.29	4	15	0.40	60	16	0.59	
Route 495 NB RT	∀	m	0.28	∢	m	0.35	¥	ᡢ	0.35	
Route 16 at Route 109										
Overall	Q	48	3	ш	9	I	ш	2	;	1
Route 16/Route 109 EB LT/TH	٥	47	0.89	U	22	0.75	U	56	0.83	
Route 16/Route 109 EB RT	¥	4	0.72	4	7	69.0	4	7	0.68	
Route 16/Route 109 WB LT	۵	41	0.70	6 2	14	95.0	8	14	0.56	
Route 16/Route 109 WB TH/RT	U	28	0.44	6 2	14	0.43	60	14	0.43	
Route 109 NB LT/TH	u_	153	1.33	ய	333	5.69	L	328	2.74	
Route 109 NB RT	80	13	0.59	٧	00	0.52	∀	∞	0.52	
Prairies St SB LT/TH/RT	۵	44	0.48	60	1,5	0.15	20	15	0.15	
Route 16 at Fortune Blvd/Beaver Street										
Overall	V	9	1	A	10	!	U	27	1	
Route 16 EB LT/TH/RT	< <	5	0.36	. ca	12	0.53	U	22	0.69	
Route 16 WB LT/TH	<	· &	0.42	603	14	0.62	U	25	1.01	
Route 16 WB RT	4	2	0.23	∢	н	0.22	≪	_	0.23	
Beaver St NB LT/TH/RT	¥	22	0.40	α	11	0.65	Ω	4	0.92	
Fortune Blvd SB LT	¥	SO	0.46	4	σ	0.59	۵	88	0.93	
Fortune Blvd SB TH	¥	œ	0.46	4	7	0.19	≪	7	0.16	
Fortune Blvd SB RT	∢	8	0.10	∢	7	80.0	∢	2	0.07	
Route 16 at Route 126 North										
Overall	A	7	I	4	7	ł	60	10	1	
Route 16/Route 126 EB LT	∢	2	0.56	∢	ហ	0.62	ď	13	0.70	
Route 16/Route 126 EB TH	∢	9	0.63	∢	9	0.67	4	Ø	99.0	
Route 16 WB TH/RT	80	13	0.50	60	15	0.65	U	20	0.75	
Route 126 SB LT	80	16	0.13	ω	18	0.17	ďΩ	18	0.17	
Route 126 SB RT	4	٣	0.52	4	ന	0.59	*	m	0.64	

2202272	ID:781
---------	--------

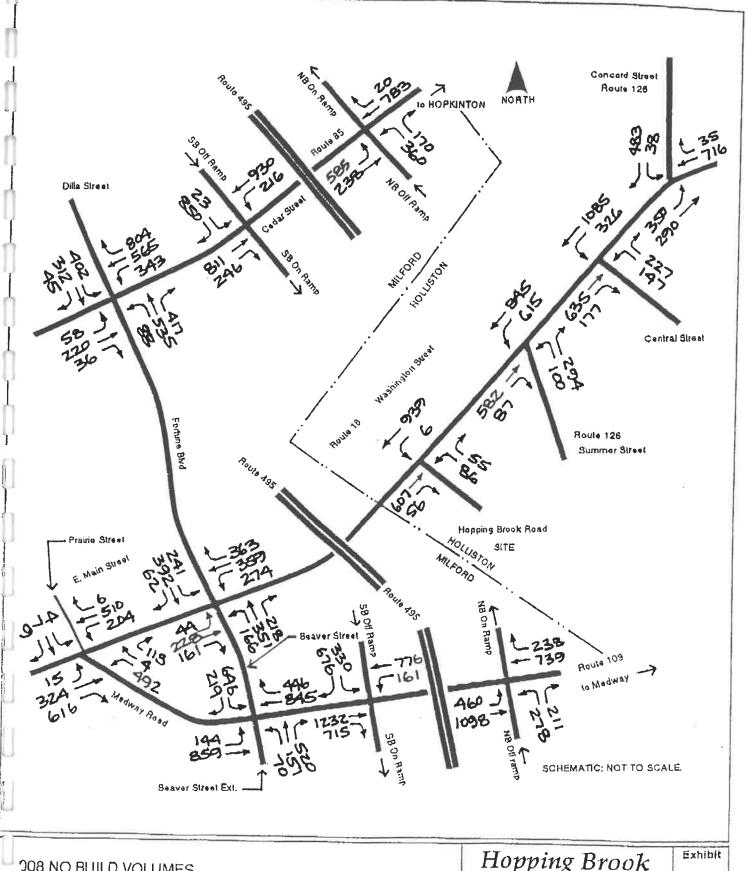
CF	НТ	HPPOIC	HREND

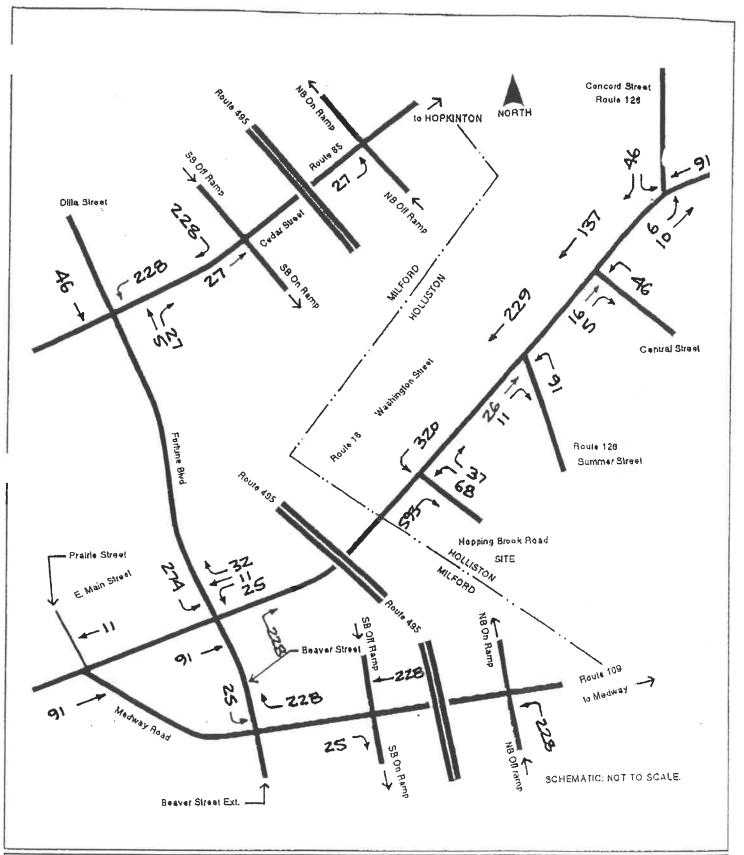

					Evening				
	20	2003 Existing	cing	200	2008 No Build	rild	2	2008 Build	p
	10S ¹	Delay ²	Z V/C3	LOS	Delay ²	ر 2/\ر	1507	Delay ²	V/C3
Route 109 at Route 495 northbound	d Ramps	S							
Overali	80	15	1	œ	61	:	αά	19	;
Route 109 EB LT	6 2	17	0.88	U	32	06.0	U	32	0.90
Route 109 EB TH	œ	11	0.48	∢	0 0	0.53	∢	œ	0.53
Route 109 WB TH	U	21	0.75	U	30	0.88	Ų	8	0.88
Route 495 NB LT	80	17	0.24	В	19	0.30	മ	19	0.32
Route 495 NB RT	∢	7	0.34	œ	17	0.43	മ	12	0.43
Route 16 at Route 109									
Overall	u.	82	ł	ш.	91	1	ш	84	1
Route 16/Route 109 EB LT/TH	U	35	0.56	U	22	0.54	83	19	0.52
Route 16/Route 109 EB RT	∢	4	0.76	¥	ო	0.75	∢	7	0.71
Route 16/Route 109 WB LT	۵	4	0.83	S	24	0.74	80	17	0.64
Route 16/Route 109 WB TH/RT	Ω	88	0.86	Ų	22	0.82	U	23	0.85
Route 109 NB LT/TH	щ	294	2.07	LL	368	3,41	ட	326	3.32
Route 109 NB RT	æ	17	0.63	∢	6	0.55	¥	œ	0.54
Prairies St SB LT/TH/RT	U	53	0.15	U	21	0.12	g	18	60.0
Route 16 at Fortune Boulevard/Beaver Street	aver Stı	reet							
Overail	∢	7	1	80	13	ŧ	U	34	1
Route 16 EB LT/TH/RT	∢	4	0.27	4	10	0.40	മ	16	0.38
Route 16 WB LT/TH	⋖	6	0.58	U	22	06.0	۵	46	1.25
Route 16 WB RT	∢	7	0.33	⋖	7	0.37	¥	۵	0.63
Beaver St NB LT/TH/RT	₹	7	0.61	œ	17	0.81	Ω	20	0.93
Fortune Blvd SB LT	ď	ത	0.57	മ	13	0.67	ш.	22	0.94
Fortune Blvd SB TH	n/a	n/a	n/a	4	10	0.40	v	25	0.47
Fortune Blvd SB RT	4	4	0.07	∢	m	0.07	ω	12	90.0
Route 16 at Route 126 North									
	22	13	:	æ	20	1	Ų	22	1
Route 16/Route 126 EB LT	60	61	0.70	Ų	32	0.80	۵	36	0.84
	A	4	0.20	∢	4	0.22	A	4	0.29
Route 16 WB TH/RT	U	20	0.85	ပ	27	16.0	U	31	0.92
Route 126 SB LT	ပ	22	0.13	U	30	0.15	Ų	31	0.16
Route 126 SB RT	¥	ব	0.74	∢	œ	0.85	∢	œ	0.85



003 EXISTING VOLUMES MORNING PEAK HOUR

Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

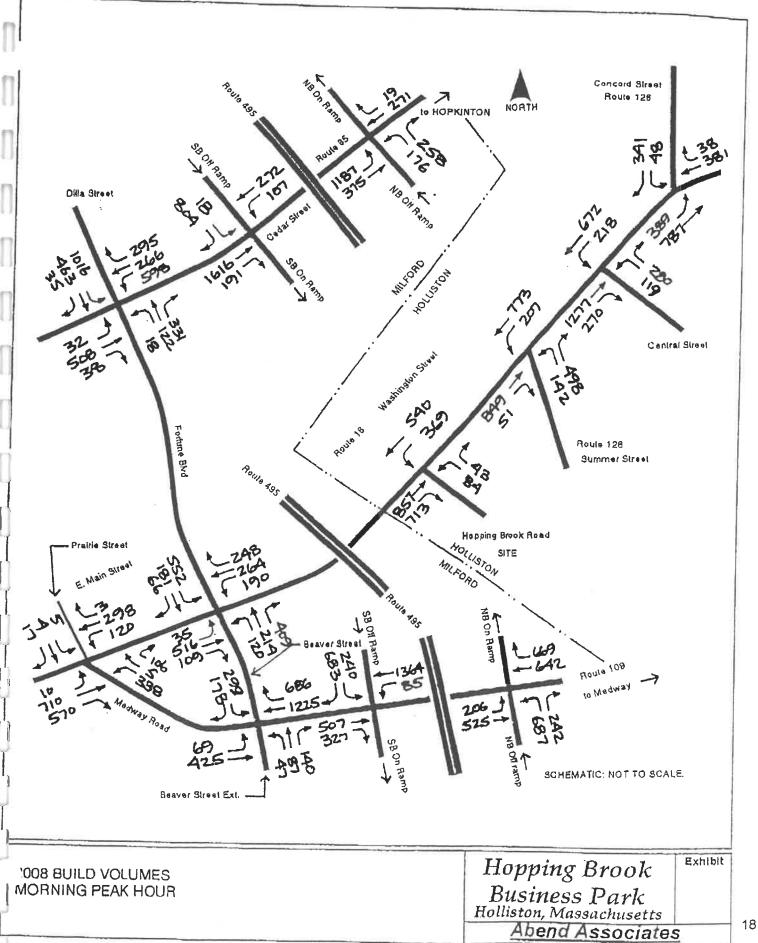

13

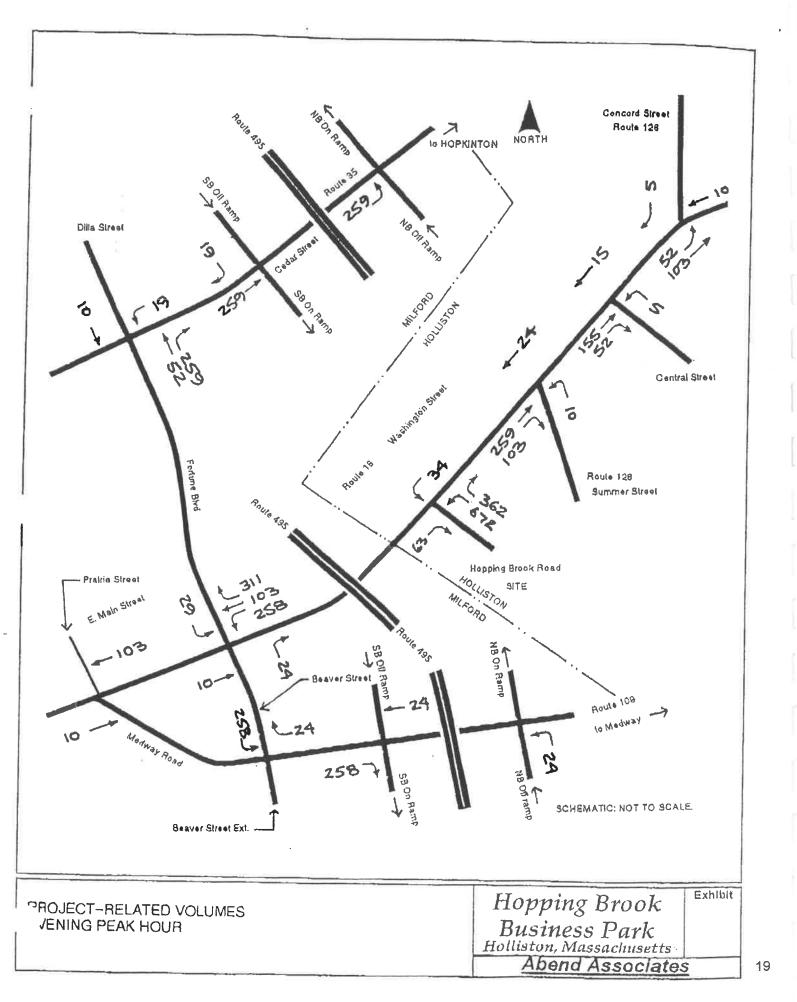

15

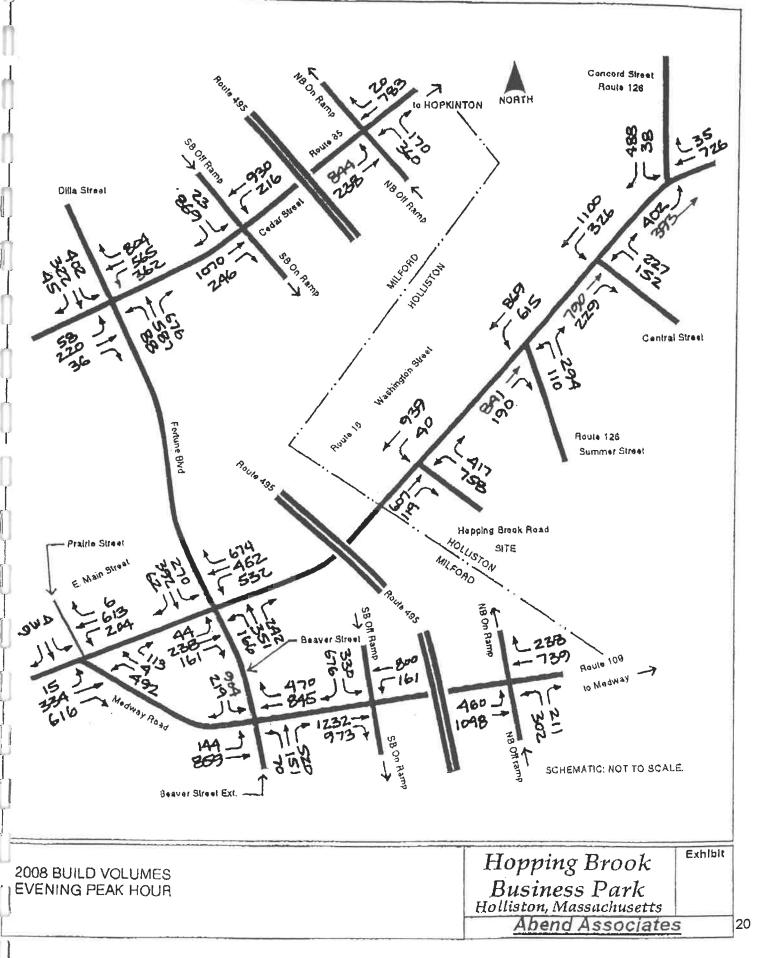
Abend Associates

008 NO BUILD VOLUMES EVENING PEAK HOUR Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

16




ROJECT-RELATED VOLUMES MORNING PEAK HOUR


Hopping Brook
Business Park
Holliston, Massachusetts
Abend Associates

Exhibit

17

Attachment B

MOBILE6 Input Parameters and Assumptions

MOBILE6 will be used to estimate vehicle emissions using the following assumptions: (Note: All inputs are based on those given in the 2/12/2003 memo from DEP.)

* Generic Input File for Summer/Winter Ozone and CO Build/No-Build Analyses for Calendar Year 2000 + Filename = MA_O3CO.inp * File prepared by Craig Woleader, MADEP (617)-348-4046 *
************ Header Section ************************************
POLLUTANTS : HC CO NOX SPREADSHEET : REPORT FILE : MAO3CO.txt REPLACE
RUN DATA
********* Run Section #1 **********
> ************************************
* Pollutant output format EXPRESS HC AS VOC:
* Mass. specific user inputs – require external data file REG DIST : MA_REG.D I/M DESC FILE : MA_ENHIM.D * Note: MA_ENHIM.D requires MA_CUTPT.D to run
STAGE II REFUELING: 91 3 84. 84.
* Inputs for LEV II 94+ LDG IMP : MA_LEV2.D T2 EXH PHASE-IN : LEV2EXH.D T2 EVAP PHASE-IN : LEV2EVAP.D T2 CERT : LEV2CERT.D
* Meteorological inputs MIN/MAX TEMP : 35. 45.
* Fuel Inputs FUEL RVP : 13.5 FUEL PROGRAM : 2 N
******** Scenario Section #1 ***********************************
******** Winter Freeway *********
SCENARIO RECORD : MA Freeway 2.71 mph (= minimum allowed freeway speed) CALENDAR YEAR : 2000 EVALUATION MONTH : 1 AVERAGE SPEED : 2.71 Freeway 92.0.0.0.0.8.0

CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 3.0 Freeway 92.0 0.0 0.0 8.0 SCENARIO RECORD : MA Freeway 4.0 mph : 2000 CALENDAR YEAR **EVALUATION MONTH: 1** AVERAGE SPEED : 4.0 Freeway 92.0 0.0 0.0 8.0 SCENARIO RECORD : MA Freeway 60.7 mph (= maximum allowed freeway speed) CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 60.7 Freeway 92.0 0.0 0.0 8.0 ********** Winter Arterial SCENARIO RECORD : MA Arterial 2.5 mph (= minimum allowed arterial speed) CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 2.5 Arterial 0.0 100.0 0.0 0.0 SCENARIO RECORD : MA Arterial 3.0 mph CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 3.0 Arterial 0.0 100.0 0.0 0.0 SCENARIO RECORD : MA Arterial 4.0 mph CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 4.0 Arterial 0.0 100.0 0.0 0.0 SCENARIO RECORD : MA Arterial 65.0 mph (= maximum allowed arterial speed) CALENDAR YEAR : 2000 **EVALUATION MONTH: 1** AVERAGE SPEED : 65.0 Arterial 0.0 100.0 0.0 0.0 ********* End of This Run **END OF RUN** Run Section #2 **********

SCENARIO RECORD : MA Freeway 3.0 mph

```
* Pollutant output format
 EXPRESS HC AS VOC:
  * Mass. specific user inputs - require external data file
 REG DIST
              : MA REG.D
 I/M DESC FILE : MA_ENHIM.D
 * Note: MA_ENHIM.D requires MA_CUTPT.D to run
 STAGE II REFUELING:
 91 3 84, 84.
 * Inputs for LEV II
 94+ LDG IMP
                : MA_LEV2.D
 T2 EXH PHASE-IN : LEV2EXH.D
 T2 EVAP PHASE-IN : LEV2EVAP.D
 T2 CERT
             : LEV2CERT.D
 * Meteorological inputs
 MIN/MAX TEMP
 * Fuel Inputs
 FUEL RVP.
              : 8.6
 FUEL PROGRAM
                  :2N
                  Scenario Section #2
                   Summer Freeway
SCENARIO RECORD : MA Freeway 2.71 mph (= minimum allowed freeway speed)
CALENDAR YEAR
EVALUATION MONTH: 7
AVERAGE SPEED : 2.71 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD : MA Freeway 3.0 mph
CALENDAR YEAR
                : 2000
EVALUATION MONTH: 7
AVERAGE SPEED : 3.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD : MA Freeway 4.0 mph
CALENDAR YEAR
EVALUATION MONTH: 7
AVERAGE SPEED : 4.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD : MA Freeway 60.7 mph (= maximum allowed freeway speed)
```

CALENDAR YEAR

: 2000

EVALUATION MONTH: 7

AVERAGE SPEED : 60.7 Freeway 92.0 0.0 0.0 8.0

******* Summer Arterial **********

SCENARIO RECORD : MA Arterial 2.5 mph (= minimum allowed arterial speed)

CALENDAR YEAR : 2000 EVALUATION MONTH : 7

AVERAGE SPEED : 2.5 Arterial 0.0 100.0 0.0 0.0

SCENARIO RECORD : MA Arterial 3.0 mph

CALENDAR YEAR : 2000 EVALUATION MONTH : 7

AVERAGE SPEED : 3.0 Arterial 0.0 100.0 0.0 0.0

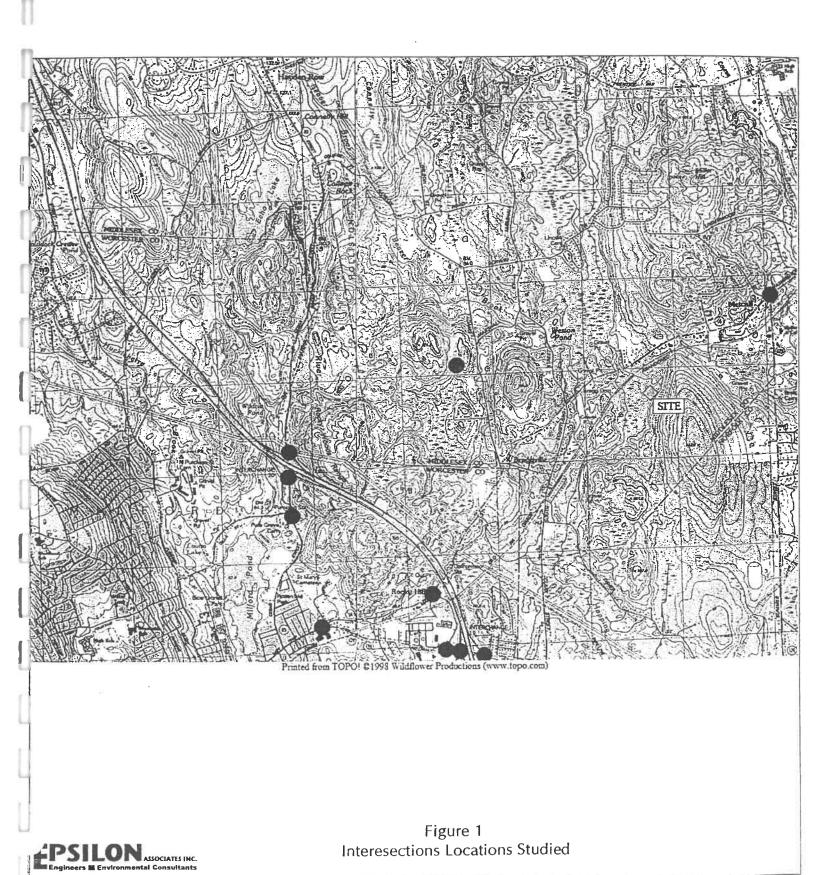
SCENARIO RECORD : MA Arterial 4.0 mph

CALENDAR YEAR : 2000 EVALUATION MONTH : 7

AVERAGE SPEED : 4.0 Arterial 0.0 100.0 0.0 0.0

*

SCENARIO RECORD : MA Arterial 65.0 mph (= maximum allowed arterial speed)


CALENDAR YEAR : 2000 EVALUATION MONTH : 7

AVERAGE SPEED : 65.0 Arterial 0.0 100.0 0.0 0.0

****** End of This Run **********

END OF RUN

FIGURES


```
* MOBILE6.2.01 (31-Oct-2002)
 Input file: H2003A.INP (file 1, run 1).
*******
* ****************
  * Reading Registration Distributions from the following external
 data file: MA REG.D
  M 49 Warning:
                         MYR sum not = 1. (will normalize)
               0.998
  M 49 Warning:
                1.00
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                         MYR sum not = 1. (will normalize)
                1.00
  M 49 Warning:
                1.00
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                         MYR sum not = 1. (will normalize)
                1.00
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.998
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                1.00
                         MYR sum not = 1. (will normalize)
* Reading I/M program description records from the following external
* data file: MA_ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
* Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 lb GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 lb GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
* OBD + Gas Cap Evap I/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
* OBD Evap I/M program for MY 2004+
 M601 Comment:
              User has enabled STAGE II REFUELING.
* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA_LEV2.D
 Reading User Supplied Tier2 Exhaust bin phase-in fractions
     Data read from file: LEV2EXH.D
 Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
    Data read from file: LEV2CERT.D
 M616 Comment:
              User has supplied post-1999 sulfur levels.
```

```
* MA Freeway 10.0 mph
    * File 1, Run 1, Scenario 1:
    M582 Warning:
                       The user supplied freeway average speed of 10.0
                       will be used for all hours of the day. 100% of VMT
                       has been assigned to a fixed combination of freeways
                       and freeway ramps for all hours of the day and all
                         vehicle types.
      M112 Warning:
Wintertime Reformulated Gasoline Rules Apply
This rebicles were read from the following the control of the contr
    *** I/M credits for Tech1&2 vehicles were read from the following external
          data file: TECH12.D
      M 48 Warning:
                          there are no sales for vehicle class HDGV8b
     LEV phase-in data read from file MA_LEV2.D
                                   Calendar Year: 2003
                                               Month: Jan.
                                           Altitude: Low
                          Minimum Temperature: 35.0 (F)
                          Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
                          Fuel Sulfur Content: 120. ppm
                          Exhaust I/M Program: Yes
                              Evap I/M Program: Yes
                                     ATP Program: No
                              Reformulated Gas: Yes
              Vehicle Type:
                                          LDGV
                                                      LDGT12
                                                                       LDGT34
                                                                                                           HDGV LDDV
                                                                                            LDGT
                                                                                                                                           LDDT
                                                                                                                                                               HDDV
                                                                                                                                                                                MC
  All Veh
                          GVWR:
                                                          <6000
                                                                            >6000
                                                                                        (All)
                                        -----
                                                                           -----
                                                                                                           . . . . . .
                                                                                                                           -----
                                                                                                                                            -----
       VMT Distribution:
                                      0.4307
                                                         0.3221
                                                                         0.1205
                                                                                                           0.0340
                                                                                                                           0.0005
                                                                                                                                            0.0018
                                                                                                                                                            0.0865
                                                                                                                                                                         0.0039
  1.0000
                .....
   Composite Emission Factors (g/mi):
          Composite VOC : 1.565 1.288
                                                                        1.809 1.430
                                                                                                          3.449
                                                                                                                            1.161
                                                                                                                                             1.040
                                                                                                                                                             1.204
                                                                                                                                                                              6.40
         Composite CO : 24.40 26.88
                                                                           25.16 26.41 37.54 3.020
                                                                                                                                        2.056
                                                                                                                                                             7.514
                                                                                                                                                                        33.63
  24.261
         Composite NOX :
                                         1.221
                                                           1.368
                                                                                        1.478
                                                                        1.773
                                                                                                             4.000
                                                                                                                            1.521
                                                                                                                                            1.618
                                                                                                                                                           17.958
                                                                                                                                                                              1.37
  2.879
    * MA Freeway 20.0 mph
  * File 1, Run 1, Scenario 2.
  M582 Warning:
                     The user supplied freeway average speed of 20.0
                     will be used for all hours of the day. 100% of VMT
                    has been assigned to a fixed combination of freeways
                    and freeway ramps for all hours of the day and all
                      vehicle types.
    M112 Warning:
                         Wintertime Reformulated Gasoline Rules Apply
    M 48 Warning:
                       there are no sales for vehicle class HDGV8b
  LEV phase-in data read from file MA_LEV2.D
                             Calendar Year: 2003
Month: Jan.
                       Altitude: Low
Minimum Temperature: 35.0 (F)
                       Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
                       Fuel Sulfur Content: 120. ppm
                       Exhaust I/M Program: Yes
                            Evap I/M Program: Yes
                                  ATP Program: No
                            Reformulated Gas: Yes
           Vehicle Type:
                                         LDGV LDGT12
                                                                      LDGT34
                                                                                           LDGT
                                                                                                            HDGV
                                                                                                                            MODA
                                                                                                                                            LDDT
                                                                                                                                                             HDDV
                                                                                                                                                                                MC
All Veh
                        GVWR:
                                                        <6000
                                                                        >6000
                                                                                          (All)
```

```
-----
                  -----
____
  VMT Distribution: 0.4307 0.3221 0.1205
                                                0.0340 0.0005 0.0018
                                                                        0.0865
                                                                                0.0039
Composite Emission Factors (g/mi):
                                                         0.887 0.756 0.812
                                                                                   4.71
                          0.920
                                  1.303
                                         1.024
                                                 1.882
   Composite VOC : 1.110
1.086
   Composite CO : 21.43 23.59 21.67 23.07 20.17 2.056 1.312 4.213 19.44
20.569
                                         1.195 4.341 1.200 1.268 14.825
   Composite NOX : 0.993 1.101
                                 1.448
2.395
* MA Freeway 25.0 mph
* File 1, Run 1, Scenario 3.
 M582 Warning:
         The user supplied freeway average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to a fixed combination of freeways
         and freeway ramps for all hours of the day and all
          vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
                     Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. gra
                             75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                 ATP Program: No
             Reformulated Gas: Yes
                   LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV
                                                                                    MC
     Vehicle Type:
All Veh
                           <6000
                                   >6000
                                           (All)
           GVWR:
                                                   -----
                  .....
                                                                          0.0865
                                                                                  0.0039
                                                                  0.0018
                                                           0.0005
                                                   0.0340
  VMT Distribution: 0.4307 0.3221
                                   0.1205
 Composite Emission Factors (g/mi):
    Composite VOC: 1.046 0.873 1.239 0.972 1.507 0.798
                                                                   0.663 0.685
                                                                                   4.39
1.010
    Composite CO : 21.20 23.33 21.38 22.80 15.86 1.801 1.115 3.340 16.75
20.116
                                                    4.518 1.113
                                                                   1.174 13.981
                                          1.211
                   1.007 1.117 1.462
    Composite NOX :
2.341
 * MA Freeway 30.0 mph
 * File 1, Run 1, Scenario 4
 M582 Warning:
          The user supplied freeway average speed of 30.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to a fixed combination of freeways
          and freeway ramps for all hours of the day and all
           vehicle types.
  M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
```

LEV phase-in data read from file MA_LEV2.D

Calendar Year: 2003

Month: Jan. Altitude: Low Minimum Temperature: 35.0 (F) Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 120. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: No Reformulated Gas: Yes LDGV LDGT12 Vehicle Type: LDGT34 LDGT HDGV LDDV LDDT HDDV MC GVWR: <6000 >6000 (All) ------------------------------VMT Distribution: 0.4307 0.3221 0.1205 0.0340 0.0005 0.0018 0.0865 0.0039 Composite Emission Factors (g/mi): Composite VOC : 1.004 0.842 1.197 0.938 1.259 0.730 0.593 0.588 4.15 Composite CO : 21.05 21.18 22.61 13.13 1.632 23.15 0.985 2.761 14.83 Composite NOX : 1.016 1.127 1.472 1.221 4.700 1.066 1.123 13.520 1.58 * MA Arterial 10.0 mph * File 1, Run 1, Scenario 5. M583 Warning: The user supplied arterial average speed of 10.0 will be used for all hours of the day. 100% of VMT has been assigned to the arterial/collector roadway type for all hours of the day and all vehicle types. M112 Warning: Wintertime Reformulated Gasoline Rules Apply M 48 Warning: there are no sales for vehicle class HDGV8b LEV phase-in data read from file MA LEV2.D Calendar Year: 2003 Month: Jan. Altitude: Low Minimum Temperature: 35.0 (F) Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 120. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: No Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV HDDA MC עממנו LDDT

ll Veh	**								TIDDV	
	GVWR:		<6000	>6000	(All)					
VMT Dist	ribution:	0.4307	0.3221	0.1205		0.0340	0.0005	0.0018	0.0865	0.0039
	Emission Fa	ctors (g/m	i):							
omposite	Emission Fa	_		1.873	1.473	3.506	1 188	1 068	1 743	5 40
omposite Compos		ctors (g/m: 1.584	i): 1.323	1.873	1.473	3.506	1.188	1.068	1.243	6.40
omposite Compos 589	ite VOC :	1.584	1.323							
Composite Compos 589 Compos	ite VOC :	_		1.873	1.473	3.506 38.59	1.188	1.068	1.243 7.742	6.40 33.55
Compos 589 Compos	ite VOC :	1.584	1.323							

All Veh

1.0000

0.959

19.819

2.316

^{*} MA Arterial 20.0 mph

^{*} File 1, Run 1, Scenario 6.

```
M583 Warning:
          The user supplied arterial average speed of 20.0
           will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
           type for all hours of the day and all vehicle types.
 M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                 Calendar Year: 2003
Month: Jan.
                     Altitude: Low
            Minimum Temperature: 35.0 (F)
            Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
            Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                  ATP Program: No
               Reformulated Gas: Yes
      Vehicle Type:
                      LDGV
                            LDGT12
                                      LDGT34
                                                LDGT
                                                       HDGV
                                                                 LDDV LDDT
                                                                                   VOOH
                                                                                               MC
All Veh
             GVWR:
                              <6000
                                       >6000
                                                (All)
  VMT Distribution:
                              0.3221
                                                        0.0340
                                                                 0.0005
                                                                          0.0018
                                                                                   0.0865
                                                                                            0.0039
                   0.4307
                                       0.1205
1.0000
 Composite Emission Factors (g/mi):
    Composite VOC: 1.128
                               0.944
                                       1.345
                                               1.053
                                                         1.882
                                                                 0.891
                                                                          0.760
                                                                                   0.818
                                                                                             4.72
                                                                  2.058 1.313
    Composite CO :
                   20.89
                               23.13
                                       21.37
                                                22.65
                                                       20.15
                                                                                   4.219
                                                                                            19.48
20.152
                     1.101
                               1.230
                                        1.597
                                                 1.330
                                                          4.316
                                                                1.197
                                                                          1.265
                                                                                 12.667
                                                                                             1.43
    Composite NOX :
* MA Arterial 25.0 mph
* File 1, Run 1, Scenario 7.
M583 Warning:
          The user supplied arterial average speed of 25.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
 M112 Warning:
             Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
            there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA LEV2.D
                 Calendar Year: 2003
                       Month: Jan.
                     Altitude: Low
            Minimum Temperature: 35.0 (F)
            Maximum Temperature: 45.0 (F)
             Absolute Humidity:
                               75. grains/lb
            Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                  ATP Program: No
              Reformulated Gas: Yes
                                                                  LDDV
                                                                           LDDT
                                                                                    HDDV
                                                                                               MC
                                                        HDGV
                                                LDGT
     Vehicle Type:
                      LDGV
                            LDGT12
                                      LDGT34
All Veh
             GVWR:
                               <6000
                                       >6000
                                               (All)
                     _ _ _ _ _
                                                        ----
                                                                 0.0005
                                                                          0.0018
                                                                                  0.0865
                                                                                          0.0039
                                                        0.0340
 VMT Distribution:
                    0.4307
                             0.3221
                                      0.1205
1.0000
                   ______
```

```
Composite Emission Factors (g/mi):
    Composite VOC :
                 1.044
                           0.871
                                1.242
                                         0.972
                                                 1.506
                                                        0.799
                                                               0.664
                                                                     0.686
                                                                               4.40
1.009
    Composite CO :
                   20.31
                          22.49
                                 20.70
                                         22.00
                                                 15.81
                                                        1.799
                                                               1.114
                                                                       3.335
                                                                              16.78
19.381
    Composite NOX :
                   1.045
                           1.164
                                  1.516
                                          1.260
                                                 4.506
                                                        1.110
                                                               1.170
                                                                      11.818
                                                                               1.51
2.192
                -----
* MA Arterial 30.0 mph
* File 1, Run 1, Scenario 8.
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
              Calendar Year: 2003
                    Month: Jan.
                  Altitude:
                          Low
          Minimum Temperature: 35.0 (F)
          Maximum Temperature: 45.0 (F)
           Absolute Humidity:
                          75. grains/lb
          Fuel Sulfur Content: 120. ppm
          Exhaust I/M Program: Yes
            Evap I/M Program: Yes
ATP Program: No
            Reformulated Gas: Yes
     Vehicle Type:
                  LDGV
                        LDGT12
                                LDGT34
                                        LDGT
                                                HDGV
                                                        LDDV
                                                               LDDT
                                                                       HDDV
                                                                                MC
All Veh
          GVWR:
                         <6000
                                 >6000
                                        (All)
                 -----
                        -----
                                 -----
                                        -----
                                                       ----
  VMT Distribution: 0.4307 0.3221
                                0.1205
                                               0.0340
                                                       0.0005
                                                              0.0018
                                                                      0.0865
                                                                             0.0039
1.0000
       -----
Composite Emission Factors (g/mi):
   Composite VOC : 0.992
                          0.830 1.185
                                         0.927 1.259
                                                        0.730
                                                               0.593
                                                                      0.588
                                                                               4.15
0.949
   Composite CO :
                 20.11
                       22.25 20.43
                                        21.76 13.11
                                                       1.631
                                                               0.984
                                                                      2.758
                                                                              14.84
19.037
   Composite NOX :
                  1.007
                          1.120
                                1.463
                                         1.214
                                                 4.696
                                                       1.064
                                                             1.121
                                                                     11.372
2.123
 ***
* MOBILE6.2.01 (31-Oct-2002)
* Input file: H2003A.INP (file 1, run 2).
* *************
* **************** SUMMER ***********
* **************
* Reading Registration Distributions from the following external
* data file: MA REG.D
 M 49 Warning:
           0.998
                  MYR sum not = 1. (will normalize)
 M 49 Warning:
                   MYR sum not = 1. (will normalize)
            1.00
 M 49 Warning:
            1.00
                  MYR sum not = 1. (will normalize)
 M 49 Warning:
            1.00
                  MYR sum not = 1. (will normalize)
 M 49 Warning:
            1.00
                  MYR sum not = 1. (will normalize)
 M 49 Warning:
           0.991
                  MYR sum not = 1. (will normalize)
 M 49 Warning:
           0.991
                  MYR sum not = 1. (will normalize)
```

M 49 Warning:

```
0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
  M 49 Warning:
                         MYR sum not = 1. (will normalize)
               0.998
  M 49 Warning:
                         MYR sum not = 1. (will normalize)
                1.00
* Reading I/M program description records from the following external
* data file: MA ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
* Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 1b GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 lb GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
* OBD + Gas Cap Evap I/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
* OBD Evap I/M program for MY 2004+
  M601 Comment:
              User has enabled STAGE II REFUELING.
* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA_LEV2.D
  Reading User Supplied Tier2 Exhaust bin phase-in fractions
    Data read from file: LEV2EXH.D
 Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
    Data read from file: LEV2CERT.D
 M616 Comment:
              User has supplied post-1999 sulfur levels.
* MA Freeway 10.0 mph
* File 1, Run 2, Scenario 1.
M582 Warning:
           The user supplied freeway average speed of 10.0
           will be used for all hours of the day. 100% of VMT
           has been assigned to a fixed combination of freeways
           and freeway ramps for all hours of the day and all
            vehicle types.
*** I/M credits for Tech1&2 vehicles were read from the following external
   data file: TECH12.D
 M 48 Warning:
             there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
                  Calendar Year: 2003
                         Month: July
                       Altitude: Low
             Minimum Temperature:
                                 68.0 (F)
            Maximum Temperature: 94.0 (F)
              Absolute Humidity:
                                  75. grains/lb
             Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
               Evap I/M Program: Yes
```

ATP	Program:	No
Reformula	ted Gas:	Yes

All Ve	Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC
VII AG	GVWR:		<6000	>6000	(All)					
	•									
VMT 1.0000	Distribution:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040
Compo	osite Emission Fa	ctors (a/m	i):							
	Composite VOC :	1.450	1.147	1.523	1.250	3.020	1.137	1.040	1.154	6.59
	Composite CO :	14.90	14.02	13.74	13.94	33.27	3.003	2.047	7.065	37.70
	Composite NOX :	1.215	1.220	1.563	1.314	3.658	1.478	1.615	16.328	1.03

* MA Freeway 20.0 mph

M582 Warning:

The user supplied freeway average speed of 20.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D

Calendar Year: 2003

Month: July

Altitude: Low Minimum Temperature: 68.0 (F) Maximum Temperature: 94.0 (F)

Absolute Humidity: 75. grains/lb

Fuel Sulfur Content: 120. ppm

Exhaust I/M Program: Evap I/M Program: Yes ATP Program: No Reformulated Gas: Yes

		LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC
VWR:		<6000	>6000	(All)					
ion:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040
ion Fac	tors (q/m	i):							
DC :	1.033	0.799	1.068	0.873	1.769	0.870	0.756	0.779	4.92
· ·	12.54	12.21	11.79	12.09	17.88	2.047	1.306	3.962	20.77
ox :	0.925	0.961	1.252	1.041	3.970	1.166	1.266	13.280	1.08
i	ion: ion Fac	ion: 0.4215 ion Factors (g/mi) C: 1.033 D: 12.54 OX: 0.925	ion: 0.4215 0.3244 ion Factors (g/mi): C: 1.033 0.799 D: 12.54 12.21 OX: 0.925 0.961	ion: 0.4215 0.3244 0.1219 ion Factors (g/mi): 0C: 1.033 0.799 1.068 0: 12.54 12.21 11.79 0X: 0.925 0.961 1.252	ion: 0.4215 0.3244 0.1219 ion Factors (g/mi): 0C: 1.033 0.799 1.068 0.873 0: 12.54 12.21 11.79 12.09 0X: 0.925 0.961 1.252 1.041	ion: 0.4215 0.3244 0.1219 0.0350 ion Factors (g/mi): 0C: 1.033 0.799 1.068 0.873 1.769 0: 12.54 12.21 11.79 12.09 17.88 0X: 0.925 0.961 1.252 1.041 3.970	ion: 0.4215 0.3244 0.1219 0.0350 0.0005 ion Factors (g/mi): 0: 1.033 0.799 1.068 0.873 1.769 0.870 0: 12.54 12.21 11.79 12.09 17.88 2.047 0X: 0.925 0.961 1.252 1.041 3.970 1.166	ion: 0.4215 0.3244 0.1219 0.0350 0.0005 0.0018 ion Factors (g/mi): 0C: 1.033 0.799 1.068 0.873 1.769 0.870 0.756 0: 12.54 12.21 11.79 12.09 17.88 2.047 1.306 0X: 0.925 0.961 1.252 1.041 3.970 1.166 1.266	ion: 0.4215 0.3244 0.1219 0.0350 0.0005 0.0018 0.0908 ion Factors (g/mi): 0: 1.033 0.799 1.068 0.873 1.769 0.870 0.756 0.779 0: 12.54 12.21 11.79 12.09 17.88 2.047 1.306 3.962 0X: 0.925 0.961 1.252 1.041 3.970 1.166 1.266 13.280

M582 Warning:

The user supplied freeway average speed of 25.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

^{*} MA Freeway 25.0 mph

^{*} File 1, Run 2, Scenario 3.

```
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
                     Month:
                            July
                   Altitude:
                            Low
           Minimum Temperature:
                            68.0 (F)
           Maximum Temperature: 94.0 (F)
            Absolute Humidity: 75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program:
                            Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                         LDDV
                                                                 LDDT
                                                                         HDDV
     Vehicle Type:
                   LDGV
                         LDGT12 LDGT34
                                          LDGT
                                                 HDGV
                                                                                  MC
All Veh
           GVWR:
                          <6000
                                  >6000
                                          (All)
                                                         0.0005
                                                                 0.0018
                                                                         0.0908
                                                                                 0.0040
 VMT Distribution: 0.4215
                          0.3244
                                 0.1219
                                                 0.0350
1.0000
Composite Emission Factors (g/mi):
   Composite VOC : 0.970
                         0.753 1.009 0.823
                                                 1.470
                                                          0.783
                                                                0.663
                                                                          0.656
0.907
   Composite CO : 12.47 12.25
                                                          1.794
                                                                 1.110
                                                                        3.140
                                                                               17.56
                                  11.80 12.13
                                                 14.05
11.522
                                                        1.082
                                                                 1.172
                                                                        12.460
                                                                                  1.14
   Composite NOX :
                           0.969
                                   1.257
                                           1.048
                                                 4.131
                   0.922
2.140
 * MA Freeway 30.0 mph
* File 1, Run 2, Scenario 4.
M582 Warning:
         The user supplied freeway average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to a fixed combination of freeways
         and freeway ramps for all hours of the day and all
          vehicle types.
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
Month: July
                   Altitude: Low
           Minimum Temperature:
                            68.0 (F)
           Maximum Temperature: 94.0 (F)
            Absolute Humidity:
                            75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
             ATP Program: No Reformulated Gas: Yes
                                          LDGT
                                                  HDGV
                                                          LDDV
                                                                LDDT
                                                                         HDDV
                                                                                    MC
                          LDGT12
     Vehicle Type:
                    LDGV
                                LDGT34
All Veh
                                          (A11)
                                  >6000
           GVWR:
                           <6000
                                                                                 -----
                  -----
                          -----
                                  ____
                          0.3244
                                                  0.0350
                                                         0.0005
                                                                 0.0018
                                                                         0.0908
                                                                                 0.0040
 VMT Distribution: 0.4215
                                  0.1219
1.0000
_____
Composite Emission Factors (g/mi):
                                                        0.717
                                                                 0.593
                                                 1.271
                                 0.969 0.790
   Composite VOC : 0.927 0.723
0.858
                          12.38 11.88 12.24
                                                                  0.981
                                                                       2.596
                                                                                 15.27
                                                 11.64
                                                          1.626
   Composite CO :
                   12.48
                                                4.297 1.036
                                                                1.121
                                                                        12.011
                                                                                  1.19
   Composite NOX :
                    0.918
                            0.973
                                   1.259
                                           1.051
```

^{*} MA Arterial 10.0 mph

```
M583 Warning:
         The user supplied arterial average speed of 10.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
                     Month: July
                   Altitude: Low
          Minimum Temperature: 68.0 (F)
          Maximum Temperature: 94.0 (F)
            Absolute Humidity: 75. grains/lb
           Fuel Sulfur Content: 120. ppm
          Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
     Vehicle Type:
                   LDGV
                         LDGT12
                                 LDGT34
                                         LDGT
                                                 HDGV
                                                         LDDV
                                                                LDDT
                                                                        HDDV
                                                                                 MC
All Veh
           GVWR:
                           <6000.
                                  >6000
                                         (All)
                  _____
                                                 -----
                                                         _____
                                                                .....
                                                                        -----
                                  -----
  VMT Distribution:
                0.4215
                         0.3244
                                 0.1219
                                                 0.0350
                                                         0.0005
                                                                0.0018
                                                                        0.0908
                                                                                0.0040
1.0000
 ______
----
 Composite Emission Factors (g/mi):
    Composite VOC : 1.459 1.171
                                 1.569 1.279
                                                  3.060
                                                        1.163
                                                                 1.068
                                                                       1.191
                                                                                 6.59
1.430
    Composite CO :
                14.64
                        13.90 13.71 13.85 34.21 3.069 2.098 7.280 37.61
14.368
    Composite NOX :
                  1.396
                           1.397
                                   1.764
                                        1.497
                                                  3.599 1.499
                                                                 1.639 14.752
                                                                                1.01
2.730
 * MA Arterial 20.0 mph
* File 1, Run 2, Scenario 6.
M583 Warning:
         The user supplied arterial average speed of 20.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
                    Month: July
                  Altitude: Low
          Minimum Temperature: 68.0 (F)
          Maximum Temperature: 94.0 (F)
           Absolute Humidity:
                            75. grains/lb
          Fuel Sulfur Content: 120. ppm
          Exhaust I/M Program:
            Evap I/M Program:
                           Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                                                 MC
     Vehicle Type:
                   LDGV
                        LDGT12
                                LDGT34
                                         LDGT
                                                 HDGV
                                                         LDDV
                                                                LDDT
                                                                         HDDV
All Veh
           GVWR:
                          < 6000
                                  >6000
                                         (A11)
                                                         -----
                 ____
                         ----
                                                 -----
                                 -----
                                         _ _ _ _ _
 VMT Distribution: 0.4215
                        0.3244
                                 0.1219
                                                 0.0350
                                                         0.0005
                                                                0.0018
                                                                        0.0903
                                                                                0.0040
1.0000
Composite Emission Factors (g/mi):
   Composite VOC: 1.047 0.816 1.099 0.893 1.770 0.874 0.760 0.784
                                                                                4.92
```

```
Composite CO : 12.03 11.87 11.56 11.78 17.86 2.049 1.308
                                                                       3.967
                                                                                 20.82
11.402
   Composite NOX :
                           1.079 1.384 1.162 3.947 1.164
                                                                       11.472
                                                                                 1.07
                  1.042
2.145
* MA Arterial 25.0 mph
* File 1, Run 2, Scenario 7.
 M583 Warning:
         The user supplied arterial average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA LEV2.D
               Calendar Year: 2003
                     Month: July
                  Altitude: Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
            Absolute Humidity:
                            75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                   LDGV
                         LDGT12
                                  LDGT34
                                           LDGT
                                                HDGV
                                                          LDDV
                                                                 LDDT
                                                                         HDDV
                                                                                   MC
     Vehicle Type:
All Veh
           GVWR:
                          <6000
                                  >6000
                                          (All)
                                                  ____
                                                                 -----
                                                                         ----
                                                                                 -----
  VMT Distribution:
                  0.4215
                          0.3244
                                  0.1219
                                                  0.0350
                                                         0.0005
                                                                 0.0018
                                                                         0.0908
                                                                                 0.0040
1.0000
        ----
Composite Emission Factors (g/mi):
   Composite VOC : 0.968
                           0.752
                                  1.011
                                         0.823
                                                  1.469
                                                         0.784
                                                                  0.664
                                                                         0.658
                                                                                  4.60
                                  11.35
                                          11.61
                                                  14.01
                                                          1.792
                                                                  1.109
                                                                         3.136
                                                                                 17.60
   Composite CO : 11.68
                          11.70
10.951
   Composite NOX :
                   0.968
                           1.013
                                   1.306
                                           1.093
                                                   4.120
                                                          1.079
                                                                  1.169
                                                                       10.645
                                                                                 1.13
2.014
 * MA Arterial 30.0 mph
* File 1, Run 2, Scenario 8.
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
Month: July
                   Altitude: Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
                           75. grains/lb
            Absolute Humidity:
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                  LDGV LDGT12
                                                                  LDDT
                                                                                    MC
                                                           LDDV
                                                                          HDDV
     Vehicle Type:
                                  LDGT34
                                           LDGT
                                                   HDGV
All Veh
```

>6000

(All)

<6000

GVWR:

VMT Distribution:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040
Composite Emission Fa	ctors (a/mi	i):							
Composite VOC:	0.918	0.714	0.961	0.782	1.270	0.717	0.593	0.564	4.36
Composite CO : 10.838	11.66	11.80	11.39	11.69	11.62	1.625	0.980	2.594	15.28
Composite NOX : 1.938	0.917	0.969	1.253	1.047	4.294	1.035	1.119	10.212	1.19

```
* MOBILE6.2.01 (31-Oct-2002)
 Input file: H2003B.INP (file 1, run 1).
* ********
  * Reading Registration Distributions from the following external
 data file: MA_REG.D
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.998
  M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
                1.00
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
  M 49 Warning:
                        MYR sum not = 1. (will normalize)
                1.00
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
  M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
  M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
  M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.998
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
* Reading I/M program description records from the following external
* data file: MA_ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
 Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 lb GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 lb GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
 OBD + Gas Cap Evap I/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
 OBD Evap I/M program for MY 2004+
  M601 Comment:
              User has enabled STAGE II REFUELING.
* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA LEV2.D
  Reading User Supplied Tier2 Exhaust bin phase-in fractions
    Data read from file: LEV2EXH.D
  Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
    Data read from file: LEV2CERT.D
 M616 Comment:
              User has supplied post-1999 sulfur levels.
```

```
* File 1, Run 1, Scenario 1.
  M582 Warning:
           The user supplied freeway average speed of 35.0
            will be used for all hours of the day. 100% of VMT
           has been assigned to a fixed combination of freeways
           and freeway ramps for all hours of the day and all
            vehicle types.
   M112 Warning:
             Wintertime Reformulated Gasoline Rules Apply
 *** I/M credits for Tech1&2 vehicles were read from the following external
     data file: TECH12.D
   M 48 Warning:
             there are no sales for vehicle class HDGV8b
  LEV phase-in data read from file MA_LEV2.D
                  Calendar Year: 2003
Month: Jan.
                     Altitude: Low
             Minimum Temperature: 35.0 (F)
             Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/1b
             Fuel Sulfur Content: 120. ppm
             Exhaust I/M Program: Yes
               Evap I/M Program: Yes
                   ATP Program: No
               Reformulated Gas: Yes
       Vehicle Type:
                     LDGV LDGT12
                                     LDGT34
                                               LDGT
                                                      HDGV
                                                               LDDV
                                                                       LDDT
                                                                              HDDV
                                                                                          MC
 All Veh
             GVWR:
                              <6000
                                      >6000
                                              (A11)
                     -----
                                                               -----
                                                                       -----
                                                                               -----
   VMT Distribution:
                    0.4307
                             0.3221
                                      0.1205
                                                      0.0340
                                                              0.0005
                                                                       0.0018
                                                                               0.0865
                                                                                        0.0039
 1.0000
        Composite Emission Factors (g/mi):
    Composite VOC : 0.969
                              0.813
                                     1.154
                                             0.906
                                                      1.093
                                                               0.679
                                                                        0.541
                                                                              0.515
                                                                                        3.96
    Composite CO : 21.19 23.32
                                    21.33 22.78 11.48 1.523
                                                                        0.901 2.388 13.40
 19.859
    Composite NOX :
                                      1.473
                      1.017
                              1.129
                                               1.222
                                                       4.886
                                                               1.055
                                                                        1.111
                                                                              13.416
                                                                                        1.64
 2.315
  * MA Freeway 40.0 mph
 M582 Warning:
          The user supplied freeway average speed of 40.0
           will be used for all hours of the day. 100% of VMT
          has been assigned to a fixed combination of freeways
           and freeway ramps for all hours of the day and all
           vehicle types.
  M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA LEV2.D
               Calendar Year: 2003
Month: Jan.
                    Altitude: Low
            Minimum Temperature: 35.0 (F)
Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. gra
             Absolute Humidity:
                               75. grains/lb
            Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
      Vehicle Type:
                    LDGV
                          LDGT12
                                     LDGT34
                                               LDGT
                                                       HDGV
                                                                LDDV
                                                                        LDDT
                                                                                HDDV
                                                                                          MC
All Veh
            GVWR:
                            <6000
                                   >6000
                                              (All)
```

* MA Freeway 35.0 mph

VMT Distribution:	0.4307	0.3221	0.1205		0.0340	0.0005	0.0018	0.0865	0.0039	
Composite Emission Fa	actors (g/m	1):						0 460		
Composite VOC :	0.951	0.799	1.133	0.890	0.981	0.642	0.502	0.462	3.83	
0.893										
Composite CO :	21.91	24.13	22.08	23.57	10.67	1.459	0.852	2.171	12.41	
20.467										
Composite NOX :	1.039	1.153	1.495	1.246	5.081	1.086	1.145	13.721	1.68	
2.368										

* MA Freeway 25.0 mph

* File 1, Run 1, Scenario 3.

M582 Warning:

The user supplied freeway average speed of 25.0 $\,$ will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M112 Warning:

Wintertime Reformulated Gasoline Rules Apply

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D Calendar Year: 2003

Month: Jan. Altitude:

Low Minimum Temperature: 35.0 (F)

Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 120. ppm

Exhaust I/M Program: Yes Evap I/M Program: Yes

ATP Program: No Reformulated Gas: Yes

	cle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC
All Veh	GVWR:		<6000	>6000	(All)			+		
VMT Dist:	ribution:	0.4307	0.3221	0.1205		0.0340	0.0005	0.0018	0.0865	0.0039
Composite :	Emission Fa	ctors (q/m	i):							
	ite VOC :	1.046	0.873	1.239	0.972	1.507	0.798	0.663	0.685	4.39
1.010 Compos	ite CO :	21.20	23.33	21.38	22.80	15.86	1.801	1.115	3.340	16.75
20.116 Compos	ite NOX :	1.007	1.117	1.462	1.211	4.518	1.113	1.174	13.981	1.51
2.341										

M582 Warning:

 $_{\mbox{\scriptsize The}}^{\mbox{\scriptsize -}}$ user supplied freeway average speed of 30.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M112 Warning:

Wintertime Reformulated Gasoline Rules Apply

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D Calendar Year: 2003

^{*} MA Freeway 30.0 mph

^{*} File 1, Run 1, Scenario 4.

Month: Jan. Altitude: Low Minimum Temperature: 35.0 (F) Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 120. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: No Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV MC All Veh GVWR: <6000 >6000 (A11) ----------VMT Distribution: 0.4307 0.3221 0.1205 0.0340 0.0005 0.0018 0.0865 0.0039 1.0000 Composite Emission Factors (g/mi): Composite VOC : 1.004 0.842 1.197 0.938 1.259 0.730 0.593 0.588 Composite CO : 21.05 23.15 21.18 22.61 13.13 1.632 0.985 2.761 14.83 Composite NOX : 1.016 1.127 1.472 1.221 4.700 1.066 1.123 13.520 1.58 * MA Arterial 35.0 mph M583 Warning: The user supplied arterial average speed of 35.0 will be used for all hours of the day. 100% of VMT has been assigned to the arterial/collector roadway type for all hours of the day and all vehicle types. M112 Warning:
Wintertime Reformulated Gasoline Rules Apply there are no sales for vehicle class HDGV8b LEV phase-in data read from file MA_LEV2.D Calendar Year: 2003 Month: Jan. Altitude: Low Minimum Temperature: 35.0 (F) Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 120. ppm Exhaust I/M Program: Yes Evap I/M Program: Yes ATP Program: No Reformulated Gas: Yes Vehicle Type: LDGV LDGT12 LDGT34 LDGT HDGV LDDV LDDT HDDV All Veh GVWR: <6000 >6000 (A11) ----------VMT Distribution: 0.4307 0.3221 0.1205 0.0340 0.0005 0.0018 0.0865 1.0000 Composite Emission Factors (g/mi): Composite VOC: 0.954 0.799 1.139 0.891 1.092 0.679 0.541 3.96 0.515

1.523

1.055

4.886

0.901

1.111

2.388 13.40

1.64

11.283

0.989

Composite CO : 20.25 22.45 20.58 21.94 11.48

1.101

1.444

1.195

19.082

2.106

0.959

19.819

2.316

Composite NOX :

^{*} MA Arterial 40.0 mph

^{*} File 1, Run 1, Scenario 6.

```
M583 Warning:
         The user supplied arterial average speed of 40.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
                      Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
           Maximum Temperature: 45.0 (F)
            Absolute Humidity:
                             75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
ATP Program: No
             Reformulated Gas: Yes
                                                                              HDDV
                                                                                         MC
                                                                     LDDT
                                                             Vadat
                          LDGT12
                                    LDGT34
                                            LDGT
                                                     HDGV
                    LDGV
     Vehicle Type:
All Veh
                                             (A11)
                            <6000
                                    >6000
            GVWR:
                                                     -----
                            _ _ - - - -
                                                                     0.0018
                                                                             0.0865
                                                                                      0.0039
                                                             0.0005
                                                     0.0340
                                    0.1205
                            0.3221
  VMT Distribution:
                   0.4307
1.0000
Composite Emission Factors (g/mi):
                                                                              0.462
                                                                                       3.83
                                                             0.642 0.502
                                            0.875
                                                    0.979
                             0.784
                                    1.118
    Composite VOC : 0.935
0.879
                                                                                       12.40
                                                   10.62 1.457 0.850
                                    21.31
                                            22.71
                            23.23
                   20.95
    Composite CO :
19.672
                                                      5.076 1.081
                                                                      1.139
                                                                            11.539
                                                                                       1.68
                                              1.217
                             1.124
                                     1.465
                 1.010
   Composite NOX :
2.154
 * MA Arterial 25.0 mph
* File 1, Run 1, Scenario 7
M583 Warning:
         The user supplied arterial average speed of 25.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
            Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2003
                      Month: Jan.
                    Altitude: Low
           Minimum Temperature: 35.0 (F)
           Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
            Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
                                                                              HDDV
                                                                                        MC
                                                      HDGV
                                                              LDDV
                                                                      LDDT
                                              LDGT
     Vehicle Type:
                     LDGV
                           LDGT12
                                   LDGT34
All Veh
                             <6000
                                     >6000
                                             (All)
            GVWR:
                                                                                       -----
                                                              -----
                                                                              ____
                                     -----
                                                              0.0005
                                                                      0.0018
                                                                              0.0865
                                                                                       0.0039
                                                     0.0340
                             0.3221
                                     0.1205
                    0.4307
  VMT Distribution:
1.0000
               -----
 -----
```

```
Composite Emission Factors (g/mi):
                 1.044
                            0.871 1.242 0.972
    Composite VOC :
                                                    1.506 0.799
                                                                   0.664
                                                                           0.686
                                                                                    4.40
1.009
    Composite CO :
                   20.31
                            22.49
                                  20.70
                                           22.00
                                                   15.81
                                                           1.799
                                                                   1.114
                                                                           3.335
                                                                                   16.78
19.381
    Composite NOX :
                    1.045
                            1.164
                                    1.516
                                            1.260
                                                    4.506
                                                          1.110
                                                                   1.170
                                                                         11.818
2.192
 * MA Arterial 30.0 mph
* File 1, Run 1, Scenario 8.
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA LEV2.D
               Calendar Year: 2003
                     Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
           Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                 ATP Program: No
             Reformulated Gas: Yes
     Vehicle Type:
                    LDGV
                          LDGT12
                                  LDGT34
                                           LDGT
                                                   HDGV
                                                           LDDV
                                                                   LDDT
                                                                           HDDV
                                                                                     MC
All Veh
           GVWR:
                           <6000
                                   >6000
                                           (All)
 VMT Distribution:
                  0.4307
                          0.3221
                                  0.1205
                                                  0.0340
                                                          0.0005
                                                                  0.0018
                                                                          0.0865
                                                                                  0.0039
1.0000
Composite Emission Factors (g/mi):
    Composite VOC : 0.992
                            0.830
                                  1.185
                                          0.927
                                                  1.259
                                                           0.730
                                                                   0.593
                                                                           0.588
                                                                                    4.15
0.949
   Composite CO :
                 20.11 22.26
                                 20.43 21.76 13.11
                                                           1.631
                                                                   0.984
                                                                         2.758
                                                                                  14.84
19.037
   Composite NOX :
                   1.007
                            1.120
                                  1.463
                                            1.214
                                                    4.696
                                                           1.064
                                                                   1.121
                                                                        11.372
                                                                                    1.58
2.123
***
* MOBILE6.2.01 (31-Oct-2002)
* Input file: H2003B.INP (file 1, run 2).
******************
* ***********
* ************* SUMMER ************
* *************
* Reading Registration Distributions from the following external
* data file: MA_REG.D
 M 49 Warning:
            0.998
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
            0.991
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
            0.991
                    MYR sum not = 1. (will normalize)
```

M 49 Warning:

```
0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.998
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
* Reading I/M program description records from the following external
* data file: MA_ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
* Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 lb GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 lb GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
* OBD + Gas Cap Evap I/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
* OBD Evap I/M program for MY 2004+
 M601 Comment:
              User has enabled STAGE II REFUELING.
* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA LEV2.D
 Reading User Supplied Tier2 Exhaust bin phase-in fractions
    Data read from file: LEV2EXH.D
 Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
    Data read from file: LEV2CERT.D
 M616 Comment:
              User has supplied post-1999 sulfur levels:
* MA Freeway 35.0 mph
* File 1, Run 2, Scenario 1.
M582 Warning:
           The user supplied freeway average speed of 35.0
           will be used for all hours of the day. 100% of VMT
           has been assigned to a fixed combination of freeways
           and freeway ramps for all hours of the day and all
            vehicle types.
*** I/M credits for Tech1&2 vehicles were read from the following external
   data file: TECH12.D
 M 48 Warning:
             there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA LEV2.D
                   Calendar Year:
                                  2003
                                  July
                          Month:
                       Altitude:
                                  Low
                                  68.0 (F)
             Minimum Temperature:
                                  94.0 (F)
             Maximum Temperature:
               Absolute Humidity:
                                   75. grains/lb
             Fuel Sulfur Content: 120. ppm
             Exhaust I/M Program:
                                  Yes
                Evap I/M Program: Yes
```

ATP	Program:	No
	ated Gas:	

hicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
GVWR:		<6000	>6000	(All)						
stribution:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040	
	ctors (g/m	i):								
osite VOC :	0.892	0.696	0.931	0.760	1.135	0.668	0.541	0.494	4.17	
osite CO :	12.76	12.74	12.18	12.59	10.18	1.518	0.897	2.245	13.55	
osite NOX :	0.907	0.970	1.254	1.048	4.468	1.026	1.109	11.910	1.23	
	stribution:	stribution: 0.4215 Emission Factors (g/mosite VOC: 0.892 Dosite CO: 12.76	e Emission Factors (g/mi): posite VOC: 0.892 0.696 posite CO: 12.76 12.74	stribution: 0.4215 0.3244 0.1219 Emission Factors (g/mi): Osite VOC: 0.892 0.696 0.931 Osite CO: 12.76 12.74 12.18	e Emission Factors (g/mi): posite VOC: 0.892 0.696 0.931 0.760 posite CO: 12.76 12.74 12.18 12.59	stribution: 0.4215 0.3244 0.1219 0.0350 E Emission Factors (g/mi): Desite VOC: 0.892 0.696 0.931 0.760 1.135 Desite CO: 12.76 12.74 12.18 12.59 10.18	stribution: 0.4215 0.3244 0.1219 0.0350 0.0005 E Emission Factors (g/mi): Desite VOC: 0.892 0.696 0.931 0.760 1.135 0.668 Desite CO: 12.76 12.74 12.18 12.59 10.18 1.518	GVWR: < <6000 >6000 (All) stribution: 0.4215 0.3244 0.1219 0.0350 0.0005 0.0018 Emission Factors (g/mi):	GVWR: < <6000 >6000 (All) stribution: 0.4215 0.3244 0.1219 0.0350 0.0005 0.0018 0.0908 e Emission Factors (g/mi):	GVWR: < <6000 >6000 (All) stribution: 0.4215 0.3244 0.1219 0.0350 0.0005 0.0018 0.0908 0.0040 e Emission Factors (g/mi):

* MA Freeway 40.0 mph

M582 Warning:

The user supplied freeway average speed of 40.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D Calendar Year: 2003

Month: July

Altitude: Low

Minimum Temperature: 68.0 (F)

Maximum Temperature: 94.0 (F)

Absolute Humidity: 75. grains/lb

Fuel Sulfur Content: 120. ppm

Exhaust I/M Program: Evap I/M Program: ATP Program: Yes

No Reformulated Gas: Yes

All Veh	Vehicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
mil ven	GVWR:		<6000	>6000	(All)						
	Distribution:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040	

Compos:	ite Emission Fa	ctors (q/m	i):								
	mposite VOC :	0.871	0.680	0.911	0.743	1.042	0.632	0.502	0.443	4.04	
	mposite CO :	13.54	13.53	12.88	13.35	9.46	1.455	0.848	2.041	12.37	
	mposite NOX :	0.917	0.988	1.268	1.064	4.646	1.056	1.143	12.206	1.26	

M582 Warning:

The user supplied freeway average speed of 25.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

^{*} MA Freeway 25.0 mph

^{*} File 1, Run 2, Scenario 3.

```
LEV phase-in data read from file MA_LEV2.D
              Calendar Year: 2003
                     Month:
                           July
                  Altitude:
                           Low
          Minimum Temperature:
                           68.0 (F)
          Maximum Temperature: 94.0 (F)
           Absolute Humidity: 75. grains/lb
          Fuel Sulfur Content: 120. ppm
          Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                                         HDDV
                                                                 LDDT
                                                                                  MC
                                                  HDGV
                                                         VCC.I
                                         LDGT
                                 LDGT34
     Vehicle Type:
                   LDGV
                         LDGT12
All Veh
                                          (A11)
                                  >6000
           GVWR:
                           <6000
                                                                 -----
                  ____
                          -----
                                  -----
                                                                 0.0018
                                                                        0.0908
                                                                                0.0040
                                                 0.0350
                                                         0.0005
  VMT Distribution:
                0.4215
                         0.3244
                                  0.1219
1.0000
       .....
Composite Emission Factors (g/mi):
                                                                                  4.60
                                                               0.663
                                                                         0.656
                                                1.470
                                  1.009
                                          0.823
                                                          0.783
    Composite VOC : 0.970
                           0.753
                                                                                 17.56
                                                                        3.140
                                                14.05
                                                          1.794
                                                                 1.110
   Composite CO : 12.47 12.25
                                          12.13
                                  11.80
11.522
                                                                                 1.14
                                                                 1.172
                                                                        12.460
                                                 4.131
                                                          1.082
                                           1.048
    Composite NOX :
                    0.922
                           0.969
                                   1.257
2.140
 -----
* MA Freeway 30.0 mph
* File 1, Run 2, Scenario 4.
M582 Warning:
         The user supplied freeway average speed of 30.0
          will be used for all hours of the day. 100% of VMT
         has been assigned to a fixed combination of freeways
         and freeway ramps for all hours of the day and all
          vehicle types.
  M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2003
                     Month: July
                   Altitude: Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
                            75. grains/lb
            Absolute Humidity:
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                 ATP Program: No
             Reformulated Gas: Yes
                                                                                    MC
                                                                        HDDV
                                                                TOOT
                                           LDGT
                                                  HDGV
                                                           LDDV
                    LDGV
                          LDGT12
                                  LDGT34
      Vehicle Type:
All Veh
                                          (A11)
            GVWR:
                            <6000
                                   >6000
                                                                 . . . . . .
                                   -----
                                                                                 0.0040
                                                          0.0005
                                                                 0.0018
                                                                         0.0908
                                                  0.0350
                           0.3244
                                   0.1219
                   0.4215
  VMT Distribution:
1.0000
            -----
 Composite Emission Factors (g/mi):
                                                         0.717
                                                                  0.593
                                                                          0.564
                                                                                  4.36
                                                 1.271
                   0.927 0.723
                                          0.790
                                  0.969
    Composite VOC :
0.858
                                 11.88 12.24 11.64
                                                          1.626
                                                                  0.981
                                                                          2.596
                                                                                 15.27
                           12.38
    Composite CO :
                 12.48
 11.432
                                                                        12.011
                                                                                 1.19
                                                    4.297 1.036
                                                                  1.121
                                    1.259
                                          1.051
                    0.918
                            0.973
    Composite NOX :
 2.104
```

^{*} MA Arterial 35.0 mph

```
* File 1, Run 2, Scenario 5.
 M583 Warning:
           The user supplied arterial average speed of 35.0
           will be used for all hours of the day. 100% of VMT
           has been assigned to the arterial/collector roadway
           type for all hours of the day and all vehicle types.
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                 Calendar Year: 2003
                       Month: July
                     Altitude: Low
            Minimum Temperature: 68.0 (F)
            Maximum Temperature: 94.0 (F)
Absolute Humidity: 75. grains/lb
            Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                   ATP Program: No
               Reformulated Gas: Yes
      Vehicle Type:
                      LDGV
                             LDGT12
                                    LDGT34
                                              LDGT
                                                       HDGV
                                                               עממיז
                                                                        TOOT
                                                                                VOCH
                                                                                           MC
All Veh
             GVWR:
                              <6000
                                      >6000
                                             (A11)
                             -----
                                      -----
                                                               -----
                                                                       -----
                                                                                -----
                                                                                        -----
   VMT Distribution:
                   0.4215
                             0.3244
                                     0.1219
                                                      0.0350
                                                               0.0005
                                                                       0.0018
                                                                                0.0908
                                                                                        0.0040
 Composite Emission Factors (g/mi):
    Composite VOC : 0.880
                             0.685 0.920 0.749
                                                      1.135
                                                               0.668
                                                                      0.541
                                                                                0.494
                                                                                         4.17
808.0
    Composite CO :
                    11.94
                             12.17
                                    11.71 12.05 10.17
                                                               1.518
                                                                        0.897
                                                                                2.245
                                                                                       13.56
11.026
    Composite NOX :
                    0.887
                                            1.025
                              0.947
                                    1.231
                                                       4.468
                                                                      1.109 10.125
                                                                                      1.23
                                                               1.026
1.914
* MA Arterial 40.0 mph
* File 1, Run 2, Scenario 6.
M583 Warning:
          The user supplied arterial average speed of 40.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2003
                       Month: July
                    Altitude: Low
            Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
Absolute Humidity: 75. grains/lb
Fuel Sulfur Content: 120. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                  ATP Program: No
              Reformulated Gas: Yes
      Vehicle Type:
                    LDGV
                           LDGT12
                                   LDGT34
                                              LDGT
                                                       HDGV
                                                               LDDV
                                                                        LDDT
                                                                                HDDV
All Veh
            GVWR:
                                             (A11)
-----
 VMT Distribution:
                   0.4215
                            0.3244
                                     0.1219
                                                      0.0350
                                                              0.0005
                                                                       0.0018
                                                                               0.0908
                                                                                       0.0040
1.0000
Composite Emission Factors (g/mi):
    Composite VOC: 0.859 0.669 0.900 0.732 1.041 0.631 0.502 0.443
                                                                                       4.04
0.783
```

```
Composite CO : 12.70 12.94
                                   12.39 12.79
                                                  9.42
                                                          1.453
                                                                0.846
                                                                          2.034
                                                                                  12.36
11.631
                                                   4.641 1.051
                                                                  1.138 10.375
                                                                                   1.26
   Composite NOX :
                   0.896
                            0.964
                                   1.244
                                         1.040
1.954
 ______
MA Arterial 25.0 mph
* File 1, Run 2, Scenario 7.
 M583 Warning:
         The user supplied arterial average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
Month: July
                   Altitude: Low
                            68.0 (F)
           Minimum Temperature:
           Maximum Temperature: 94.0 (F)
            Absolute Humidity:
                            75. grains/lb
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                                   LDDT
                                                                           HDDV
                                                                                     MC
                                                          LDDV
     Vehicle Type:
                   LDGV
                          LDGT12
                                  LDGT34
                                           LDGT
                                                   HDGV
All Veh
                           <6000
                                   >6000
                                           (A11)
                                                  -----
                                                                  0.0018
                                                                          0.0908
                                                                                  0.0040
  VMT Distribution:
                  0.4215
                          0.3244
                                  0.1219
                                                  0.0350
                                                          0.0005
1.0000
         ______
Composite Emission Factors (g/mi):
                                                                  0.664
                                                                           0.658
                                                  1.469
                                                           0.784
    Composite VOC: 0.968 0.752
                                   1.011 0.823
                                                                                   17.60
   Composite CO : 11.68
                         11.70
                                   11.35
                                           11.61
                                                  14.01
                                                           1.792
                                                                   1.109
                                                                          3.136
10.951
                                                                   1.169
                                                                         10.645
                                                           1.079
   Composite NOX :
                    0.968
                            1.013
                                    1.306
                                            1.093
                                                    4.120
2.014
* MA Arterial 30.0 mph
* File 1, Run 2, Scenario 8.
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2003
Month: July
                   Altitude:
                            Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
                            75. grains/lb
            Absolute Humidity:
           Fuel Sulfur Content: 120. ppm
           Exhaust I/M Program:
                            Yes
             Evap I/M Program:
                            Yes
                 ATP Program: No
             Reformulated Gas: Yes
                                                                                     MC
                                            LDGT
                                                    HDGV
                                                            LDDV
                                                                    LDDT
                                                                            HDDV
                    LDGV LDGT12
     Vehicle Type:
                                  LDGT34
All Veh
```

(All)

>6000

<6000

GVWR:

VMT Distribution:	0.4215	0.3244	0.1219		0.0350	0.0005	0.0018	0.0908	0.0040
Composite Emission Fa	ctors (g/m	i):							
Composite VOC :	0.918	0.714	0.961	0.782	1.270	0.717	0.593	0.564	4.36
0.850									
Composite CO :	11.66	11.80	11.39	11.69	11.62	1.625	0.980	2.594	15.28
10.838									
Composite NOX :	0.917	0.969	1.253	1.047	4.294	1.035	1.119	10.212	1.19
1.938									

```
* Input File for Summer/Winter Ozone - Hopping Brook - 2008 - 10,20,25,30 mph
* Filename = H2003a.inp
* File prepared by Craig Woleader, MADEP (617)-348-4046 - edited by Rich
                   Header Section
MOBILE6 INPUT FILE
                  : HC CO NOX
POLLUTANTS
SPREADSHEET
REPORT FILE
                  : H2008a.txt REPLACE
RIN DATA
                   Run Section #1
> ***************** WINTER ******************
* Pollutant output format
EXPRESS HC AS VOC :
* Mass. specific user inputs -- require external data file
REG DIST : MA_REG.D
I/M DESC FILE : MA_ENHIM.D
* Note: MA_ENHIM.D requires MA_CUTPT.D to run
STAGE II REFUELING :
91 3 84. 84.
* Inputs for LEV II
                 : MA_LEV2.D
94+ LDG IMP
T2 EXH PHASE-IN
                  : LEV2EXH.D
T2 EVAP PHASE-IN : LEV2EVAP.D
                  : LEV2CERT.D
T2 CERT
* Meteorological inputs
MIN/MAX TEMP
                  : 35. 45.
* Fuel Inputs
FUEL RVP
                  : 13.5
FUEL PROGRAM
                  : 2 N
                                          ******
                   Scenario Section #1
                                          *******
                     Winter Freeway
SCENARIO RECORD
                  : MA Freeway 10.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 1
AVERAGE SPEED
                  : 10.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD
                  : MA Freeway 20.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                  : 1
                  : 20.0 Freeway 92.0 0.0 0.0 8.0
AVERAGE SPEED
SCENARIO RECORD
                  : MA Freeway 25.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 1
AVERAGE SPEED
                  : 25.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD
                  : MA Freeway 30.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
AVERAGE SPEED
                  : 30.0 Freeway 92.0 0.0 0.0 8.0
                                         **********
**********
                    Winter Arterial
SCENARIO RECORD
                  : MA Arterial 10.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 1
AVERAGE SPEED
                  : 10.0 Arterial 0.0 100.0 0.0 0.0
SCENARIO RECORD
                  : MA Arterial 20.0 mph
```

```
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                  : 1
AVERAGE SPEED
                  : 20.0 Arterial 0.0 100.0 0.0 0.0
SCENARIO RECORD
                  : MA Arterial 25.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 1
AVERAGE SPEED
                  : 25.0 Arterial 0.0 100.0 0.0 0.0
SCENARIO RECORD
                  : MA Arterial 30.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 1
                  : 30.0 Arterial 0.0 100.0 0.0 0.0
AVERAGE SPEED
                   End of This Run
END OF RUN
                  Run Section #2
> **************** SUMMER ************
* Pollutant output format
EXPRESS HC AS VOC :
* Mass. specific user inputs -- require external data file
REG DIST : MA_REG.D
I/M DESC FILE : MA_ENHIM.D
* Note: MA_ENHIM.D requires MA_CUTPT.D to run
STAGE II REFUELING :
91 3 84. 84.
* Inputs for LEV II
                : MA_LEV2.D
94+ LDG IMP
T2 EXH PHASE-IN : LEV2EXH.D
T2 EVAP PHASE-IN : LEV2EVAP.D
T2 CERT
                  : LEV2CERT.D
* Meteorological inputs
MIN/MAX TEMP
                  : 68. 94.
* Fuel Inputs
FUEL RVP
                  : 8.6
FUEL PROGRAM
                  : 2 N
                  Scenario Section #2 ***********
                   Summer Freeway **********
******
SCENARIO RECORD
                  : MA Freeway 10.0 mph
CALENDAR YEAR
                  : 2008
                 : 7
EVALUATION MONTH
AVERAGE SPEED
                  : 10.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD
                  : MA Freeway 20.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                 : 7
AVERAGE SPEED
                  : 20.0 Freeway 92.0 0.0 0.0 8.0
SCENARIO RECORD
                  : MA Freeway 25.0 mph
CALENDAR YEAR
                  : 2008
EVALUATION MONTH
                  : 7
                  : 25.0 Freeway 92.0 0.0 0.0 8.0
AVERAGE SPEED
SCENARIO RECORD
                  : MA Freeway 30.0 mph
CALENDAR YEAR
                  : 2008
                 : 7
EVALUATION MONTH
                  : 30.0 Freeway 92.0 0:0 0.0 8:0
AVERAGE SPEED
```

Summer Arterial SCENARIO RECORD : MA Arterial 10.0 mph CALENDAR YEAR : 2008 EVALUATION MONTH AVERAGE SPEED : 10.0 Arterial 0.0 100.0 0.0 0.0 SCENARIO RECORD : MA Arterial 20.0 mph : 2008 : 7 CALENDAR YEAR EVALUATION MONTH : 20.0 Arterial 0.0 100.0 0.0 0.0 AVERAGE SPEED SCENARIO RECORD : MA Arterial 25.0 mph CALENDAR YEAR : 2008 EVALUATION MONTH : 25.0 Arterial 0.0 100.0 0.0 0.0 AVERAGE SPEED

SCENARIO RECORD : MA Arterial 30.0 mph

CALENDAR YEAR : 2008 : 7 EVALUATION MONTH

: 30.0 Arterial 0.0 100.0 0.0 0.0 AVERAGE SPEED

***** ****** End of This Run

END OF RUN

```
* MOBILE6.2.01 (31-Oct-2002)
* Input file: H2008B.INP (file 1, run 1).
  **************
* ***************
* ****************** WINTER *************
* ********************
* Reading Registration Distributions from the following external
* data file: MA_REG.D
 M 49 Warning:
               0.998
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
  M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.998
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
                1.00
                        MYR sum not = 1. (will normalize)
* Reading I/M program description records from the following external
* data file: MA ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
* Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 lb GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 1b GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
* OBD + Gas Cap Evap 1/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
* OBD Evap I/M program for MY 2004+
 M601 Comment:
              User has enabled STAGE II REFUELING.
 Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA LEV2.D
 Reading User Supplied Tier2 Exhaust bin phase-in fractions
    Data read from file: LEV2EXH.D
 Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
    Data read from file: LEV2CERT.D
 M616 Comment:
             User has supplied post-1999 sulfur levels.
```

```
* MA Freeway 35.0 mph
M582 Warning:
          The user supplied freeway average speed of 35.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to a fixed combination of freeways
          and freeway ramps for all hours of the day and all
           vehicle types.
 M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
*** I/M credits for Tech1&2 vehicles were read from the following external
   data file: TECH12.D
 M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2008
Month: Jan.
                     Altitude: Low
            Minimum Temperature: 35.0 (F)
            Maximum Temperature: 45.0 (F)
             Absolute Humidity:
                               75. grains/lb
            Fuel Sulfur Content: 30. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                  ATP Program: No
              Reformulated Gas: Yes
                                                                        LDDT
                                                                                HDDV
                                    LDGT34
                                                       HDGV
                                                              LDDV
                                                                                            MC
      Vehicle Type:
                     LDGV
                            LDGT12
                                              LDGT
All Veh
            GVWR:
                              <6000
                                      >6000
                                               (A11)
                                                               -----
                                     -----
                                                                                0.0879
                                                                                         0.0036
  VMT Distribution:
                  0.3616
                             0.3718
                                     0.1390
                                                       0.0336
                                                               0.0004
                                                                        0.0021
1.0000
 .....
 Composite Emission Factors (g/mi):
                            0.435
                                       0.687 0.504
                                                      0.744
                                                                0.245
                                                                        0.336
                                                                                 0.370
                                                                                          3.55
    Composite VOC : 0.509
0.513
                           13.96
                                            14.19
                                                                                         12.95
   Composite CO : 13.25
                                                        8.15
                                                                1.018
                                                                        0.601
                                                                                 1.644
                                      14.81
12.506
                                                                        0.574
                                                                                          1.66
   Composite NOX :
                      0.491
                               0.600
                                       0.981
                                               0.704
                                                        3.116
                                                                0.490
                                                                                 7.431
7 302
* MA Freeway 40.0 mph
* File 1, Run 1, Scenario 2.
M582 Warning:
          The user supplied freeway average speed of 40.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to a fixed combination of freeways
          and freeway ramps for all hours of the day and all
           vehicle types.
 M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA LEV2.D
                Calendar Year: 2008
Month: Jan.
                     Altitude: Low
            Minimum Temperature: 35.0 (F)
            Maximum Temperature: 45.0 (F)
             Absolute Humidity:
                               75. grains/lb
            Fuel Sulfur Content: 30. ppm
            Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                  ATP Program: No
              Reformulated Gas: Yes
                                                        HDGV
                                                                 LDDV
                                                                         LDDT
                                                                                  HDDV
                                                                                            MC
                    LDGV LDGT12
                                     LDGT34
                                               LDGT
      Vehicle Type:
All Veh
```

GVWR:

<6000

>6000

(All)

```
____
                                                                -----
                        -----
                  -----
                                                 -----
                                                                        0.0879
                                                                                0.0036
                                                          0.0004
                                                                0.0021
 VMT Distribution: 0.3616 0.3718 0.1390
                                                 0.0336
1.0000
____
Composite Emission Factors (g/mi):
                                                                          0.332
                                                                                  3.43
                                                           0.231
                                                                  0.312
                  0.497
                                  0.674 0.495
                                                   0.676
                           0.429
   Composite VOC :
0.498
                                                                  0.568
                                                                         1.494
                                                                                  11.98
                                                   7.57
                                                           0.970
                           14.44 15.32 14.68
   Composite CO :
                   13.70
12.882
                                                                        7.630
                                                                                  1.70
                                                                  0.592
                                                 3.241
                                                           0.505
                                         0.717
                  0.504
                         0.613
                                  0.996
   Composite NOX :
1.336
 ----
* MA Freeway 25.0 mph
* File 1, Run 1, Scenario 3.
M582 Warning:
         The user supplied freeway average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to a fixed combination of freeways
         and freeway ramps for all hours of the day and all
          vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2008
                     Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
           Maximum Temperature: 45.0 (F)
            Absolute Humidity: 75. grains/lb
uel Sulfur Content: 30. ppm
           Fuel Sulfur Content:
           Exhaust I/M Program: Yes
            Evap I/M Program: Yes
                 ATP Program: No
             Reformulated Gas: Yes
                                                                  LDDT
                                                                          HDDV
                                         LDGT
                                                  HDGV
                                                           LDDV
                                  LDGT34
                         LDGT12
      Vehicle Type:
                   LDGV
All Veh
                                          (All)
                           <6000
                                   >6000
           GVWR:
                                                                  -----
                  ----
                           ____
                                   ----
                                                                         0.0879
                                                                                 0.0036
                                                                  0.0021
                                                  0.0336
                                                          0.0004
                                   0.1390
  VMT Distribution: 0.3616
                          0.3718
 Composite Emission Factors (g/mi):
                                                                          0.492
                                                                                  3.92
                                                                   0.412
                                  0.737 0.540
                                                   0.994
                                                           0.290
    Composite VOC: 0.552 0.466
0.567
                                                                                16.25
                                                                   0.746 2.299
                                                          1.226
    Composite CO : 13.26 13.96 14.83 14.19
                                                   11.25
12.686
                                                          0.517
                                                                                  1.53
                                                   2.882
                                                                   0.607
                                                                          7.802
                                  0.973 0.697
   Composite NOX :
                 0.485
                          0.594
1.321
* MA Freeway 30.0 mph
M582 Warning:
          The user supplied freeway average speed of 30.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to a fixed combination of freeways
          and freeway ramps for all hours of the day and all
          vehicle types.
  M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
```

Calendar Year: 2008

Month: Jan.
Altitude: Low
Minimum Temperature: 35.0 (F)
Maximum Temperature: 45.0 (F)
Absolute Humidity: 75. grains/lb
Fuel Sulfur Content: 30. ppm

Exhaust I/M Program: Yes
Evap I/M Program: Yes
ATP Program: No
Reformulated Gas: Yes

Vehic	hicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
All Ven	GVWR:		<6000	>6000	(All)						
VMT Dis	stribution:	0.3616	0.3718	0.1390		0.0336	0.0004	0.0021	0.0879	0.0036	
Composite	e Emission Fa	ctors (g/m	i):								
Compo	osite VOC :	0.528	0.448	0.712	0.520	0.845	0.264	0.369	0.423	3.71	
0.537											
Compo	osite CO :	13.16	13.85	14.70	14.09	9.31	1.100	0.658	1.901	14.36	
12.488											
Compo	osite NOX :	0.491	0.599	0.980	0.703	2.998	0.495	0.580	7.499	1.60	
1.304											

* MA Arterial 35.0 mph

* File 1, Run 1, Scenario 5.

M583 Warning:

The user supplied arterial average speed of 35.0 will be used for all hours of the day. 100% of VMT has been assigned to the arterial/collector roadway type for all hours of the day and all vehicle types.

M112 Warning:

Wintertime Reformulated Gasoline Rules Apply

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D

Calendar Year: 2008

Month: Jan. Altitude: Low

Minimum Temperature: 35.0 (F)

Maximum Temperature: 45.0 (F)

Absolute Humidity: 75. grains/lb

Fuel Sulfur Content: 30. ppm

Exhaust I/M Program: Yes

Evap I/M Program: Yes ATP Program: No

Reformulated Gas: Yes

	hicle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC
All Veh	GVWR:		<6000	>6000	(A11)					
VMT Distribution: 1.0000		0.3616	03718	0.1390		± 0.0336	0.0004	0.0021	0.0879	0.0036
Composite Emission Factors (g/mi):										
Compo	osite VOC :	0.503	0.430	0.681	0.499	0.744	0.245	0.336	0.370	3.55
0.508										
Compo	osite CO :	12.86	13.62	14.48	13.86	8.14	1.018	0.601	1.644	12.95
12.196										
Compo	osite NOX :	0.480	0.589	0.966	0.692	3.116	0.490	0.574	6.675	1.66
1.226										

^{*} MA Arterial 40.0 mph

^{*} File 1, Run 1, Scenario 6.

```
M583 Warning:
          The user supplied arterial average speed of 40.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
  M112 Warning:
            Wintertime Reformulated Gasoline Rules Apply
  M 48 Warning:
            there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2008
                      Month: Jan.
                    Altitude: Low
           Minimum Temperature: 35.0 (F)
            Maximum Temperature: 45.0 (F)
             Absolute Humidity: 75. grains/lb
            Fuel Sulfur Content:
                             30. ppm
            Exhaust I/M Program:
              Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
      Vehicle Type:
                    LDGV
                          LDGT12
                                  LDGT34
                                           LDGT
                                                  HDGV
                                                           LDDV
                                                                   LDDT
                                                                           HDDV
                                                                                     MC
All Veh
            GVWR:
                            <6000
                                    >6000
                                           (A11)
                   -----
                                                                   -----
  VMT Distribution: 0.3616
                          0.3718
                                  0.1390
                                                   0.0336
                                                           0.0004
                                                                   0.0021
                                                                           0.0879
                                                                                  0.0036
1.0000
 -----
 Composite Emission Factors (g/mi):
    Composite VOC: 0.491 0.424 0.668
                                            0.490
                                                  0.675
                                                           0.231
                                                                   0.312
                                                                           0.332
                                                                                    3.43
0.493
    Composite CO : 13.30
                          14.10 14.98 14.34
                                                   7.54
                                                           0.969
                                                                   0.567
                                                                         1.489
                                                                                   11.97
12.560
    Composite NOX :
                     0.491
                             0.602
                                     0.980
                                          0.705
                                                  3.237
                                                           0.502
                                                                   0.589
                                                                           6.843
                                                                                    1.70
1.256
  * MA Arterial 25.0 mph
* File 1, Run 1, Scenario 7.
M583 Warning:
         The user supplied arterial average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2008
                     Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
Maximum Temperature: 45.0 (F)
           Absolute Humidity: . 75. grains/lb
Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                   HDGV
     Vehicle Type:
                   LDGV
                         LDGT12 LDGT34
                                          LDGT
                                                          LDDV
                                                                 LDDT
                                                                          HDDV
                                                                                    MC
All Veh
           GVWR:
                           <6000
                                   >6000
                                           (All)
                  -----
 VMT Distribution:
                  0.3616
                          0.3718
                                  0.1390
                                                  0.0336
                                                          0.0004
                                                                  0.0021
                                                                          0.0879
                                                                                 0.0036
1.0000
```

```
Composite Emission Factors (g/mi):
                                                                            0.493
   Composite VOC :
                            0.469
                                    0.742
                                            0.543
                                                    0.994
                                                           0.290
                                                                   0.413
                                                                                    3.92
                    0.553
0.569
   Composite CO :
                   12.90
                                                                   0.745
                                                                            2.296
                           13.65
                                                    11.22
                                                            1,225
                                                                                    16.28
                                   14.53
                                           13.89
12.400
                                                                   0.605
                                                                            7.026
   Composite NOX :
                                                            0.516
                    0.509
                            0.623
                                            0.730
                                                    2.874
                                                                                    1.53
                                    1.015
1.278
 * MA Arterial 30.0 mph
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M112 Warning:
           Wintertime Reformulated Gasoline Rules Apply
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2008
                     Month: Jan.
                   Altitude: Low
           Minimum Temperature: 35.0 (F)
           Maximum Temperature: 45.0 (F)
           Absolute Humidity: 75. grain Fuel Sulfur Content: 30. ppm
                             75. grains/lb
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                            LDDV
                                                                    LDDT
                                                                            HDDV
                                                                                      MC
                           LDGT12
                                  LDGT34
                                            LDGT
                                                    HDGV
     Vehicle Type:
                    LDGV
All Veh
           GVWR:
                           <6000
                                   >6000
                                           (A11)
                                                                   ____
                                                                                   -----
                           -----
                                   -----
                                                   0.0336
                                                           0.0004
                                                                   0.0021
                                                                           0.0879
                                                                                   0.0036
  VMT Distribution: 0.3616
                           0.3718
                                   0.1390
1.0000
Composite Emission Factors (g/mi):
   Composite VOC :
                            0.446
                                    0.708
                                            0.517
                                                    0.845
                                                            0.264
                                                                   0.369
                                                                            0.423
                                                                                    3.71
                    0.524
0.533
                                                            1.099
                                                                    0.657
                                                                            1.899
                                                                                    14.37
                   12.77
                          13.52
                                   14.37
                                           13.75
                                                     9.30
   Composite CO :
12.174
                                                     2.995
                                                            0.494
                                                                    0.579
                                                                            6.734
                                                                                     1.60
   Composite NOX :
                            0.600
                                    0.979
                                            0.703
                    0.489
1.236
 ______
* MOBILE6.2.01 (31-Oct-2002)
* Input file: H2008B.INP (file 1, run 2).
****
* **************
* Reading Registration Distributions from the following external
* data file: MA_REG.D
 M 49 Warning:
                    MYR sum not = 1. (will normalize)
            0.998
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
             1.00
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
            0.991
                    MYR sum not = 1. (will normalize)
 M 49 Warning:
            0.991
                    MYR sum not = 1. (will normalize)
```

M 49 Warning:

```
0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                        MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
 M 49 Warning:
                         MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
                         MYR sum not = 1. (will normalize)
               0.991
 M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
 M 49 Warning:
               0.991
                         MYR sum not = 1. (will normalize)
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
               0.998
 M 49 Warning:
                        MYR sum not = 1. (will normalize)
                1.00
* Reading I/M program description records from the following external
* data file: MA_ENHIM.D
* Mass. Enhanced I/M program inputs for 2000+ calendar year, filename = MA_ENHIM.D
* IM240 Exhaust I/M program for Light Duty pre-1996 MY vehicles <=10,0000 lb GVWR
* Reading non-default I/M CUTPOINTS from the following external
* data file: MA_CUTPT.D
* Two-Speed Idle Exhaust I/M program for Heavy Duty vehicles >10,000 lb GVWR
* OBD Exhaust I/M program for Light Duty MY 1996+ vehicles <=10,000 lb GVWR
* Gas Cap Evap I/M program for Light Duty pre-1996 MY vehicles <=8,500 lb GVWR
* Gas Cap Evap I/M program for all MY Heavy Duty vehicles >8,500 lb GVWR
* OBD + Gas Cap Evap I/M program for MY 1996 - 2003 Light Duty vehicles <=8,500 lb GVWR
* OBD Evap I/M program for MY 2004+
              User has enabled STAGE II REFUELING.
* Reading 94+ LEV IMPLEMENTATION SCHEDULE from the following external
* data file: MA_LEV2.D
 Reading User Supplied Tier2 Exhaust bin phase-in fractions
    Data read from file: LEV2EXH.D
 Reading User Supplied Tier2 EVAP phase-in fractions
    Data read from file: LEV2EVAP.D
 Reading User Supplied Tier2 50K certification standards
     Data read from file: LEV2CERT.D
 M616 Comment:
              User has supplied post-1999 sulfur levels.
* MA Freeway 35.0 mph
* File 1, Run 2, Scenario 1,
M582 Warning:
           The user supplied freeway average speed of 35.0
           will be used for all hours of the day. 100% of VMT
           has been assigned to a fixed combination of freeways
           and freeway ramps for all hours of the day and all
            vehicle types.
*** I/M credits for Tech1&2 vehicles were read from the following external
   data file: TECH12.D
 M 48 Warning:
             there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
                   Calendar Year: 2008
                          Month: July
                        Altitude: Low
             Minimum Temperature:
                                  68.0 (F)
             Maximum Temperature:
                                  94.0 (F)
                                   75. grains/lb
               Absolute Humidity:
             Fuel Sulfur Content:
                                   30. ppm
             Exhaust I/M Program: Yes
```

Evap I/M Program: Yes

ATP Program: No Reformulated Gas: Yes

	icle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
All Veh	GVWR:		<6000	>6000	(All)						
*:											
VMT Dis	tribution:	0.3529	0.3738	0.1404		0.0347	0.0003	0.0021	0.0920	0.0037	
Combosice	Emission Fa	ctors (g/m							0.315		
	site VOC :	ctors (g/m 0.507	i): 0.411	0.584	0.458	0.735	0.239	0.322	0.345	3.84	
				0.584	0.458	0.735					
Compo 0.487				0.584 7.75	0.458 7.36	0.735 6.69	0.239	0.322	0.345	3.84	
Compo 0.487	site VOC :	0.507	0.411				1.009	0.588	1.386	13.21	
Compo 0.487 Compo 6.671	site VOC :	0.507	0.411								

* MA Freeway 40.0 mph

* File 1, Run 2, Scenario 2.

M582 Warning:

The user supplied freeway average speed of 40.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

LEV phase-in data read from file MA_LEV2.D

Calendar Year: 2008 Month: July

Altitude: Low

Minimum Temperature: 68.0 (F) Maximum Temperature: 94.0 (F)

75. grains/lb 30. ppm Absolute Humidity:

Fuel Sulfur Content:

Exhaust I/M Program: Yes

Evap I/M Program: Yes

ATP Program: No Reformulated Gas: Yes

	cle Type:	LDGV	LDGT12	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	MC	
All Veh	GVWR:		<6000	>6000	(All)						
VMT Dist	ribution:	0.3529	0.3738	0.1404		0.0347	0.0003	0.0021	0.0920	0.0037	_
Composite	Emission Fa	ctors (q/m	i):								
	ite VOC :	0.493	0.402	0.569	0.447	0.680	0.226	0.299	0.309	3.73	
0.471 Compos	ite CO :	7.42	7.62	8.16	7.76	6.22	0.962	0.556	1.260	12.05	
6.990 Compos	ite NOX :	0.459	0.531	0.828	0.612	2.628	0.484	0.551	6.706	1.28	
1.191			d			, 					-

M582 Warning:

The user supplied freeway average speed of 25.0 will be used for all hours of the day. 100% of VMT has been assigned to a fixed combination of freeways and freeway ramps for all hours of the day and all vehicle types.

M 48 Warning:

there are no sales for vehicle class HDGV8b

^{*} MA Freeway 25.0 mph

```
LEV phase-in data read from file MA LEV2.D
                Calendar Year: 2008
                      Month:
                             July
                    Altitude:
                             Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
            Absolute Humidity:
                              75. grains/lb
           Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
     Vehicle Type:
                     LDGV
                          LDGT12
                                   LDGT34
                                             LDGT
                                                     HDGV
                                                             LDDV
                                                                     LDDT
                                                                              HDDV
                                                                                        MC
All Veh
            GVWR:
                            <6000
                                    >6000
                                            (All)
  VMT Distribution: 0.3529 0.3738
                                   0.1404
                                                    0.0347
                                                            0.0003
                                                                     0.0021
                                                                             0.0920
                                                                                     0.0037
1.0000
 ______
Composite Emission Factors (g/mi):
    Composite VOC : 0.553
                                   0.634
                             0.445
                                             0.496
                                                     0.927
                                                             0.283
                                                                     0.395
                                                                                       4.22
0.541
                                                                     0.729
                                                                                      17.17
   Composite CO :
                    6.93
                            7.12
                                   7.66
                                             7.27
                                                     9.24
                                                             1.215
                                                                             1.938
6.748
                                                             0.496
                                                                   0.565
                                                                              6.858
   Composite NOX :
                   0.461
                             0.521
                                     0.819
                                             0.603
                                                    2.337
                                                                                      1.15
* MA Freeway 30.0 mph
* File 1, Run 2, Scenario 4.
M582 Warning:
         The user supplied freeway average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to a fixed combination of freeways
         and freeway ramps for all hours of the day and all
          vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA LEV2.D
               Calendar Year: 2008
                      Month: July
                    Altitude: Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
            Absolute Humidity:
                              75. grains/lb
           Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                 ATP Program: No
             Reformulated Gas: Yes
                                                     HDGV
                                                           LDDV
                                                                     LDDT
                                                                              HDDV
                                                                                       MC
     Vehicle Type:
                                            LDGT
                   LDGV LDGT12 LDGT34
All Veh
            GVWR:
                                            (A11)
                            <6000
                                    >6000
                           ____
                                    -----
                                            -----
                                                    -----
                                                                     -----
                                                          0.0003
                                                                                   0.0037
 VMT Distribution: 0.3529
                           0.3738
                                    0.1404
                                                    0.0347
                                                                    0.0021
                                                                             0.0920
1.0000
-----
Composite Emission Factors (g/mi):
   Composite VOC: 0.527 0.426 0.608 0.476
                                                     0.813 0.258 0.353
                                                                             0.393
                                                                                     4.01
0.511
   Composite CO :
                     6.89
                             7.10
                                     7.62
                                             7.24
                                                      7.65
                                                             1.090
                                                                     0.643
                                                                             1.603 14.90
6.625
                                             0.605
                                                      2.431
                                                             0.475
                                                                     0.540
                                                                              6.589
                                                                                     1.20
   Composite NOX :
                     0.458
                             0.524
                                     0.821
1.169
```

^{*} MA Arterial 35.0 mph

```
* File 1, Run 2, Scenario 5.
M583 Warning:
          The user supplied arterial average speed of 35.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA LEV2.D
                Calendar Year: 2008
                       Month: July
                    Altitude: Low
           Minimum Temperature: 68.0 (F)
           Maximum Temperature: 94.0 (F)
             Absolute Humidity:
                              75. grains/lb
           Fuel Sulfur Content:
                              30. ppm
           Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
                                              LDGT
                                                       HDGV
                                                              LDDV
                                                                       LDDT
                                                                                HDDV
                                                                                           MC
     Vehicle Type:
                    LDGV
                            LDGT12
                                   LDGT34
All Veh
            GVWR:
                             <6000
                                     >6000
                                              (A11)
                                                                      -----
  VMT Distribution:
                   0.3529
                            0.3738
                                     0.1404
                                                      0.0347
                                                              0.0003
                                                                       0.0021
                                                                               0.0920
                                                                                       0.0037
1.0000
Composite Emission Factors (g/mi):
                                      0.580
                                                       0.735
                                                               0.239
                                                                       0.322
                                                                                0.345
                                                                                         3.84
    Composite VOC : 0.502
                             0.407
                                            0.454
0.483
                                             7.14
                                                       6.69 1.009
                                                                     0.588 1.386
                                                                                        13.22
    Composite CO :
                    6.69
                             7.00
                                     7.53
6.446
    Composite NOX :
                     0.445
                              0.513
                                      0.807
                                               0.594
                                                       2.528
                                                               0.470
                                                                       0.534
                                                                                5.911
                                                                                         1.25
1.100
 _______
* MA Arterial 40.0 mph
M583 Warning:
          The user supplied arterial average speed of 40.0
          will be used for all hours of the day. 100% of VMT
          has been assigned to the arterial/collector roadway
          type for all hours of the day and all vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
                Calendar Year: 2008
                       Month: July
                    Altitude: Low
           Minimum Temperature: 68.0 (F)
Maximum Temperature: 94.0 (F)
             Absolute Humidity:
                               75. grains/lb
           Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
              Evap I/M Program: Yes
                 ATP Program: No
              Reformulated Gas: Yes
                                                       HDGV
                                                              LDDV
                                                                        LDDT
                                                                                HDDV
     Vehicle Type:
                     LDGV
                            LDGT12
                                   LDGT34
                                              LDGT
All Veh
                             <6000
                                              (A11)
            GVWR:
                                     >6000
                                                      -----
                            -----
                                     -----
____
                                                                                        0.0037
                                                      0.0347
                                                                       0.0021
                                                                               0.0920
```

VMT Distribution:

Composite Emission Factors (g/mi):

1.0000

0.3529

0.3738

Composite VOC: 0.488 0.398 0.565 0.444 0.680

0.1404

0.0003

0.226

0.299

0.309

3.73

```
0.961
                                                                 0.554
                                                                         1.256
                                                                                 12.04
                                                 6.19
   Composite CO :
                 7.09
                          7.38
                                  7.93
                                         7.53
6.754
                                                                 0.548
                                                                         6.061
                                                                                 1.28
                                                   2.626 0.481
                                           0.602
   Composite NOX :
                   0.450
                           0.522
                                   0.816
1.123
 * MA Arterial 25.0 mph
* File 1, Run 2, Scenario 7.
M583 Warning:
         The user supplied arterial average speed of 25.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types:
 M 48 Warning:
          there are no sales for vehicle class HDGV8b
LEV phase-in data read from file MA_LEV2.D
              Calendar Year: 2008
                     Month: July
                   Altitude: Low
          Minimum Temperature: 68.0 (F)
          Maximum Temperature: 94.0 (F)
          Absolute Humidity: 75. grains/lb
Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                                  LDDT
                                                                          HDDV
                                                                                   MC
                                          LDGT
                                                  HDGV
                                                         LDDV
                   LDGV LDGT12
                                 LDGT34
     Vehicle Type:
All Veh
                                          (A11)
           GVWR:
                          <6000
                                   >6000
                                                                 _ _ _ _ _
                                                                         ____
                                                                                 -----
                  -----
                                  -----
                                          -----
                          ----
                                                                 0.0021
                                                                         0.0920
                                                                                 0.0037
                                                  0.0347
                                                         0.0003
 VMT Distribution:
                 0.3529 0.3738
                                 0.1404
.....
Composite Emission Factors (g/mi):
                                                          0.283
                                                                0.396
                                                                          0.459
                                                                                 4.22
   Composite VOC: 0.554 0.448 0.637 0.499
                                                   0.927
                                                   9.21
                                                          1.214
                                                                0.728
                                                                         1.936 17.20
                6.63 6.91 7.46 7.06
   Composite CO :
6.537
                                                   2.331 0.494
                                                                0.563
                                                                          6.224
                                                                                  1.15
                                    0.855 0.631
   Composite NOX :
                    0.488
                            0.548
1.156
* MA Arterial 30.0 mph
* File 1, Run 2, Scenario 8.
M583 Warning:
         The user supplied arterial average speed of 30.0
         will be used for all hours of the day. 100% of VMT
         has been assigned to the arterial/collector roadway
         type for all hours of the day and all vehicle types.
 M 48 Warning:
           there are no sales for vehicle class HDGV8b
 LEV phase-in data read from file MA_LEV2.D
               Calendar Year: 2008
                     Month: July
                   Altitude: Low
           Minimum Temperature: 68.0 (F)
Maximum Temperature: 94.0 (F)
           Absolute Humidity: 75. grains/lb Fuel Sulfur Content: 30. ppm
           Exhaust I/M Program: Yes
             Evap I/M Program: Yes
                ATP Program: No
             Reformulated Gas: Yes
                                                                                    MC
                                                           LDDV
                                                                   LDDT
                                                                        HDDV
                                                   HDGV
                                           LDGT
     Vehicle Type: LDGV LDGT12
                                  LDGT34
All Veh
            GVWR:
                           <6000
                                           (A11)
                                   >6000
```

VMT Distribution:	0.3529	0.3738	0.1404		0.0347	0.0003	0.0021	0.0920	0.0037

Composite Emission Fa	ctors (q/m	i):							
Composite VOC :	0.524	0.424	0.605	0.474	0.813	0.258	0.354	0.393	4.01
0.509									
Composite CO :	6.57	6.87	7.40	7.02	7.64	1.089	0.643	1.601	14.92
6.396									
Composite NOX :	0.461	0.524	0.821	0.605	2.429	0.474	0.539	5.964	1.20
1.113									

APPENDIX B

COMMONWEALTH OF MASSACHUSETTS
EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS
DEPARTMENT OF ENVIRONMENTAL PROTECTION

ONE WINTER STREET, BOSTON, MA 02108 617-292-5500

TRUDY COXE Secretary

DAVID B. STRUHS Commissioner

February 12, 2003

Dear Interested Party:

Effective immediately, the Department of Environmental Protection (DEP) will commence using the Mobile 6 emissions factor model for use in indirect source air quality analysis. This change became necessary since the DEP utilized the Mobile 6 model in developing the Massachusetts State Implementation Plan (SIP).

You can access the latest Mobile6 model on the internet at http://www.epa.gov/otaq/m6.htm. This site contains the inputs necessary for performing mesoscale and microscale air quality analyses.

You can reach me at (617) 292-5773 if you have any questions.

Sincerely,

Kcith Grillo, Regional Planner

Transportation Unit

Bureau of Waste Prevention

Day Cork

APPENDIX C

Order of Conditions

× 10.	
*	

Important:

When filling

out forms on

use only the

tab key to

move your cursor - do

not use the

return key.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 5 - Order of Conditions

185-553

Provided by DEP

DEP File Number:

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

A. General Information From: Holliston Conservation Commission MDSX SO. DIST. DEEDS Conservation Commission the computer, This issuance if for (check one): DOCUMENT: DATE: Order of Conditions TIME: Amended Order of Conditions Property Owner (if different from applicant): To: Applicant: Hopping Brook Trust, Jon Delli Priscoli Trustee, New Hopping Brook Realty Trust and Jon Delli Priscoli Name Name 929 Boston Post Road East, Suite 2 929 Boston Post Road Mailing Address Mailing Address 01752 Marlborough 01752 MA Marlborough State Zip Code City/Town Zip Code State City/Town 1. Project Location: Holliston Hopping Brook Road City/Town Street Address 4-6-18, 4-6-52, 1-1-51, 4-6-32 and 4-6-15.1 Parcel/Lot Number Assessors Map/Plat Number Property recorded at the Registry of Deeds for: Page 0099 and Book 31501 (18, 52, 51) and 036 28716 (15.1) Middlesex Page BOOK County Cartificate (if registered land) Dates: April 30, 2003 April 1, 2003 April 18, 2002 Date of Issuance Date Public Hearing Closed Date Notice of Intent Filed 4. Final Approved Plans and Other Documents (attach additional plan references as needed): See Appendix A Date Title Date Title

Name 6. Total Fee: \$5725.00

5. Final Plans and Documents Signed and Stamped by:

Robert D. McNeil III, PE # 39831

Date

WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

185-553
Provided by DEP

	(from Appendix B: Wetland Fee Transmittal Form)						
B.	B. Findings						
Fin	dings pursuant to the Massachu	usetl	s Wetlands Protection Act:				
Following the review of the above-referenced Notice of Intent and based on the information provided in this application and presented at the public hearing, this Commission finds that the areas in which work is proposed is significant to the following interests of the Wetlands Protection Act. Check all that apply:							
\boxtimes	Public Water Supply		Land Containing Shellfish	X	Prevention of Pollution		
\boxtimes	Private Water Supply	\boxtimes	Fisheries	\boxtimes	Protection of Wildlife Habitat		
\boxtimes	Groundwater Supply	\boxtimes	Storm Damage Prevention	X	Flood Control		
Fur	thermore, this Commission hereb	by fir	nds the project, as proposed, is: (ch	neck	one of the following boxes)		
Ар	proved subject to:						
	in the wetlands regulations, to work shall be performed in acc General Conditions, and any o	prot corda other diffe	necessary, in accordance with the ect those interests checked above ance with the Notice of Intent refesspecial conditions attached to the from the plans, specifications, one shall control.	e. T ren is O	his Commission orders that all ced above, the following rder. To the extent that the		
De	nied because:						
	the proposed work cannot be conditioned to meet the performance standards set forth in the wetland regulations to protect those interests checked above. Therefore, work on this project may not go forward unless and until a new Notice of Intent is submitted which provides measures which are adequate to protect these interests, and a final Order of Conditions is issued.						
	of the work on the interests ide may not go forward unless and information and includes meas	entifi d unt sures A de	oplicant is not sufficient to described in the Wetlands Protection Actile a revised Notice of Intent is substituted are adequate to protect the scription of the specific information as per 310 CMR 10.05(6)(c).	t. Th omitt ne A	nerefore, work on this project ted which provides sufficient ct's interests, and a final		

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

185-553

Provided by DEP

PROJECT FINDINGS PURSUANT TO THE MASSACHUSETTS WETLANDS PROTECTION ACT AND ARTICLE XXX

- PROJECT DESCRIPTION. Environmental permitting for the Hopping Brook Industrial Park began in the mid-1970's with design and permit review and revisions continuing through 1985. The entire park site is divided into Phase I and II by the north-south NStar (formerly Boston Edison) power line alignment owned in fee by the utility. Phase I, to the west of the NStar corridor is largely constructed and is not the subject of this application. Wetland resource area boundaries and buffer zones were delineated, reviewed and approved under Abbreviated Notification of Resource Area Delineations under Massachusetts DEP File No. 185-524 (Jan. 16, 2001) and 185-538 (Sept. 4, 2001). The proposed project consists of the construction of a 1,500 foot access road, stormwater management system, utility installation and protection of and enhancement for rare and endangered species habitat. Also proposed in this submittal is the installation of underground utilities including horizontal boring beneath three existing sixty-inch concrete culverts on Hopping Brook and installation of a groundwater infiltration system. Wetland replacement of Bordering Vegetated Wetland and the impacted functions of Bank to be impacted by the roadway construction are also proposed. Construction of additional compensatory wetlands for anticipated future impacts to Holliston Freshwater Wetlands (a locally regulated isolated wetland), are combined with the replication for Bordening Vegetated Wetland (BVW) and Bank proposed herein. Future build-out of the park, primarily in upland area will be reviewed by the town boards at a later date. Site access will require a wetland impact of 3,236 square feet of BVW (310 CMR 10.55 and Holliston Regulations Section 3.1) and approximately 153 linear feet of Bank (310 CMR 10.54). These impacts have been minimized by the use of retaining walls. Indirect impacts to other wetland resource areas in the vicinity of the impacted wetland resource areas such as siltation or stormwater runoff will be avoided (see Site Plans including Construction Sequencing Plan. Detail Sheets (D1-D3), NOI Narrative Section: Soil Erosion / Sediment and Stormwater Control, Stormwater Management Report, Stormwater Runoff Study, and Stormwater pollution Prevention Plan). In addition to the aforementioned state wetland impact, there are two isolated, non-state, wetlands that will be altered (Wetland "J" and "E"). These wetlands do not meet the criteria for Isolated Land Subject to Flooding [310 CMR 10.57(1)(b)] because they contain virtually no standing water. However, these two wetlands do meet the criteria for Holliston Wetlands. Three certified vernal pools, CVP 2706, 2708, and 2709, are located in the northern portion of the site. Two state listed vertebrate species have been identified from the site and vicinity. These are the spotted turtle and four-toed salamander (both "Species of Special Concern" status). The project has been designed to avoid all impacts to wetlands habitat for both species. Further, nesting habitat enhancement is proposed for the spotted turtle, and completed and ongoing field study and land protection for both species has been designed in cooperation with the Massachusetts Natural Heritage and Endangered Species Program under a Conservation Permit to be issued pursuant to the Massachusetts Endangered Species Act (MESA) for the project.
- II. LIMITED PROJECT 310 CMR 10.53 (e). The Holliston Conservation Commission finds that the construction of the roadway crossing meets the requirements of a limited project set forth at 310 CMR 10.53(3)(e). The proposed roadway crossing has been designed and is proposed to be constructed in a manner that does not restrict the flow of water at the crossing. Mitigation for lost Bordering Vegetated Wetlands at a greater than 1:1 ratio is provided. Mitigation for lost Bank functions is also provided by the design. The intent of the Limited Project status being to prevent multiple wetland crossings, any future project to cross wetlands to gain access to certain portions of the property may or may not be qualified as a Limited Project roadway under 310 CMR 10.53 (3)(e).
- III. BANK 310 CMR 10.54 & LAND UNDER WATERWAYS 310 CMR 10.56. The Holliston Conservation Commission finds that the alteration of 153 linear feet of Bank resulting from the roadway crossing

185-553

DEP File Number:

Provided by DEP

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

complies with the performance standards in that the physical stability of the bank, ground water and surface water quality, capacity of the bank to provide important wildlife habitat, the carrying capacity of the existing channel within the bank, and the capacity of the bank to provide breeding habitat, escape cover, and food for fisheries is not impaired. Mitigation for work within Bank includes the installation of box culverts at the roadway crossing and the construction of a 130 linear foot rip-rap channel and a 140 linear foot water quality swale.

- IV. BORDERING VEGETATED WETLAND 310 CMR 10.55. The Holliston Conservation Commission finds that the proposed road crossing will permanently alter approximately 3,236 SF of Bordering Vegetated Wetland as a limited project pursuant to 310 CMR 10.53(3)(e). Mitigation for permanently lost Bordering Vegetated Wetland is provided at a greater than 1:1 ratio at the mitigation area. Mitigation for temporary Bordering Vegetated Wetlands impacts will occur in-situ following construction. The Holliston Conservation finds that the Bordering Vegetated Wetland impact and mitigation complies with the performance standards in that the design minimizes the loss of resource area, replacement area is proposed at a ratio of at least 1:1, the ground water and surface elevation of the replacement area is similar, and the replacement area has a unrestricted hydraulic connection to the same water body as the impacted wetland.
- V. FRESHWATER WETLANDS UNDER ARTICLE XXX. The finding of the Holliston Conservation Commission relative to Bordering Vegetated Wetlands, which are also regulated as Freshwater Wetlands under Article XXX and its implementing regulations, is presented as Finding IV above. The proposed project will also impact a total of 26,122 SF at Freshwater Wetlands "E" and "J," which are subject to jurisdiction under Article XXX and its implementing regulations. The Holliston Conservation Commission finds that the mitigation suite offered by the Applicant, including wetland replication, vernal pool creation, rare species habitat enhancement, and four Conservation Restrictions totaling 30.87 acres will protect the interests of Article XXX and its implementing regulations.
- VI. BORDERING LAND SUBJECT TO FLOODING 310 CMR 10.57. The Holliston Conservation Commission finds that the boundary of Bordering Land Subject to Flooding has been correctly determined by the Applicant and is correctly shown on the final plans referenced in this Order. Based upon these plans, no work is proposed within Bordering Land Subject to Flooding.
- VII. RIVERFRONT AREA 310 CMR 10.58. The Holliston Conservation Commission finds that the utility installation in the Riverfront Area and other identified activities associated with the utility installation will not result in a significant adverse impact on the interests protected by the Riverfront Area in the proposed work zone. Work within the Riverfront Area has been minimized to the extent practicable, an extensive mitigation suite for work on the subject site has been offered, and the work has been designed such that the interests of rare species in the area will be protected.
- VIII. CERTIFIED VERNAL POOLS. Certified Vernal Pools 2706, 2707 and 2708 are located on this site and are shown on the final plans referenced in this Order. Based upon these plans, no work is proposed within the Certified Vernal Pools or Vernal Pool Habitat as defined at 310 CMR 10.04. Under Article XXX and its implementing regulations, no work is proposed within the Certified Vernal Pools; however, work is proposed within Vernal Pool Habitat (i.e., areas within 100 feet of the pool boundary) and within the Vernal Pool Buffer Zone (i.e., areas between 100 and 200 feet of the pool boundary. The Holliston Conservation Commission finds that work proposed within the Vernal Pool Habitat and Vernal Pool Buffer Zone is required for the proposed project. The proposed mitigation suite offered by the Applicant includes features and components proposed to mitigate for work in these areas, including the creation of a new Vernal Pool and associated Vernal Pool Habitat and Vernal Pool Buffer Zone, four Conservation

185-553

DEP File Number:

Provided by DEP

WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

Restrictions totaling 30.87 acres, and enhancements to the habitat of rare species on the project site. Lastly, the Holliston Conservation Commission hereby finds that the Vernal Pool Habitat and Vernal Pool Buffer Zone associated with the Vernal Pool to be created in the Wetland Replication Area will be limited to the subject property and will not extend onto the NStar property.

- IX. BUFFER ZONE TO BORDERING VEGETATED WETLANDS UNDER THE ACT. The Holliston Conservation Commission finds that the proposed project includes provisions to protect adjacent wetland resource areas from alteration during construction, and an extensive mitigation suite, including four conservation restrictions totaling 30.87 acres, has been offered to protect the interests of the Act.
- X. ADJACENT UPLAND RESOURCE AREAS UNDER ARTICLE XXX. The Holliston Conservation Commission finds that the proposed project includes provisions to minimize work to the extent practicable within the Adjacent Upland Resource Areas (i.e., areas within 100 feet of Bordering Vegetated Wetlands, other Freshwater Wetlands, Bank, and Bordering Land Subject to Flooding and areas within 200 feet of the Mean Annual High-Water Line of Hopping Brook) and provisions to protect the Adjacent Upland Resource Areas and adjacent wetland resources from unpermitted alteration during construction. The proposed mitigation suite offered by the Applicant includes four Conservation Restrictions totaling 30.87 acres which the Holliston Conservation Commission feels are critical to meeting the performance standards for work within the Adjacent Upland Resource Areas under Article XXX and its implementing regulations.
- XI. RARE SPECIES AND ENDANGERED SPECIES. The proposed project has received a No Adverse Impact Letter from the Massachusetts Natural Heritage Program indicating that the proposed project, with the required conditions, will not result in a short- or long-term adverse impact to the wetland habitat of the local population of the subject rare species. In addition, the Applicant has negotiated a Conservation Permit pursuant to the Massachusetts Endangered Species Act (MESA) with the Massachusetts Natural Heritage and Endangered Species Program. The issuance of the Final Conservation Permit indicates that although the project may result in a taking of the subject rare species on the site, the proposed project, including mitigation, will result in a net benefit to the subject rare species. In this case, net benefits include enhancement of habitat, protection of habitat through Conservation Restrictions totaling 30.87 acres, and the monitoring of habitat use for up to five years.
- XII. NOTICE OF JURISDICTION UNDER THE MASSACHUSETTS WETLANDS PROTECTION ACT, M.G.L. Ch. 131, s. 40 AND ARTICLE XXX OF TOWN OF HOLLISTON BY-LAWS. The Holliston Conservation Commission hereby finds that all or part of the property on which work is authorized by this Order is subject to jurisdiction under the Massachusetts Wetland Protection Act, M.G.L. Ch. 131, s. 40 and Article XXX of the Town of Holliston bylaws. The owner is hereby notified of his or her responsibility to comply with the provisions of these statutes. This condition shall remain in effect in perpetuity and shall survive the issuance of a Certificate of Compliance.
- XIII. RESOURCE AREA DELINEATION. The Holliston Conservation Commission finds that the boundary of Bordering Vegetated Wetlands and two Isolated Vegetated Wetlands (Bylaw) on the site were previously established by an Order of Resource Area Delineation, DEP File # 185-524. No other resource areas were approved under that Order. The Holliston Conservation Commission also finds that additional Bordering Vegetated Wetlands boundaries and the Mean Annual High Water Line of Hopping Brook were previously established by an Order of Resource Area Delineation, DEP File # 185-538. The boundaries of Bordering Land Subject to Flooding and Vernal Pools Habitat were not determined by either Order.

185-553

Provided by DEP

DEP File Number:

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

General Conditions (only applicable to approved projects)

- 1. Failure to comply with all conditions stated herein, and with all related statutes and other regulatory measures, shall be deemed cause to revoke or modify this Order.
- 2. The Order does not grant any property rights or any exclusive privileges; it does not authorize any injury to private property or invasion of private rights.
- 3. This Order does not relieve the permittee or any other person of the necessity of complying with all other applicable federal, state, or local statutes, ordinances, bylaws, or regulations.
- 4. The work authorized hereunder shall be completed within three years from the date of this Order unless either of the following apply:
 - a. the work is a maintenance dredging project as provided for in the Act; or
 - b. the time for completion has been extended to a specified date more than three years, but less than five years, from the date of issuance. If this Order is intended to be valid for more than three years, the extension date and the special circumstances warranting the extended time period are set forth as a special condition in this Order.
- 5. This Order may be extended by the issuing authority for one or more periods of up to three years each upon application to the issuing authority at least 30 days prior to the expiration date of the Order.
- 6. Any fill used in connection with this project shall be clean fill. Any fill shall contain no trash, refuse, rubbish, or debris, including but not limited to lumber, bricks, plaster, wire, lath, paper, caraboard, pipe, tires, ashes, refrigerators, motor vehicles, or parts of any of the foregoing.
- 7. This Order is not final until all administrative appeal periods from this Order have elapsed, or if such an appeal has been taken, until all proceedings before the Department have been completed.
- 8. No work shall be undertaken until the Order has become final and then has been recorded in the Registry of Deeds or the Land Court for the district in which the land is located, within the chain of title of the affected property. In the case of recorded land, the Final Order shall also be noted in the Registry's Grantor Index under the name of the owner of the land upon which the proposed work is to be done. In the case of the registered land, the Final Order shall also be noted on the Land Court Certificate of Title of the owner of the land upon which the proposed work is done. The recording information shall be submitted to this Conservation Commission on the form at the end of this Order, which form must be stamped by the Registry of Deeds, prior to the commencement of work.
- A sign shall be displayed at the site not less then two square feet or more than three square feet in size bearing the words.

"Massachusetts Department of Environmental Protection" [or, "MA DEP"]

"File Number 185-553"

10. Where the Department of Environmental Protection is requested to issue a Superseding Order, the Conservation Commission shall be a party to all agency proceedings and hearings before DEP.

Revision Date April 30, 2003 (0600)

Page 6 of 24

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

185-553 Provided by DEP

- 11. Upon completion of the work described herein, the applicant shall submit a Request for Certificate of Compliance (WPA Form 8A) to the Conservation Commission.
- 12. The work shall conform to the plans and special conditions referenced in this order.
- 13. Any change to the plans identified in Condition #12 above shall require the applicant to inquire of the Conservation Commission in writing whether the change is significant enough to require the filing of a new Notice of Intent.
- 14. The Agent or members of the Conservation Commission and the Department of Environmental Protection shall have the right to enter and inspect the area subject to this Order at reasonable hours to evaluate compliance with the conditions stated in this Order, and may require the submittal of any data deemed necessary by the Conservation Commission or Department for that evaluation.
- 15. This Order of Conditions shall apply to any successor in interest or successor in control of the property subject to this Order and to any contractor or other person performing work conditioned by this Order.
- 16. Prior to the start of work, and if the project involves work adjacent to a Bordering Vegetated Wetland, the boundary of the wetland in the vicinity of the proposed work area shall be marked by wooden stakes or flagging. Once in place, the wetland boundary markers shall be maintained until a Certificate of Compliance has been issued by the Conservation Commission.
- 17. All sedimentation barriers shall be maintained in good repair until all disturbed areas have been fully stabilized with vegetation or other means. At no time shall sediments be deposited in a wetland or water body. The applicant shall immediately control any erosion problems that occur at the site and shall also immediately notify the Conservation Commission, which reserves the right to require additional erosion and/or damage prevention controls it may deem necessary. Sedimentation barriers shall serve as the limit of work unless another limit of work line has been approved by this Order.
- 18. WORK NOT AUTHORIZED. Only work explicitly described in the above-referenced plans and Notice of Intent is authorized under this Order of Conditions. Installation of drains or sump pump effluents to any portion of the storm water drainage system that is tributary to a resource area is hereby prohibited, unless such work is explicitly depicted on the above plans, or subsequently approved plans.
- 19. AUTHORIZED WORK. This Order of Conditions applies only to work associated with the roadway, drainage system, utilities, and replication within Hopping Brook Phase il. Any work not covered by this Order: (i) within 100 feet of any mapped wetland as shown on the plans; (ii) within any area subject to the 100 year flood elevation; or (iii) within 200 feet of a perennial stream or river will require a separate filing. Any other activity relating to additional construction activities (e.g., lot grading, building construction, etc.) proposed within any area subject to jurisdiction by the Commission, shall require the filing of a Request for Determination of Applicability (RDA) and/or a new Notice of Intent and receipt of a valid Determination of Applicability or Order of Conditions, prior to the commencement of said activity. Any impacts on resource areas, associated with such areas, will take into consideration the cumulative impacts of all such activities, as well as those associated with this filing.
- 20. PLAN CHANGES. Any changes in the above-mentioned plans, Notice of Intent. or change resulting from the preceding conditions (including the submittal of additional information), must be submitted to the Holliston Conservation Commission for approval prior to implementation. A copy of such request shall at

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

185-553

Provided by DEP

the same time be sent to the Department of Environmental Protection. One of the following responses will be made by the Commission:

- a. If the Commission finds, by majority vote, said changes to be insignificant to the interests of the Act, then the Commission will so notify the Applicant in writing.
- b. If the Commission finds, by majority vote, said changes to be significant and / or deviate from the original plans, Notice of Intent, or this Order of Conditions, and that the interests of the Act would best be served by the issuance of additional conditions, the Commission will conduct another Public Hearing within 21 days, advertised at the Applicant's expense, in order to take testimony from all interested parties. Within 21 days of the close of the Public Hearing the Holliston Conservation Commission will issue an Amended Order of Conditions. No work shall be undertaken until the Amended Order of Conditions has been recorded in the Registry of Deeds or Land Court in the manner described in Condition #8 and with a marginal reference to the original Order of Conditions, and until all administrative appeal periods from the Amended Order of Conditions have elapsed.
- c. If the Commission finds, by majority vote, said changes to be significant and would substantially change the nature, scope, purpose, or impact of the project, then the Commission will direct the Applicant to file a new Notice of Intent.
- 21. TRANSFER OF OWNERSHIP. Within ten (10) calendar days inclusive of the transfer of ownership of the subject property in whole or in part, including lots or buildings conveyed under individual deeds, the Conservation Commission shall be notified in writing of the name and address of the new owner. Within ten (10) calendar days inclusive of such transfer, a sworn affidavit shall be filed with the Holliston Conservation Commission by the new owner that he or she has read and understood the Order of Conditions and terms applicable to the project site and intends to comply with all provisions of the Order.
- 22. RIGHT TO INSPECT. Members and Agents of the Commission and the Department of Environmental Protection reserve the right to enter and inspect the property at all reasonable times, until a Certificate of Compliance is issued, to evaluate compliance with the conditions stated in this Order of Conditions, the Massachusetts Wetlands Protection Act (M.G.L. Ch. 131, Sec. 40) as amended, 310 CMR 10.00, and the Holliston by-law (Article XXX) and its implementing Regulations. The Commission may acquire any information, measurements, photographs, observations, and/or materials, or may require the submittal of any data or information deemed necessary by the Commission for that evaluation. Visitors shall check in at the field office.
- 23. APPEAL PERIODS. No work shall commence on-site until all appeal periods have elapsed and an Order of Conditions has been recorded with the Registry of Deeds, and proof of such recording has been submitted in writing to the Holliston Conservation Commission.
- 24. COORDINATION WITH OTHER REQUIRED PERMITS. No regulated work shall commence until all permits for this project have been received, which may include but are not limited to, NPDES permit, 401 Water Quality Certification from the Department of Environmental Protection, and a final Certificate pursuant to the Massachusetts Environmental Protection Act. The applicant shall provide copies of all additional permits to the Holliston Conservation Commission prior to the start of construction activities.
- 25. CONTRACTOR NOTIFICATION. The provisions of the Order of Conditions shall apply to, and be binding upon the Applicant, his employees, agents, independent contractors, and all successors and assigns in interest and control. The Applicant shall assure that a complete copy of this Order and Permit, including

WPA Form 5 - Order of Conditions

185-553

DEP File Number:

Provided by DEP

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

its drawings, Special Conditions, and any amendments shall be maintained at the work site whenever work is being performed. The permittee shall assure that all contractors, subcontractors, and other personnel performing the permitted work, are fully aware of the permit's terms and conditions.

- 26. ENFORCEABILITY. Conditions set forth in this Order of Conditions are incorporated herein by reference and any breach of said conditions shall also be deemed to be a breach of the conditions of this permit and shall be enforceable to the fullest extent authorized by the Massachusetts Wetlands Protection Act (M.G.L., c.131, §40), its implementing Regulations (310 CMR 10.00), and Town of Holliston Wetlands Protection By-Law (Article XXX) and its implementing Regulations. The Commission orders that all work shall be performed in accordance with conditions set forth in this Order of Conditions, and with the Notice of Intent, plans and referenced documents.
- 27. CONSERVATION RESTRICTIONS. A Conservation Restriction, in perpetuity, pursuant to M.G.L., c.184, §26(c) shall be placed on four areas totaling 30.87 acres of the 205.56 acre parcel as shown on the referenced Conservation Restriction Plan. The Restriction shall be submitted to the Secretary of Environmental Affairs for approval prior to the commencement of any activities subject to this Order. The Conservation Restriction must be fully approved by the Secretary of Environmental Affairs prior to the issuance of a Full or Partial Certificate of Compliance. The content of the Conservation Restriction shall be reviewed and approved in writing by the Conservation Commission prior to submission of the documents to the Commonwealth. The Conservation Restriction shall follow the guidelines set forth in "The Massachusetts Conservation Restriction Handbock", Executive Office of Environmental Affairs, Division of Conservation Services.

PRE-CONSTRUCTION

All requests for site inspections and compliance reviews must be scheduled with the Conservation Commission office at least 7 days in advance.

- 28. PRE-CONSTRUCTION MEETING. Prior to the commencement of construction, the applicant shall submit the names and contact information of the Project Managers to the Commission. Additionally, prior to the commencement of any activities associated with this Order, the applicant, Project Managers, Compliance Inspector (See Condition 32: Compliance Inspection) and Conservation Agent or Commission representative shall meet at the site to review the Conditions of this Order. All wetland resource areas shall be clearly marked prior to this on-site project review.
- 29. EROSION CONTROL INSTALLATION. Prior to the commencement of work under this Order of Conditions, all erosion control measures (e.g., erosion control barriers and check dams, etc.), shall be installed. The Commission, or its agent, shall be notified when the protective measures have been installed for inspection and verification. No other work shall be undertaken until written approval is received from the Commission or its agent. Erosion control barriers shall be installed with siltation fencing backed by staked-in-place haybales. Haybales shall be entrenched three inches. Said siltation fencing shall be entrenched 6 inches and installed on the upland side of the haybale. Where haybales cannot be entrenched because of paved or compacted surfaces, loose hay shall be stuffed between and under bales to ensure that water is properly filtered.
- 30. NOTIFICATION OF COMMENCEMENT OF WORK. The Applicant shall notify the Conservation Commission, in writing, 48 hours before any activity commences on the project site and shall advise the Conservation Commission of the name(s) and telephone number(s) of the person(s) on site responsible for compliance with this Order. This list shall be resubmitted if any changes are made to it.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 5 - Order of Conditions

DEP File Number:

185-553

Provided by DEP

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

- 31. NSTAR ACCESS AGREEMENT. Prior to the start of construction, the Holliston Conservation Commission shall be provided with a copy of the access agreement between the Applicant and Nstar relative to the construction of the proposed Wetland Replication Area for the project.
- 32. WETLAND PROTECTION. No work or activity, including the cutting of vegetation, shall take place in a wetland area other than provided for in this Order of Conditions. No vegetation shall be removed from areas that are outside of the Limit of Work shown on the final site plans.

CONSTRUCTION

- 33. WETLAND CROSSING. The box culverts to be used at the wetland crossing shall consists of one 4' by 6' culvert and one 4' by 11' culvert, not two 4' by 6' culverts as shown on the site plan. The inverts of the culverts shall be those shown on the site plan.
- 34. TEMPORARY FILL AT WETLAND CROSSING. The temporary wetland crossing shall be constructed of two 36" RCP pipes, and temporary fill shall consist of gravel/stone borrow without fines, washed and obtained off-site.
- 35. VERNAL POOL HYDROLOGY. Prior to the start of construction, the Applicant shall submit to the Holliston Conservation Commission for its review and approval information relative to the maintenance of the existing hydrology of Certified Vernal Pool 2808 during construction and post construction periods of the proposed project. This information shall include any narrative, drainage calculations, and plans required to demonstrate that the hydrology of the pool will not be adversely affected by the proposed project.
- 36. COMPLIANCE INSPECTION. The applicant shall retain the services of a qualified professional (hereafter referred to as the "Compliance Inspector") with demonstrated experience in wetland protection, wetland management, endangered species, endangered species habitat, endangered species monitoring programs, to oversee all aspects of construction relating to wetland alteration and replication activities. The resume of this individual shall be submitted to and approved by the Commission. The Compliance Inspector shall be hired by the Conservation Commission and shall represent the rights and interests of the Conservation Commission, funding for whom shall be provided by the applicant. The Compliance Inspector shall inspect all work within the resource areas, buffer zones, replication activities on a weekly basis. Compliance Inspections shall occur twice weekly when activities include wetland replication, the construction of the roadway crossing, bank restoration, and areas within 200 feet of the Certified Vernal Pools or within the watershed of the Certified Vernal Pools. The applicant or its representative shall create a plan that shows all of the above listed areas and provide a copy of this plan to the Commission, the Compliance Inspector(s), and all contractors responsible for the project prior to the start of construction. The Conservation Commission reserves the right to increase or decrease the number of visits by the Compliance Inspector based on the level of construction activity, the environmental complexity and/or sensitivity of construction activities, unforeseen conditions, and climatalogical factors. The applicant may choose to select more than one individual or a firm to conduct the Compliance Inspection if the minimum qualifications stated above are not met by one individual or company. The Compliance Inspector shall be available for Conservation Commission meetings when required. The Compliance Inspector shall also be responsible for identifying an acceptable alternate should the Compliance Inspector be unable to conduct the required inspections.

185-553

Provided by DEP

DEP File Number:

WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

- 37. PERIODIC INSPECTION REPORTS. A brief monthly report shall be submitted by the Compliance Inspector to the Commission, detailing the extent of compliance with this Order of Conditions, status of erosion control measures, including dates and times of inspections, work which has been completed to date, any problems or difficulties encountered, and recommendations for remediation. The Compliance Inspector's reports shall be submitted weekly during periods in which activity is occurring in wetland areas, bank restoration activities, construction of the roadway crossing, endangered species habitat and monitoring, replication areas, within 200 feet of the vernal pool area or within any watershed area that will contribute runoff into the Certified Vernal Pools. The condition of the detention pasins shall be inspected and reported after each storm event of greater that 0.5 (1/2) inch or greater in a 24-hour period until vegetation is fully established, and thereafter at intervals per the schedule provided in Attachment H of the referenced Notice of Intent. Monitoring reports detailing the percent vegetative cover and percent of wetland plant species, type of species, and relative vigor of the plants growing in the replication area. Recommendations for the replacement of dead or dying vegetation shall be made, and implemented. The reports are to include a discussion of the progress of construction to date, adherence to the referenced Construction Sequence Plans, provide an update of the work scheduled for the next period, state the effectiveness and condition of erosion control measures, and state whether the project is in compliance with the terms of this Order. The period of inspections shall begin at the time siltation controls Inspections shall continue as described in the "Multi-Year Project Components", Attachment H, of the Notice of Intent every 3 (three) months once construction activities are complete. A final Certificate of Compliance shall not be issued until all monitoring activity cycles described in Attachment H of the Notice of Intent have been completed. The weekly logs/reports shall be submitted on a monthly basis to the Conservation Commission, the Building Department and the Planning Board. The Conservation Commission reserves the right to require submission of such reports on a more frequent interval. Approval for temporary cessation of reports must be requested in writing by the Applicant or his authorized representative. Failure to submit satisfactory reports shall be deemed sufficient cause for the issuance of an Enforcement Order pursuant to the Act and Bylaw. Continued submission of incomplete or inadequate reports shall be deemed sufficient cause for revocation of this permit.
- 38. HABITAT AND ENDANGERED SPECIES MONITORING. The Compliance Inspector shall monitor the temperature of the constructed nesting area, with oversight from the Conservation Commission or the Conservation Agent. The temperature will be monitored at 0.5 (1/2) hour intervals in the center of the nesting area using a HOBO type data logging sensor at depths of 1, 4, 10 and 18 inches from April 1st until July 31st of each year for five years. All data thus generated shall be reported to the Conservation Commission at intervals specified in the Periodic Inspection Reports. The applicant shall be required to modify and implement design modifications for the nesting habitat if the temperatures are not within the nominal range required for nesting (i.e., a persistent soil temperature in the depth of potential nests of 45 C or greater or a lower temperature value if supported by the scientific literature).
- 39. MONTHLY CONSTRUCTION MEETINGS. During the period of construction a monthly meeting shall occur between the Conservation Commission or the Conservation Agent, the Compliance Inspector and the Project Manager and Project Engineers to discuss all activities associated with this Order.
- 40. LIMIT OF WORK. The erosion control barrier shall be the Limit of Construction (unless otherwise specified on the approved plans) beyond which no vegetation cleaning or earth-disturbing activity shall occur or heavy equipment shall be allowed. At no time during or after construction shall fill or other materials be placed, slump or fall beyond the limit of grading as shown on the plans. The Applicant shall be responsible for inspecting and maintaining all slopes and embankments and shall immediately inform the Commission if slumping or erosion occurs. In addition, Orange Snow Fence will be required to be

185-553

DEP File Number:

Provided by DEP

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

installed at the erosion control barrier to more clearly mark the Limit of Work at the Bordering Vegetated Wetlands/Bank crossing. The Orange Snow Fence will be installed and maintained from 30 feet prior to the crossing to 30 feet after the crossing on both sides of the proposed roadway.

- 41. ANTI TRACKING PAD DETAIL. Prior to the start of construction, the Applicant shall submit a detail for the Anti Tracking Pad proposed at the northern and southern access routes to the site. The Anti Tracking Pad shall be a minimum of 100 feet in length, rather than 50 feet.
- 42. EROSION CONTROL MAINTENANCE AND STOCKPILE. Prior to any soil disturbance, removal, or stockpiling, the Applicant shall have on the site, an adequate quantity of supplemental haybales, silt fence, and stakes to be used for control of emergency erosion problems. All erosion control measures are to be inspected weekly and after each storm event of 0.5 (1/2) inch or greater in a 24-hour period, to ensure the proper functioning of said measures in preventing the introduction of silt in the wetland. Erosion controls must be inspected, cleaned of accumulated material, and repaired as needed. Material collected from the siltation barrier shall be removed as necessary and disposed in an upland area. All erosion control and sedimentation prevention measures shall remain in place and be maintained for the purpose for which they are installed (proper maintenance may require periodic replacement) until the area upgradient is permanently stabilized and a Certificate of Compliance has been issued. In the event that an uncontrollable emergency occurs, such as a heavy rainstorm, causing erosion and sedimentation breakout, the Applicant shall replace such barriers to the standards required by the Order and the satisfaction of the Commission.
- 43. ADDITIONAL EROSION CONTROL. The installation of haybales or other erosion control and sediment control measures may be required in places not shown on the plan or mentioned in the Order of Conditions. Erosion control barriers may be required by the Conservation Commission in those locations, in order to prevent or rectify damage to resource areas. Said erosion control parriers shall be in place within forty-eight (48) hours of said request. Any interim, partially constructed crainage structure outfalls shall have erosion control and sedimentation prevention. Any unstabilized drainage ways will have erosion controls placed across the flow path at least every 50 feet intervals.
- 44. STABILIZATION. All disturbed surfaces shall be permanently stabilized with vegetation within five (5) days of final grading except in non-growing seasons where temporary stabilization (as described in Special Condition, 45) shall be employed. Under no circumstances shall soi, be left unstabilized for periods over one month. Preventative controls such as temporary seeding/ bonded fiber matrix or jute covering shall be employed to prevent such an occurrence.
- **45. SLOPES.** All slopes 3:1 to a maximum of 2:1 shall be stabilized with American Excelsior Co. Curlex blankets, "Soil Guard" or other method approved by the Commission. The proposed grading shall be constructed as shown on the enclosed plan. No deviations shall be made to the limit of work or the steepness of the slopes shown. No increase in slope, retaining walls, boulder walls, or rip rap slopes shall be constructed without prior approval by the Conservation Commission.
- 46. DEWATERING. There shall be no dewatering on site that will result in the direct discharge of water to any wetland resource area. Any dewatering discharge within 100 feet of a resource area, within 200 feet of a vernal pool or nesting habitat, or functional drainage way will be equipped with a filter bag designed for that purpose. All suction hoses will be kept at the surface of the water to reduce to a minimum the suspension and pumping of silt.

185-553

DEP File Number:

Provided by DEP

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

- 47. DUST CONTROL. Oil, sodium chloride, and/or calcium chloride shall not be used during or after construction for the control of dust. Only water shall be used for dust control, and water shall be applied as required to adequately control dust generated by site activities.
- 48. SPILL PREVENTION. All equipment shall be stored outside the resource area and the 100-foot buffer zone and in such a manner so as not to introduce any pollutants into any wetlands, and in no event shall there be any discharge or spillage of fuel, oil or other pollutants into any resource area. Servicing of equipment (e.g., fueling, changing, adding or applying lubricants or hydraulic fluids, or washing/rinsing of concrete transports) must be done outside resource areas and the 100-foot buffer zone, with the exception of refueling of immobile equipment. Immobile equipment includes, but is not limited to, operating pumps, where removal of the pump would cause unreasonable damage to the resource area or delay to the construction effort. During and after work on this project, the Applicant shall take all reasonable precautions to prevent the discharge or spillage of fuel, cil other pollutants by ignorance, accident or vandalism. Storage of petroleum products for use during construction (motor oil, gasoline, or diesel fuel) shall not be allowed in buffer zones or resource areas at any time.
- **49. SPILL PREVENTION EQUIPMENT.** Before construction measures and equipment will be provided on site sufficient to prevent discharged fluids from reaching wetlands or water bodies, and be readily available for use. These will include some combination of the following:
 - dikes, berms or retaining walls sufficiently impervious to contain spilled oil;
 - sorbent and barrier materials in quantities determined by the contractor to be sufficient to capture the largest reasonably foreseeable spill;
 - disposable drums or containers suitable for holding and transporting contaminated materials;
 - any immobile equipment operation within a resource area or the buffer zone and any other equipment which, for any reason, is refueled within the resource area of the buffer zone will have sorbent pad under it at all times it is operation and during any refueling.
- 50. DETENTION FACILITIES. Detention basins designed to mitigate the runoff from the proposed roadway construction shall be completely constructed and verified as functional by the Compliance Inspector prior to the start of earth moving activities on other portions of the project which generate runoff to each basin unless otherwise permitted in writing by the Commission. Specifically, a binder course with a Cape Cod berm shall be installed prior to any further construction. All outlets from all detention basins shall be installed with temporary outlet riser pipes and filter materials or other such device approved by the Commission prior to installation to allow the basins to function as sedimentation basins. These structures shall remain in place throughout construction until the site is fully stabilized and the Commission gives approval for their removal.
- 51. STOCKPILING. All debris, fill and excavated material, construction material, and building material shall be stockpiled at least 100 feet away from any wetland, be located outside of any floodplain and be located to prevent sediment from surface runoff entering the wetlands. At no time shall any debris or other material be buried or disposed of within the line marked on the plan as a wetland. All stockpiles shall be properly stabilized to prevent erosion and siltation. Preventative control such as temporary seeding/ bonded fiber matrix or jute covering shall be employed to prevent such an occurrence.
- 52. FILL MATERIAL. All fill brought on to the site for use in this project within the 100-foot buffer zone shall be in accordance with General Condition Number 6. Additionally, the material snall be free from, organic matter, large stones, masonry, stumps, tree branches, and waste materials. In addition to the specific

WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

Provided by DEP

exclusion of certain materials as fill used in connection with this project the following shall be prohibited: chemically contaminated material; concrete and asphalt rubble; stumps; "bulky waste", "garbage". "rubbish", "refuse", "special waste" and "waste" as defined in 310 CMR 19.01, DISPOSAL OF SOLID WASTE BY SANITARY LANDFILL.

- 53. CONSTRUCTION DEBRIS REMOVAL. All debris generated during construction from any aspect of this project shall be removed from the site and properly disposed. All stumps, brush, waste and debris shall be removed from the construction site or recycled into usable chips and shall be distributed promptly and in a legal manner. Records as to the destination of all materials to be removed from the site, including. stumps, brush, excess fill, loam, shall be kept and provided to the Commission upon request.
- 54. TIMING OF CONSTRUCTION. No work permitted under this Order of Conditions shall be performed within 200 feet of Certified Vernal Pools 2806, 2807 and 2808 or within watersned areas contributing to these Certified Vernal Pools between March 1st and May 15th of any year in which construction activities occur unless approval in advance is obtained in writing from the Conservation Commission. Additional time-frame limitations set forth in Attachment G of the Notice of Intent shall also be followed. Lastly, once the erosion control barriers have been established at the southern crossing and prior to the start of earthmoving activities, the area between the erosion control barriers shall be inspected by a qualified biologist for the presence of the subject rare species. Specimens shall be removed from the work zone by a qualified biologist. If this work is conducted outside of the active period of the subject rare species, the Holliston Conservation Commission shall be in advance notified in writing, and this inspection will not be required.
- 55. WETLAND REPLICATION AREA. All work concerning the proposed wetland replication shall conform to the above referenced plans and supporting documents, unless otherwise specified in this Order. As discussed by Oxbow Associates, the Wetland Replication Area shall be constructed, graded, and seeded during year one, and the woody vegetation shall be established during year two. The Compliance Inspector shall evaluate and report the condition and growth of the wetland replication area at intervals required in Attachment H of the Notice of Intent. The Compliance Inspector's final report shall be a portion of the documentation necessary to obtain a Certificate of Compliance for the wetland replication work. A Certificate of Compliance for the replicated wetland shall require that at least 75% of the surface of the replacement area be reestablished with indigenous wetland plant species within two growing seasons following completion of the area [310 CMR 10.55(4)(b)7].
- 56. WORK STOPPAGE. The Applicant or his representative shall notify the Commission, in writing, at least one week prior to the commencement of construction. In the event that work ceases on the site for a period of time greater than fifteen (15) business days, and before the inspections required by the Order have stopped, the Applicant shall notify the Commission. The Applicant will notify the Commission as to what steps will be taken for long-term maintenance of the site during the stoppage of work. The Applicant shall re-notify the Commission prior to the re-commencement of work.
- 57. TIMELY RESPONSE TO EROSION PROBLEMS. The Applicant snall move swiftly to control any erosion problems that occur on the site. The Holliston Conservation Commission reserves the right to require additional erosion and/or damage prevention controls it may deem necessary.
- 58. CONTROL OF CONSTRUCTION DEBRIS. No construction debris (paper, wood, metal, concrete, etc.) may be allowed to enter the resource area at any time. Windblown material shall be promptly removed from wetland resource areas.

185-553

DEP File Number:

Provided by DEP

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

59. DAMAGE TO RESOURCE AREAS. Any damage caused as a direct result of this project to any wetland

- resource areas, beyond that authorized by the Order, is the responsibility of the Applicant to repair, restore or replace. Sedimentation or erosion into these areas shall be considered damage to wetland resource areas. The Conservation Commission shall be promptly notified of any damage to wetland resource areas. Following notification, the Applicant must submit a plan for abatement of the problem and restoration. This plan must be approved by the Conservation Commission prior to its implementation.
- 60. SURPLUS EARTH MATERIALS. It shall be the responsibility of the Applicant to ensure that any and all surplus materials which are not needed for use on the project are lawfully disposed of outside any area subject to protection under M.G.L. c 131, s. 40 and Article XXX, unless such disposal area and activity are regulated under either a valid Order of Conditions or Determination of Applicability.
- 61. STREET LIGHTING. In order to facilitate the migration of vernal pool species within the wildlife corridor there shall be no street lights installed within 100 feet of any vernal pool area.

POST CONSTRUCTION

- 62. CERTIFICATE OF COMPLIANCE. Not more than thirty days following completion of the project, the Applicant shall submit with their request for a Certificate of Compliance, an affidavit prepared by a professional engineer or land surveyor registered in the Commonwealth of Massachusetts, stating that the site has been developed in accordance with the requirements of this Order of Conditions, based upon an on-site inspection and the referenced site plan(s).
- 63. AS BUILT. Upon completion of the project, the Applicant shall submit with their request for a Certificate of Compliance, an As-Built plan for all work within the jurisdiction of the Wetlands Protection Act and Article XXX. If a project has been completed in accordance with plans stamped by a registered professional engineer, architect, landscape architect or land surveyor a written statement by such a professional person certifying substantial compliance with the plans and setting forth what deviations, if any, exists from the plans approved in the Order shall accompany the request for a Certificate of Compliance.
- 64. FERTILIZERS. Fertilizers utilized for landscaping and lawn care shall be low phosphate content variety, and shall be used in moderation. Pesticides and herbicides shall not be used within 100 feet of a wetland resource area.
- 65. DRAINAGE SYSTEM MAINTENANCE. Prior to issuance of a Certificate of Compliance all drainage structures shall be cleaned of accumulated sediment and debris. Following issuance of a Certificate of Compliance, all catch basins and other storm drainage structures shall be inspected and cleaned annually of all accumulated sediments. Catch basins with hoods or water quality inlets shall be inspected semiannually to check for oil build-up and outlet obstructions. A licensed contractor shall dispose of material removed from catch basins. Records of such cleaning shall be maintained for a minimum of the previous three (3) years and shall be made available for inspection upon request by the Commission. The Applicant shall submit a summary of these reports annually to the Commission. This condition shall survive the Order of Conditions and shall run with the title of the property.
- 66. NON-ROADWAY DISCHARGE. For the purposes of this project site, the term non-roadway discharge shall not include stormwater that is derived from any paved surfaces on the site, including, but not limited to roadways and parking lots. This condition shall survive this Order of Conditions, and shall run with the title of the property.

DEP File Number:

WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

- 67. UNDERGROUND STORAGE TANKS. No underground storage of fuel oils or hazardous substances or hazardous wastes shall be allowed within the 100-foot buffer zone or within 200 feet of any Certified Vernal Pool or nesting habitat. This condition shall survive this Order of Conditions, and shall run with the title of the property.
- 68. SNOW REMOVAL AND STORAGE. No snow storage areas shall be located within the 100 foot Wetland Buffer Zone. At no time shall snow removal operations result in the direct discharge of snow into wetlands, nesting habitat, vernal pool areas or drainage channels. Sodium chloride shall not be used for de-icing on any portion of the site covered by this Order of Conditions. These conditions shall remain in force in perpetuity beyond the issuance of a Certificate of Compliance.
- 69. OPERATION AND MAINTENANCE PLAN. The Applicant shall provide an Operation and Maintenance Plan for the stormwater drainage system to the Commission prior to its release of the Order of Conditions. The owner and party responsible for maintenance of the system must be clearly identified in the plan. The drainage system shall be maintained according to the plan. The annual roadway sweeping plan shall be implemented to include two annual sweep operations; the first by April 30th and a second by November 1st of each year. This condition shall remain in force in perpetuity beyond the issuance of a Certificate of Compliance.
- 70. GROUNDWATER INFILTRATION AREA THERMAL MITIGATION PLAN. Prior to the discharge of any roof water to the groundwater infiltration area beneath the turtle nesting area, the Applicant shall provide to the Holliston Conservation Commission for their approval details regarding the method or methods to be used to detain the first inch of runoff. Only roof runoff may be discharge through the groundwater infiltration area located beneath the turtle nesting area. This condition shall remain in force in perpetuity beyond the issuance of a Certificate of Compliance.
- 71. VERNAL POOL CERTIFICATION. The Applicant shall nave a qualified biologist conduct the fieldwork and complete and submit the necessary paperwork to the Massachusetts Natural Heritage and Endangered Species Program to certify the Vernal Pool proposed to be created within the Wetland Replication Area. This work shall be completed by the end of the three-year Wetland Replication Area monitoring period, and a copy of all paperwork shall be submitted to the Holliston Conservation Commission in a timely manner.
- 72. RARE SPECIES MONITORING REPORTS. The Holliston Conservation Commission shall be notified in writing by certified mail, return receipt requested of the availability of Rare Species Monitoring Reports. The Holliston Conservation Commission shall be notified of the availability of the reports within 14 days of submittal of the reports to the Massachusetts Natural Heritage and Endangered Species Program.
- 73. MULTI-YEAR PROJECT COMPONENTS. Following construction activities the Compliance Inspector shall continue to submit reports every 3 months related to Nesting Habitat Maintenance, Nesting Habitat Monitoring, Drift Fence, Turtle Monitoring (South), Wetland Replication and the Stormwater Management System as specified in the Notice of Intent. These reports shall continue for the time periods specified for each activity in Attachment H of the Notice of Intent or for five years, whichever is less.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 5 – Order of Conditions

185-553

DEP File Number:

Provided by DEP

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and

Article XXX of the Town of Holliston Bylaws

Fin	ndings as to municipal bylaw or ordinance				
Fui	rthermore, the Holliston Conservation Commission hereby finds (check one that applies):				
	that the proposed work cannot be conditioned to meet the standards set forth in a municipal ordinance or bylaw specifically:				
	Municipal Ordinance or Bylaw Citation				
	Therefore, work on this project may not go forward unless and until a revised Notice of Intent is submitted which provides measures which are adequate to meet these standards, and a final Order of Conditions is issued.				
	that the following additional conditions are necessary to comply with a municipal ordinance or bylaw, specifically:				
	Municipal Ordinance or Bylaw Citation				
4	The Commission orders that all work shall be performed in accordance with the said additional conditions and with the Notice of Intent referenced above. To the extent that the following conditions modify or differ from the plans, specifications, or other proposals submitted with the Notice of Intent, the conditions shall control.				
В.	Findings (cont.)				
Add	ditional conditions relating to municipal ordinance or bylaw:				
imp	of the Conditions listed above pursuant to the Massachusetts VVetlands Protection Act and its blementing regulations are hereby made part of the Order of Conditions under Article XXX and its blementing regulations. No additional conditions beyond those required to protect the specified				

interests under the Massachusetts Wetlands Protection Act are required for this project pursuant to Article

1.

XXX.

WPA Form 5 - Order of Conditions

185-553 Provided by DEP

DEP File Number:

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

This Order is valid for three years, unless otherwise spe Conditions #4, from the date of issuance.	ecified as a special condition pursuant to General
Date 29, 2003	· · · · · · · · · · · · · · · · · · ·
This Order must be signed by a majority of the Conserventified mail (return receipt requested) or hand delivered hand delivered at the same time to the appropriate D Office (see Appendix A) and the property owner (if differ	epartment of Environmental Protection Regional
Signatures:	Denris Ferriera
Geoffrey Zeamier	Elizabeth Brousseau Elizabeth Brousseau Elizabeth Brousseau Elizabeth Brousseau
Michael Lotti	LISA II OUG
On 29th Of	Month Fand Year
before me personally appeared	
The above named signa	tories
to me known to be the person described in and acknowledged that he/she executed the same as his/he	i who executed the foregoing instrument and er free act and deed.
Aml Dlaw Pure	2/20/09 My Commission Expires
This Order is issued to the applicant as follows:	
by hand delivery on	by certified mail, return receipt requested, on
Tible	Date

Date

DEP File Number:

185-553

Provided by DEP

WPA Form 5 – Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

C. Appeals

The applicant, the owner, any person aggrieved by this Order, any owner of land abutting the land subject to this Order, or any ten residents of the city or town in which such land is located, are hereby notified of their right to request the appropriate DEP Regional Office to issue a Superseding Order of Conditions. The request must be made by certified mail or hand delivery to the Department, with the appropriate filing fee and a completed Appendix E: Request of Departmental Action Fee Transmittal Form, as provided in 310 CMR 10.03(7) within ten business days from the date of issuance of this Order. A copy of the request shall at the same time be sent by certified mail or hand delivery to the Conservation Commission and to the applicant, if he/she is not the appellant.

The request shall state clearly and concisely the objections to the Order which is being appealed and how the Order does not contribute to the protection of the interests identified in the Massachusetts Wetlands Protection Act, (M.G.L. c. 131, § 40) and is inconsistent with the wetlands regulations (310 CMR 10.00). To the extent that the Order is based on a municipal ordinance or bylaw, and not on the Massachusetts Wetlands Protection Act or regulations, the Department has no appellate jurisdiction.

D. Recording Information

This Order of Conditions must be recorded in the Registry of Deeds or the Land Court for the district in which the land is located, within the chain of title of the affected property. In the case of recorded land, the Final Order shall also be noted in the Registry's Grantor Index under the name of the owner of the land subject to the Order. In the case of registered land, this Order shall also be noted on the Land Court Certificate of Title of the owner of the land subject to the Order of Conditions. The recording information on Page 7 of Form 5 shall be submitted to the Conservation Commission listed below.

Conservation Commission

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 5 - Order of Conditions

185-553

DEP File Number:

Provided by DEP

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

D. Recording Information (cont.)	
Detach on dotted line, have stamped by the Registry of Deeds and submit to the Conservation C	ommission.
To:	
Holliston Conservation Commission	
Conservation Commission	
Please be advised that the Order of Conditions for the Project at:	
Hopping Brook Park, Phase II 185-553	
Project Location DEP File Number	
Has been recorded at the Registry of Deeds of:	
Middlesex	
County Book Page	
for.	
New Hopping Brook Realty Trust	
Property Owner	
and has been noted in the chain of title of the affected property in:	
Book 31501, page 99 and Book 28716, page 36	
Book Page	
In accordance with the Order of Conditions issued on:	
A	
April 30, 2003	
If recorded land, the instrument number identifying this transaction is:	
Instrument No. 1167 on May 20, 2003 at 2:57 p.m.	
If registered land, the document number identifying this transaction is:	
Triogration and, the about the manual restaining the manual and the	
Document Number	
place Il hard W	
Signature of Applicant Michael P. Healy, as absorney for Applicant	

WPA Form 5 – Order of Conditions

185-553 Provided by DEP

DEP File Number:

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

APPENDIX A

A. PLANS:

Hopping Brook Road & Utility Extension For The Hopping Brook Business Park, Holliston MA, Bruce Saluk & Associates:

	Sheet	Description	Date	Revision
i	EX	Existing Conditions – Index Sheet	01/21/2003	
	E1	Existing Conditions and Resource Plan	01/21/2003	
	E2	Existing Conditions and Resource Plan	01/21/2003	
	E3	Existing Conditions and Resource Plan	01/21/2003	
	IN	Proposed Conditions – Index Sheet	03/04/2002	03/21/2003
	C1	Road Alignment Plan	03/04/2002	
			03/04/2002	
	C2	Road Alignment Plan	03/04/2002	
	C3	Road Alignment Plan	03/04/2002	03/21/2003
	C4	Drainage, Utility and Grading Plan	03/04/2002	03/21/2003
	C5	Drainage, Utility and Grading Plan	03/04/2002	03/21/2003
	C6	Drainage, Utility and Grading Plan	03/04/2002	03/21/2003
	C7	Roadway Profile	03/04/2002	03/21/2003
	C8	Roadway Profile	01/24/2003	00.22000
	CR	Conservation Restriction Plan	01/21/2003	03/21/2003
	WR	Wetland Replacement Plan	03/21/2003	03/21/2003
	CS	Construction Index Plan	03/21/2003	00/21/2000
	CS1	Construction Sequence Plan	03/04/2002	01/21/2003
	CS2	Construction Sequence Plan	03/21/2002	01/21/2000
	CS3	Construction Sequence Plan		
	CS4	Construction Sequence Plan	03/21/2003	
	CS5	Construction Activity Schedule	03/21/2003	03/21/2003
	D1	Detail Sheet	03/04/2002	03/21/2003
	D2	Detail Sheet	03/04/2002	
	D3	Detail Sheet	10/04/2002	03/21/2003
		Mylar Existing Conditions Plans		
	EX	Existing Conditions – Index Sheets	1:21/2003	
	E1	Existing Conditions & Resource Plans	1/21/2003	
	E2	Existing Conditions & Resource Plans	1, 21/2003	

B. DOCUMENTS:

Document Notice of Intent, Hopping Brook Realty Trust (Phase II) Stormwater Runoff Study, Hopping Brook, File # 2044 Stormwater Management Report, Hopping Brook, #2044 Storm Water Pollution Prevention Plan (SWPPP) - Road &	Proponent Oxbow Associates Bruce Saluk & Assoc. Bruce Saluk & Assoc. Bruce Saluk & Assoc.	Date 04/18/2002 02/2002 04/2002 03/21/2003	Revised 03/13/2003 03/23/2003 03/21/2003
Utility Extension for the Hopping Brook Business Park Hopping Brook Park, Holliston, MA, Conservation Commission	Bruce Saluk & Assoc.	12/10/2002	01/29/2003
Topics for Discussion Order of Resource Area Delineation, DEP File # 185-524	First Colony Development	01/16/2001	7 72 of 74

Revision Date April 30, 2003 (0600)

Page 23 of 24

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 5 - Order of Conditions

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40 and Article XXX of the Town of Holliston Bylaws

DEP File Number:

185-553 Provided by DEP

Order of Resource Area Delineation, DEP File # 185-538
Letter, "Predicted Temperature Effect of Roofwater Infiltration
on Soil Temperature in Underground Infiltration Systems
Letter, First Colony Development Company, Inc.
Letter, Response to February 19, 2003 Eco Tec, Inc., Review
Letter, First Colony Development Co., Inc.
Letter, Response to Comments on Notice of Intent – DEP file
185-553, Hopping Brook Business Park
Letter, Access road and stormwater structures for commercial
development (Hopping Brook Park), NHESP File # 01-8977

1	First Colony Development Norse Environmental	09/04/2001 By facsimile: 1/17/03
	Norse Environmental	03/17/2003
/	Oxbow Associates, Inc.	03/20/2003
	Healy & Johnson, LLC	03/19/2003
1	Bruce Saluk & Assoc.	03/21/2003
ıl	Natural Heritage (NHESP), Pat Huckery	04/01/2003

APPENDIX D

Revised Stormwater Management Report

STORMWATER MANAGEMENT REPORT

FOR

Hopping Brook – Phase II BSA File #2044

Prepared For:

New Hopping Brook Trust 929 Boston Post Road, East Suite 2 Marlborough, MA 01752

Prepared By:

Bruce Saluk & Associates, Inc. Civil Engineers and Land Surveyors 576 Boston Post Road Marlborough, MA 01752

Prepared On:

April 2002

Revised: August 6, 2002 Revised: November 1, 2002 Revised: December 10, 2002 Revised: January 22, 2003 Revised: March 21, 2003

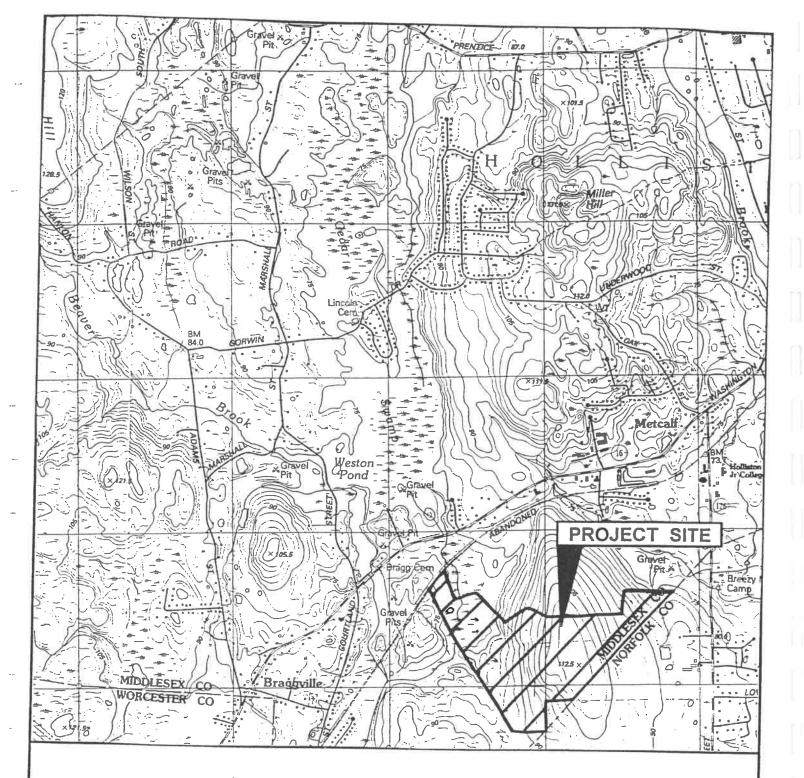
		П

LIST OF TABLES

TABLE 3-1:	Hydrologic Design Criteria
TABLE 4-1:	Summary of Storm Water Runoff for Existing Conditions
TABLE 4-2:	Summary of Storm Water Runoff for Proposed Conditions
TABLE 4-3:	Summary of Storm Water Volumes for Existing Conditions
TABLE 4-4:	Summary of Storm Water Volumes for Proposed Conditions

SECTION 1: Existing and Proposed Conditions

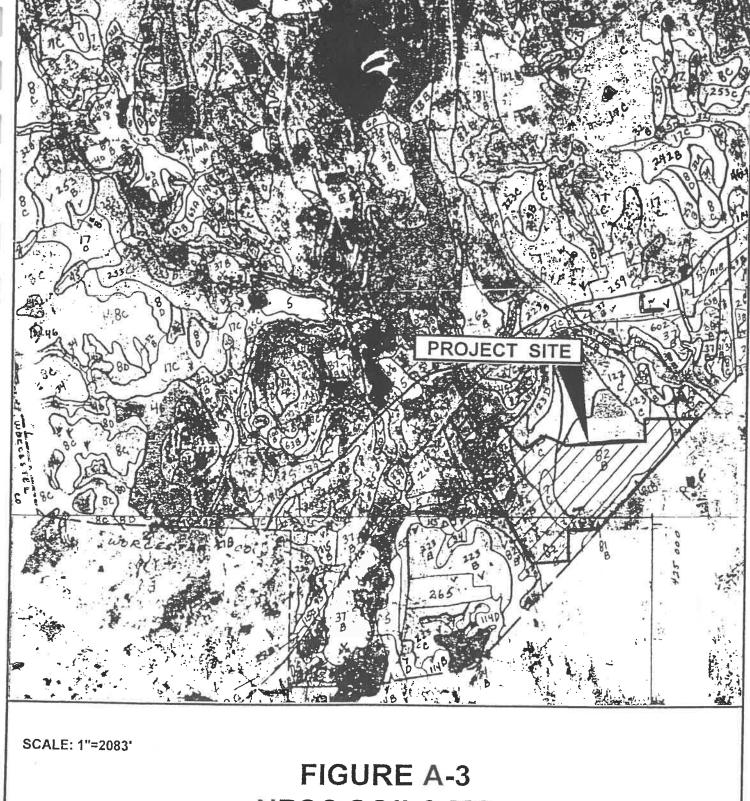
SECTION 1: Existing and Proposed Conditions


The project site as illustrated on Figure 1-1, is located at Hopping Brook Industrial Park, Washington Street in Holliston, MA. This property is located within the Industrial zoning district.

The Natural Resource Service Soil Survey indicates that the site soil is comprised of hydrological groups "A" through "C."

The land is currently undeveloped, predominantly forested, and includes a rare species inhabited wetland system (four-toed salamander & spotted turtle). Most runoff leaves the site in a westerly direction through the local depression that discharges into an existing triple 60-inch diameter RCP culvert located along a partially constructed road crossing at the East Branch of Hopping Brook.

Although the entire property is ± 205 Acres, this stage of the project only includes a 1,500-foot access road. A separate application will be made in the future, as the market allows, for the site development.


The proposed site access roadway, is an extension of the existing Hopping Brook Road. The completed portion of this road consists of a varying width pavement that includes drainage, water, electric & telephone, and sewer infrastructure associated with the future build-out of the site. The proposed roadway results in a net increase in impervious area of approximately 77,500 SF. The proposed roadway will incorporate a drainage collection system that will convey flow through a stormwater treatment system including deep-sump catch basins, extended detention basins and a water quality swale as shown on the plan.

SCALE: 1"=2083"

FIGURE 1-1 LOCUS PLAN

BRUCE SALUK & ASSOCIATES, INC. Civil Engineers & Land Surveyors 576 Boston Post Road Marlborough, MA 01752

NRSC SOILS MAP

BRUCE SALUK & ASSOCIATES, INC. Civil Engineers & Land Surveyors 576 Boston Post Road Marlborough, MA 01752

SECTION 2: Design Rationale

SECTION 2: Design Rationale

The stormwater system was designed to meet standards of the DEP Stormwater Management Policy (November 1996 with revisions of March 1997) and the Holliston Wetlands Administration Bylaw Regulations (September 2001), as well as the Holliston Board of Health Stormwater and Runoff Regulations (February 1999 with revisions of August 2000). As a requirement, 80% of Total Suspended Solids (TSS) must be removed from the average annual load. There will be no direct discharge of untreated stormwater into the wetlands. Additional design criteria include a net reduction in both peak rate and volume of runoff leaving the site. In fact, a significant reduction in peak rate of runoff has been achieved and will reduce erosion along Hopping Brook.

Runoff rates were calculated by developing a HydroCAD computer model using the Holliston Board of Health Stormwater and Runoff Regulations (February 1999 with revisions of August 2000) and TR-55 & TR-20 methodologies for both existing and proposed conditions. HydoCAD software combines the benefits of TR-55's Time of Concentration methodology with the benefits of TR-20's stormwater routing methodology. Refer to Section 4 of the report, which summarizes the runoff rates and volumes for existing and proposed conditions.

Some of the structural means to achieve the aforementioned performance standards include the following:

- All catch basins will include 48-inch deep sumps with oil traps.
- All three extended detention basins will include a forebay and separate infiltration area.
- A water quality swale will treat a small portion of the proposed road runoff.
- Provisions for future maintenance of the stormwater system are provided in Appendix B.

Table 3-1 provides the watershed characteristics that were used in developing the computer model (HydroCAD) for runoff calculations under existing and proposed conditions.

To further protect the water quality, a Construction Stormwater Maintenance schedule is provided on the plan (see Index sheet), and a Post Construction Stormwater Maintenance Plan is included (see Appendix "B").

BSA, Inc. designed the proposed extended detention basins to filter runoff from the proposed roadway and other site runoff. All forebays are designed to treat the 1-inch water quality runoff volume. The purpose of the forebay is to settle suspended solids, pretreat debris, sediment and pollutants. Treated runoff leaving the forebay then enters the main detention area that includes groundwater recharge and finally discharges onto the existing upland. Detention basin #1 will discharge treated runoff from the undisturbed hillside to Certified Vernal Pool (CVP) 2808. This is designed as a discharge to a Critical Area under DEP Stormwater Standards.

In-situ Soil Testing Information

1. In-situ soil evaluation in the location of all proposed Detention Basins revealed loamy-sand material with an average seasonal high groundwater elevation at about two-feet below the surface. Soil testing logs are attached.

MA.S. 2-26-03 TESTING LOCATIONS 292 288 288 TP/2 296 OF LENTION 10

Deep Hole Number TP 1 Date: Feb	26,2003 Time: AM Weather Clear Cold
	OBASIN # 1 (%) 1% Surface Stones WAUS
Vegetation	2-100'-105'
Position on landscape (sketch on the back	3 0000000000000
Distances from:	
Open Water Body feet	Drainageway feet
Possible Wet Area fest	Property Line feet
Drinking Water Well feet	Other ·

DEEP OBSERVATION HOLE LOG					
Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Seil Color (Munseil)	Soil Mettling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-6"	A	FSL	10 4R 3/3	NO	FUNDLE
6"-24"	Bw	5L	10416516	NO	FRINDLE
24-94"	Ċ	25	2.54.	75% 754R 518 C 24"	Rounded MANY Stanes & Cobbles, mixeden/ COARSE SANDY GRAND, Few silt contd stories.
s					

Parent Material (geologic)

Depth to Groundwater:

Ablanow fill Depth to Bedrock: Below pi-

Standing Water in the Hole: 46

Weeping from Pit Face: 43"

Deep Hole Number	P2 Date:	2-20-0	3 Time:A	at .	Weather	
Location (identify on	site plan)	D-BAS	N # 1			• • • • • • • • • • • • • • • • • • • •
Land Use	S	ilope (%)	Surface S		10.11.5	••
Vegetation	TP	150	100			
Landform Position on landscap	T	سَانِ سانت سانت سانت سانت کا کا ما	65	·	Line -	
Position on landscap	e (sketch on the	back)	72000 0	2 0	vanos	
Distances from:				87		
Open Water	Body fe	_	inageway			8
	Area fe	et Pro	perty Line	feet		
Drinking Wat	er Well	feet Oth	er			

DEEP OBSERVATION HOLE LOG					
Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Seil Color (Munseil)	Soil Mettling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0-6"	A	FSL	10 yr 3/3	No	FRIAIde
6"-32"	Вш	5L	10 ye 5/6	>5% © 26"	Made
32"-120"	Č	L5	2.54	5/8	Flow Roch Flagments Few Boulders
ء				*	vi

Parent Material (geologic)

Adamon til Depth to Bedrock: Bedospit

Depth to Groundwater:

Standing Water in the Hole: 100^{11} Weeping from Pit Face: 33^{11}

Deep Hole Number 3. Date:	2-26-0	3 Time: AM	Weather Clear	cold
	D-BAS	5/10 -	* · · · · · · · · · · · · · · · · · · ·	•
Land Use	Slope (%)	1% Surface Stones	WAUS	
Vegetation 6000 000000		15' 0	3	
Landform	l l	· å		
Position on landscape (sketch on th	e back)			38
Distances from:		_		
Open Water Body		Drainageway fe		
Possible Wet Area	feat	Property Line fi	et	
Drinking Water Well	feet	Other ·		

DEEP OBSERVATION HOLE LOG					
Depth from Surface (Inches)	Soil Horizon	Soil Texture (USDA)	Sail Color (Munsell)	Soil Mottling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0'-6"	A	FSL	104R 3/3	NO	FRIAble
6"- 36"	Bw	SL	104R 5/6	>5% @21"	FRIAble
36"-120"	C	<i>L</i> 5	2.54 5/1	7.54R 5/8	FRIAble FINE SAND Fan esth Fragments Few Cobbles
,					at .

Parent Material (geologic) Depth to Groundwater: COLLAPSE

Ing Water in the Hole: 100" Weeping from Pit Face: 24" Standing Water in the Hole: 100 "

Deep Hole Number 77 4 Date: 2-26	-03 Time: AM Weather Clear cold
i land	Surface Stones WAHS
0	: 1 1 1 1 2
Vegetation 8	25
Position on landscape (sketch on the back)	
Distances from:	fant
Open Water Body feet	Property Line feet
Possible Wet Area feet Deloking Water Well feet	Other
Drinking Water Well feet	

Depth from Surface (Inches)	Soil Herizen	Soil Texture (USPA)	Sail Color (Munsell)	Soil Mettling	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0"-6"	A	FSC	104R 3/3	No	FRIAble
6"-32"	Bw	SL.	104R 5/6	17,54R	FRIAble
32"-120"	C	15	254	5/8	Rounded stones FINE SAND FEW ROCK FRAOS

Parent Material (geologic)

Admin till Standing Water in the Hole: 100" Depth to Bedrock: Believ pir

Depth to Groundwater:

Weeping from Pit Face: 24"

Collegas

	er clear cold
Location (identify on site plan)	(a) (b)
CATO GOO	
Landform 8 BB-170 4-1	
Position on landscape (sketch on the back)	
Distances from:	
Open Water Body feet Drainageway feet	
Possible Wet Area feet Property Line feet	
Drinking Water Well feet Other	

DEEP OBSERVATION HOLE LOG					
Depth from Surface (Inches)	Soil Herizen	Soil Texture (USDA)	Sail Color (Munsell)	Soil Mettiing	Other (Structure, Stones, Boulders, Consistency, % Gravel)
0"-6"	A	F3C	104R 313	No	FRIAble
6"-36"	Bis	5L "	104R .	>5% @ 24"	FRIAble
36"-120"	C	LS	2.5.4	7.54R 518	med-coarese 541) mix w/ Few cabbles & gravel
,				8	·

Parent Material (geologic)

Depth to Groundwater: Standing Water

PRINTING THE Depth to Bedrock: Below Pit

Standing Water in the Hole: 1511 Weeping from Pit Face: 3611

Deep Hole Number TP 6 Date: 2-26-6	73 Time: PM Weather Clear Colf
	1% Surface Stones Walls
Land Use Slope (%)	Sunace Stories
Vegetation 6 83	€
Vegetation 5	E
Position on landscape (sketch on the back)	
Distances from:	- Anne
Open Water Body feet	Drainageway feet
Possible Wet Area feet	Property Line feet
Drinking Water Well feet	Other

Depth from Surface (Inches)	Soil Herizen	Soil Texture (USPA)	Seil Color (Munseil)	Soil Mettling	(Structure, Stones, Boulders Consistency, % Gravel)
0"-6"	A	FSL	104R 3/3	NO .	FRIAIbhe
6"- 35"	Bw	5L "	104R 5/0	>5%	FRIAble
35"-120"	C	LS	2.54	7.54R 5/8	FRIEBLE FEW ROUNDES 570 NES FIVE - med, skud

Parent Material (geologic)

Depth to Groundwater:

Alterial till Depth to Bedrock: Below pit

Standing Water in the Hole: 1/05... Weeping from Pit Face: 32.11

SECTION 3: Hydrologic Design Criteria

SECTION 3: Hydrologic Design Criteria

- 1. **DESIGN STORMS:** Both the existing and proposed conditions were analyzed for the 1, 2, 5, 10, 25, 50, and 100-year storm frequencies. The rainfalls used for the above storms were 2.6, 3.25, 4.1, 4.9, 6.1, 7.3 and 8.5 inches, respectively. The rainfall distribution used for each of the storms was a SCS type III, 24-hour rainfall distribution. The rainfall depths used are from the Holliston Board of Health Stormwater and Runoff Regulations (February 1999 with revisions of August 2000) and are based on the "Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada, by Cornell University, September 1993."
- 2. **METHODOLOGY:** HydroCAD was used to develop hydrologic calculations. HydroCAD uses TR-55 methodology to develop time of concentrations, and TR-20 methodology for stormwater routing. The Natural Resources Conservation Service (NRCS) developed these methods.
- 3. **HYDROLOGIC SOIL GROUP:** Soil mapping was used to define the Soil Hydrologic Group classifications for the onsite, that were determined to be from a Hydrologic Group "A" through "C" soil for the site under existing and proposed conditions. A conservative application of a "C" soil was used for modeling purposes.
- 4. **RUNOFF:** The quantity of rainfall that was calculated as runoff was based on (1) soil types and associated hydrologic soil classification, (2) the area of existing and proposed impervious and pervious surfaces; i.e. buildings, driveways, and man-made and natural surface slopes.

TABLE 3-1: Hydrologic Design Criteria

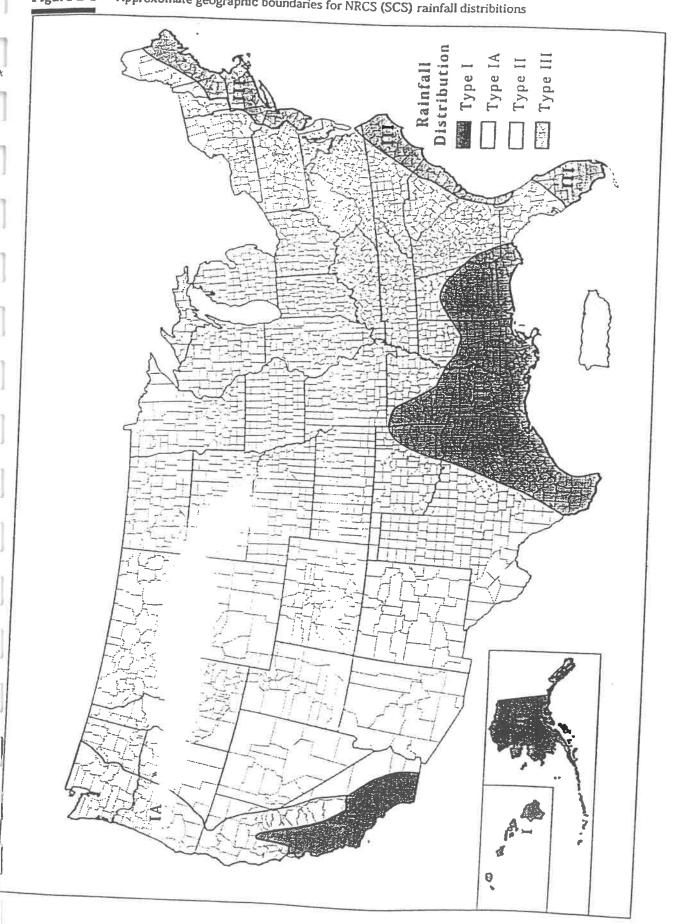
TEM	EXISTING CONDITIONS	PROPOSED CONDITIONS
DRAINAGE AREA (Ac	.)	
EX-A1	20.18	
PR-A1a		15.48
PR-A1b		3.78
PR-A1c		0.48
EX-A2	34.21	
PR-A2a		22.26
PR-A2b	to ===0	10.41
PR-A2c		0.99
PR-A2d		0.79
EX-A3	0.32	
PR-A3		0.52
ГОТАL	54.71 Ac.	54.71 Ac.
TIME OF CONC.		
TIME OF CONC. EX-A1	38.7 mins	
EX-A1 PR-A1a	38.7 mins	36.1 mins
EX-A1 PR-A1a PR-A1b	38.7 mins	36.1 mins 8.0 mins
EX-A1 PR-A1a PR-A1b PR-A1c	***	36.1 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2	38.7 mins 40.8 mins	36.1 mins 8.0 mins 5.0 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2 PR-A2a	***	36.1 mins 8.0 mins 5.0 mins 36.8 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2 PR-A2a PR-A2b	***	36.1 mins 8.0 mins 5.0 mins 36.8 mins 33.9 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2 PR-A2a PR-A2b PR-A2c	***	36.1 mins 8.0 mins 5.0 mins 36.8 mins 33.9 mins 5.0 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2 PR-A2a PR-A2b PR-A2c PR-A2c PR-A2d	40.8 mins	36.1 mins 8.0 mins 5.0 mins 36.8 mins 33.9 mins
EX-A1 PR-A1a PR-A1b PR-A1c EX-A2 PR-A2a PR-A2b PR-A2c	***	36.1 mins 8.0 mins 5.0 mins 36.8 mins 33.9 mins 5.0 mins

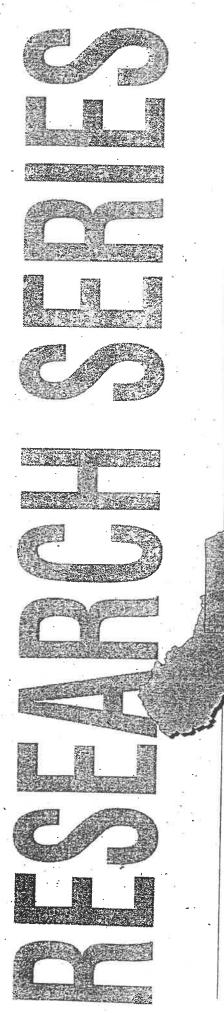
RAINFALL CURVE NUMBER (CN)

EX-A1	70.00	
PR-A1a		74.00
PR-A1b	40 Ad 40	72.00
PR-A1c		98.00
EX-A2	70.00	
PR-A2a		70.00
PR-A2b		71.00
PR-A2c		81.00
PR-A2d		98.00
EX-A3	70.00	
PR-A3		98.00

STORM FREQUENCY/ INCHES OF RAINFALL

1 Yr	2.60 in/24 Hr	2.60 in/24 Hr
2 Yr	3.25 in/24 Hr	3.25 in/24 Hr
5 Yr	4.10 in/24 Hr	4.10 in/24 Hr
10 Yr	4.90 in/24 Hr	4.90 in/24 Hr
25 Yr	6.10 in/24 Hr	6.10 in/24 Hr
50 Yr	7.30 in/24 Hr	7.30 in/24 Hr
100 Yr	8.50 in/24 Hr	8.50 in/24 Hr


ANTECEDENT MOISTURE CONDITIONS:


2

Footnotes:

- is the onsite area that is tributary to the CVP 2808 & wetlands under Existing conditions and Proposed conditions. 0.58 acres of impervious will be diverted to detention basin #2.
- <u>A2</u> is the onsite and offsite area that is tributary to the wetlands under **Existing** conditions and **Proposed** conditions.
- is the onsite and offsite area that is tributary to the wetlands at the south entrance under **Existing** conditions and **Proposed** conditions. Proposed stormwater will flow to the proposed Water Quality Swale.

Approxomate geographic boundaries for NRCS (SCS) rainfall distribitions

NORTHEAST REGIONAL CLIMATE CENTER

Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada

Daniel S. Wilks Richard P. Cember

Cornell University Ithaca, New York

Publication No. RR 93-5 September 1993

24 HOUR RAINFALL

Prepared By William R. Domey, P.E.

An updated Atlas of Precipitation has been published by the Northeast Regional Climate Center at Cornell University that provides more accurate data for the 24 Hour Rainfall and precipitation of other storm events than the National Weather Service TP40 - Rainfall Frequency of the United States (Hershfield 1961) which has been used widely to calculate stormwater runoff rates and volumes in Massachusetts. The updated atlas should be used instead since it is scientifically sound and up to date. Otherwise, structures for stormwater infiltration, retention, detention, and other BMP's may be incorrectly and/or undersized for real storm events.

The new Atlas:

Utilizes the advances in statistics methodology and computing power since 1961.

Provides results determined from data of stations having an average length of record of 51.3 years as compared to the data of TP40, which had an average length of record of 22.6 years.

Recognizes that the frequency of heavy rain events has increased since 1961. TP40 encompasses a relatively dry period compared to the past 40 years.

Provides empirical adjustment factors to transform precipitation amounts pertaining to calendar day observations to maximum precipitation regardless of time of observation.

Analysis of the 1993 Northeast Regional Climate Center Atlas for Southwest Middlesex and Western Norfolk Counties, corrected for the 24-Hour Storm, results in the following rainfall values.

24-Hour Storm	Rainfall (inches)
1	2.6
2	3.25
5	4.1
10	4.9
25	6.1
50	7.3
100	8.5

The title of the new atlas is Atlas of Precipitation Extremes for the Northeastern United States and Southeastern Canada, Cornell University, Ithacs, New York, Publication No. RR 93-5, September 1993. Telephone (607) 255-1751. A second publication entitled Atlas of Short-Duration Precipitation Extremes for the Northeastern United States and Southwestern Canada, Publication No. RR 95-1, March 1995, is also available.

February 7, 1999 Revised August 17, 2000

Table 2-2a Runoff curve numbers for urban areas V

Cover description				umbers for soil group	
·	Average percent		, ,	0	
Cover type and hydrologic condition	impervious area 2/	Α	В	С	D
Fully developed urban areas (vegetation established)	4				
Open space (lawns, parks, golf courses, cemeteries, etc.) 3:					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)	*******	49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:	******	00	01	7.3	ou
Paved parking lots, roofs, driveways, etc.		-			
(excluding right-of-way)		98	98	98	98
Streets and roads:	*******	00	02	30	30
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved: open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					00
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)	*****	96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
l acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas	•				
Newly graded areas					
(pervious areas only, no vegetation) 5/	77	86	91	94	
dle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

 $^{^{1}}$ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2c Runoff curve numbers for other agricultural lands y

Cover description	~~~^			mbers for soil group	
Cover type	Hydrologic condition	A	В	С	D
Pasture, grassland, or range—continuous forage for grazing . 2	Poor	68	79	86	89
	Fair	49	69	79	84
	Good	39	61	74	80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	_	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. ¥	Poor	48	67	77	83
	Fair	35	56	70	77
	Good	30 4⁄	48	65	73
Woods—grass combination (orchard or tree farm). ∜	Poor	57	73	82	86
	Fair	43	65	76	82
	Good	32	58	72	79
Woods. €/	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 4/	55	70	77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	74	82	86

¹ Average runoff condition, and $I_{a_0} = 0.2S$.

² Poor: <50%) ground cover or heavily grazed with no mulch.

Fair: 50 to 75% ground cover and not heavily grazed.

Tan. 50 to 75% ground cover and not heavily grazed.

Good: > 75% ground cover and lightly or only occasionally grazed.

3 Poor. <50% ground cover. Fair: 50 to 75% ground cover. Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵ CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

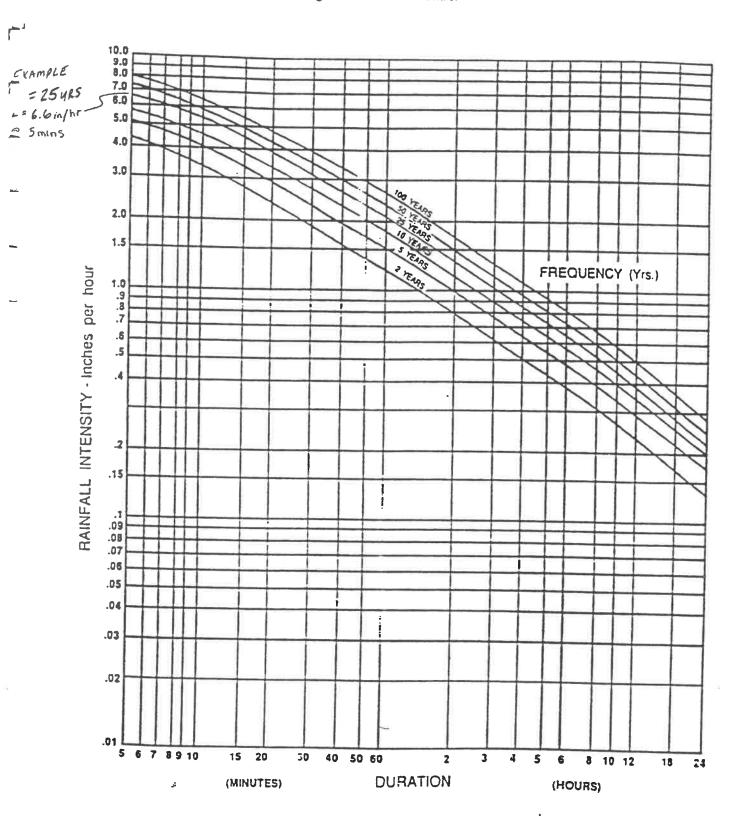


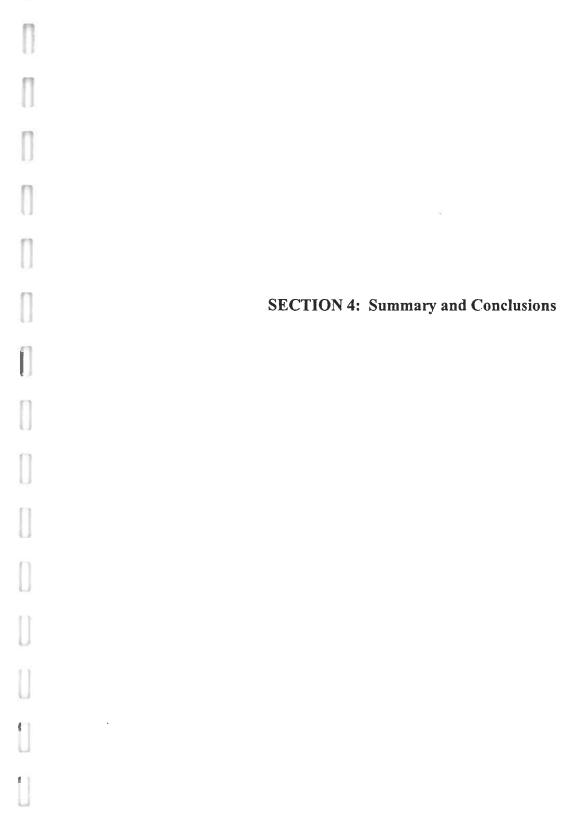
Figure 10-6. Intensity — Duration — Frequency Curve for Worcester, MA

20

Table 19-10.—Range of seepage rates in unlined canals (data taken from Wilson et al. [1980] after Kraatz [1977])

Effective hydraulic conductivity	Description of materials ¹
inihr .	
0.12 - 0.18	Clay-loam, described as "impervious"
0.25 - 0.38	Ordinary clay loam
0.38-0.50	Sandy loam or gravelly clay-loam with sand and clay
0.50-0.75	Sandy loam
0.75 - 0.88	Loose sandy soil
1.0-1.25	Gravelly sandy soils
1.5-3.0	Very gravelly soils

¹ Does not reflect the flashy, sediment-laden character of many ephemeral streams.


^{*} Taken from the National Engineering Handbook, Section 4

Velocity Factors

The TR-55 <u>Shallow Concentrated Flow</u> procedure and the NEH-4 <u>Upland Method</u> are both published as a chart of velocity vs. slope for various surfaces. Both charts are based on the same <u>equation</u> and make use of a velocity factor, Kv, determined by the surface type. HydroCAD provides the following predefined surface types for use with this equation.

The first two surfaces (paved and unpaved) are the basis for TR-55 Figure 3-1, and the factors are taken from TR-55, Appendix F. The remaining surfaces are taken from NEH-4 Figure 15.2 with the factors derived from that chart. (Some descriptions have been abbreviated.) For other surfaces or conditions, HydroCAD also allows the direct entry of Kv values.

Surface Description	Kv (fps)	Kv (m/s)
Paved	20.3	6.20
Unpaved	16.1	4.92
Grassed Waterway	15.0	4.57
Nearly Bare & Untille	d 10.0	3.05
Cultivated Straight R	ows 9.0	2.74
Short Grass Pasture	7.0	2.13
Woodland	5.0	1.52
Forest w/Heavy Litter	2.5	0.76

SECTION 4: Summary & Conclusion

The proposed stormwater system meets the design objectives, summarized as follows:

- DEP stormwater management guidelines for treatment of stormwater and removal of 80% total suspended solids has been achieved by various construction means as outlined in Appendix "C".
- Construction and post construction erosion control, operation and maintenance are included with the development as outlined in Appendix "B".
- The proposed stormwater treatment detention basin has attenuated the peak rates & volumes of runoff. Runoff rates were calculated by developing computer models in HydroCAD and the Holliston Board of Health Stormwater and Runoff Regulations (February 1999 with revisions of August 2000) for both existing and proposed conditions. There will be various reductions to the total runoff under proposed conditions for each Year Storm shown below.

Condition

Flow (cfs) vs. Year Storm

	1-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Existing	12.80	24.22	41.86	60.23	90.10	121.58	154.06
Proposed	7.26	13.32	23.72	36.16	57.21	84.55	112.61
Flow Reduction	43%	45%	43%	40%	37%	30%	27%

Condition

Volume (acre-ft) vs. Year Storm

	1-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Existing	2.30	3.91	6.37	8.95	13.15	17.64	22.33
Proposed	1.66	3.35	5.92	8.59	12.91	17.50	22.26
Flow	28%	14%	7%	4%	2%	1%	0%
Reduction	2070	1470	//0	770	2 / 0	170	070

Tables 4-1 and 4-2 summarize the computer output for both existing and proposed conditions.

Table 4-1: Existing Conditions Storm Flows vs. Year Storm

		Area (Ac)	Elevations	Peak Discharge (cfs)
1 Yr Storn	1 (2.60 in/24 hr)			
Ex-A1		20.18		4.83
Ex-A2		34.21		7.96
Ex-A3		0.32		0.16
	TOTAL	54.71		12.80
2 Yr Storm	1 (3.25 in/24 hr)			
Ex-A1		20.18		9.15
Ex-A2		34.21		15.08
Ex-A3		0.32	or so =0	0.30
	TOTAL	54.71	fed up side	24.22
5 Yr Storm	(4.10 in/24 hr)			
Ex-A1		20.18	ym 4m 4m	15.76
Ex-A2		34.21		26.01
Ex-A3		0.32	and gets too	0.52
	TOTAL	54.71		41.86
10 Yr Stor	m (4.90 in/24 hr)			
Ex-A1		20.18		22.69
Ex-A2		34.21		37.46
Ex-A3		0.32		0.75
	TOTAL	54.71		60.23
25 Yr Stori	m (6.10 in/24 hr)			
Ex-A1		20.18		33.90
Ex-A2		34.21		56.06
Ex-A3		0.32		1.11
	TOTAL	54.71		90.10
50 Yr Stori	m (7.30 in/24 hr)			
Ex-A1		20.18		45.78
Ex-A2		34.21		75.68
Ex-A3		0.32		1.50
	TOTAL	54.71	Now you state	121. 58
100 Yr Stor	rm (8.5 in/24 hr)			
Ex-A1		20.18		58.04
Ex-A2		34.21		95.93
Ex-A3		0.32	@ == @	1.90
	TOTAL	54.71	ally for side	154.06

L:\PROJECTS\DWG\2044\docs\2044 HYDROLOGY REPORT-rev 03-10-03.doc

Table 4-2: Proposed Conditions Storm Flows vs. Year Storm

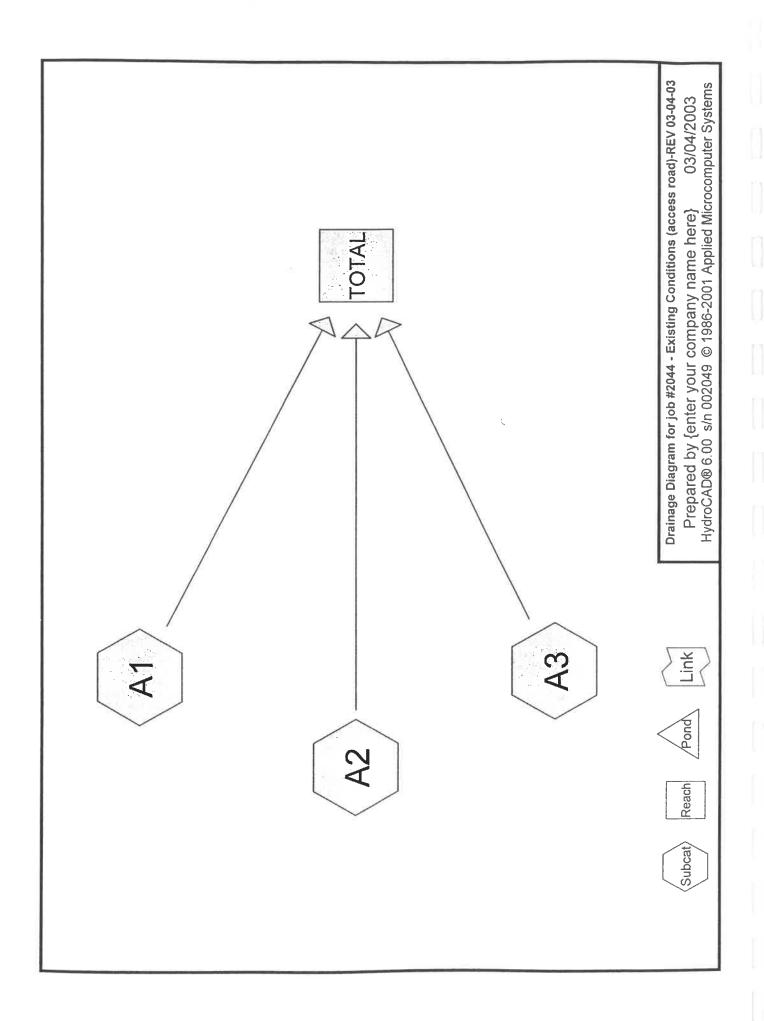
	Area (Ac)	Elevations	Peak Discharge (cfs)
1 Yr Storm (2.60 in/24 hr)			
PR-A1a (in/out D-basin #1)	15.48	290.63	5.59 / 0.26
PR-A1b	3.78		2.03
PR-A1c & PR-A2b (in/out D-basin #2)	10.89	287.38	3.13 / 0.95
PR-A2c, PR-A2d & D-basin #2 Discharge (in/out D-basin #3)	1.78	273.22	3.23 / 1.21 5.46
PR-A2a	22.26 0.52	274.18	1.35 / 1.26
PR-A3 (in/out WQ swale) TOTAL	54.71	An 1 6 6 A C	7.26
2 Yr Storm (3.25 in/24 hr)			
	15 40	290.84	9.54 / 0.91
PR-A1a (in/out D-basin #1) PR-A1b	15.48 3.78	290.84	3.67
PR-A1c & PR-A2b (in/out D-basin #2)	10.89	287.70	5.68 / 2.92
PR-A2c, PR-A2d & D-basin #2 Discharge (in/out D-basin #3)	1.78	273.48	4.37 / 3.01
PR-A2a	22.26		10.34
PR-A3 (in/out WQ swale)	0.52	274.22	1.69 / 1.61
TOTAL	54.71	₩==	13.32
5 Yr Storm (4.10 in/24 hr)			
PR-A1a (in/out D-basin #1)	15.48	291.07	15.36 / 2.31
PR-A1b	3.78		6.13
PR-A1c & PR-A2b (in/out D-basin #2)	10.89	288.09	9.55 / 6.35
PR-A2c, PR-A2d & D-basin #2 Discharge (in/out D-basin #3)	1.78	273.88	6.88 / 6.50
PR-A2a	22.26		17.86
PR-A3 (in/out WQ swale) TOTAL	0.52 54.71	274.25 	$\frac{2.15 / 2.05}{23.72}$

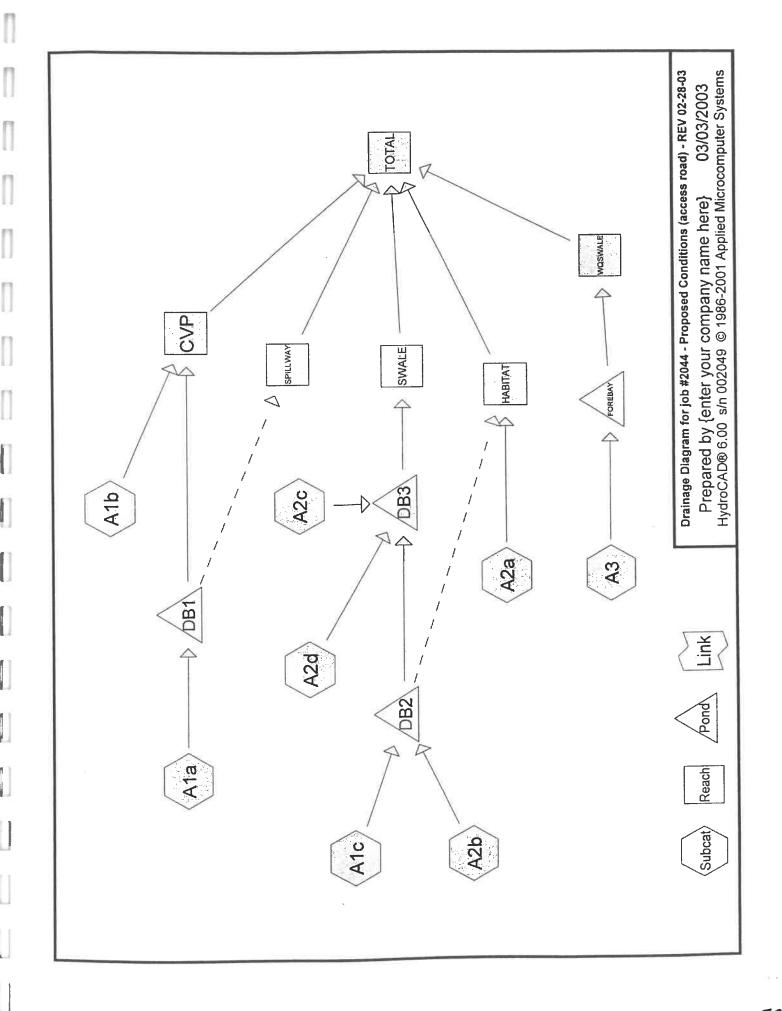
10 Yr Storm (4.90 in/24 hr)			
PR-A1a (in/out D-basin #1)	15.48	291.30	21.29 / 4.23
PR-A1b	3.78		8.65
PR-A1c & PR-A2b			
(in/out D-basin #2)	10.89	288.41	13.54 / 9.66
PR-A2c, PR-A2d & D-basin #2			
Discharge (in/out D-basin #3)	1.78	274.16	10.37 / 9.68
PR-A2a	22.26	na 40 60	25.68
PR-A3 (in/out WQ swale)	0.52	274.29	2.57 / 2.46
TOTAL	54.71		36.16
25 Yr Storm (6.10 in/24 hr)			
PR-A1a (in/out D-basin #1)	15.48	291.66	30.68 / 8.27
PR-A1b	3.78		19.34
PR-A1c & PR-A2b			
(in/out D-basin #2)	10.89	288.82	19.97 / 16.24
PR-A2c, PR-A2d & D-basin #2			
Discharge (in/out D-basin #3)	1.78	274.53	16.72 / 15.57
PR-A2a	22.26		38.34
PR-A3 (in/out WQ swale)	0.52	274.33	3.21 / 3.09
TOTAL	54.71		57.21
PR-A1a (in/out D-basin #1) PR-A1b	15.48	292.02	40.49 / 13.20
	3.78		16.87
PR-A1c & PR-A2b	10.00	200.05	06.70.100.07
(in/out D-basin #2)	10.89	289.05	26.70 / 23.97
PR-A2c, PR-A2d & D-basin #2	1.70	274.77	01.01./10.05
Discharge (in/out D-basin #3)	1.78	274.77	21.01 / 19.95
PR-A2a	22.26	274.20	51.71
PR-A3 (in/out WQ swale)	0.52	274.38	3.85 / 3.72
TOTAL	54.71		84.55
100 Yr Storm (8.5 in/24 hr)			
PR-A1a (in/out D-basin #1)	15.48	292.32	50.47 / 17.66
PR-A1b	3.78	*	21.17
PR-A1c & PR-A2b			
(in/out D-basin #2)	10.89	289.21	33.63 / 31.06
PR-A2c, PR-A2d & D-basin #2			
Discharge (in/out D-basin #3)	1.78	274.92	24.63 / 23.92
PR-A2a	22.26	***	65.52
PR-A3 (in/out WQ swale)	0.52	274.42	4.48 / 4.35
TOTAL	54.71	66 mg mp	112.61

L:\PROJECTS\DWG\2044\docs\2044 HYDROLOGY REPORT-rev 03-10-03.doc

Table 4-3: Existing Conditions Storm Volumes vs. Year Storm

i		Area (Ac)	Peak Volume (acre-ft)
1 Yr Storm (2	.6 in/24 hr)		
Ex-A1		20.18	0.85
Ex-A2		34.21	1.44
Ex-A3		0.32	0.01
	TOTAL	54.71	2.30
2 Yr Storm (3	.25 in/24 hr)		
Ex-A1		20.18	1.44
Ex-A2		34.21	2.44
Ex-A3		0.32	0.02
	TOTAL	54.71	3.91
5 Yr Storm (4	.10 in/24 hr)		
Ex-A1		20.18	2.35
Ex-A2		34.21	3.98
Ex-A3		0.32	0.04
211 1 13	TOTAL	54.71	6.37
10 Yr Storm (4.90 in/24 hr)		
Ex-A1		20.18	3.30
Ex-A2		34.21	5.60
Ex-A3		0.32	0.05
	TOTAL	54.71	8.95
25 Yr Storm (6.10 in/24 hr)		
Ex-A1		20.18	4.85
Ex-A2		34.21	8.22
Ex-A3		0.32	0.08
	TOTAL	54.71	13.15
50 Yr Storm (7.3 in/24 hr)		
Ex-A1		20.18	6.51
Ex-A2	9	34.21	11.03
Ex-A3		0.32	0.10
	TOTAL	54.71	17.64
100 Yr Storm	(8.5 in/24 hr)		
Ex-A1		20.18	8.24
Ex-A2		34.21	13.96
Ex-A3		0.32	0.13
	TOTAL	54.71	22.33


Table 4-4: Proposed Conditions Storm Volumes vs. Year Storm


	Area (Ac)	Peak Volume (acre-ft)
1 Yr Storm (2.60 in/24 hr)		
1 11 Storm (2.00 m/24 m)		
PR-A1a (in/out D-basin #1)	15.48	0.86 / 0.29
PR-A1b	3.78	0.18
PR-A1c & PR-A2b		
(in/out D-basin #2)	10.89	0.57 / 0.46
PR-A2c, PR-A2d & D-basin #2		
Discharge (in/out D-basin #3)	1.78	0.54 / 0.54
PR-A2a	22.26	0.94
PR-A3 (in/out WQ swale)	0.52	0.10 / 0.07
TOTAL	54.71	1.66
2 Yr Storm (3.25 in/24 hr)		
PR-A1a (in/out D-basin #1)	15.48	1.38 / 0.77
PR-A1b	3.78	0.30
PR-A1c & PR-A2b	3.70	0.50
(in/out D-basin #2)	10.89	0.91 / 0.80
PR-A2c, PR-A2d & D-basin #2	10.05	0.51, 0.00
Discharge (in/out D-basin #3)	1.78	0.96 / 0.95
PR-A2a	22.26	1.59
PR-A3 (in/out WQ swale)	0.52	0.13 / 0.10
TOTAL	54.71	3.35
5 Yr Storm (4.10 in/24 hr)		
PR-A1a (in/out D-basin #1)	15.48	2.15 / 1.52
PR-A1b	3.78	0.48
PR-A1c & PR-A2b		
(in/out D-basin #2)	10.89	1.42 / 1.31
PR-A2c, PR-A2d & D-basin #2		
Discharge (in/out D-basin #3)	1.78	1.58 / 1.57
PR-A2a	22.26	2.59
PR-A3 (in/out WQ swale)	0.52	0.17 / 0.13
TOTAL	54.71	5.92

<u>10</u>	Yr	Storm	(4.90)	in/24	hr)

PR-A1a (in/out D-basin #1)	15.48	2.95 / 2.30
PR-A1b	3.78	0.67
PR-A1c & PR-A2b		
(in/out D-basin #2)	10.89	1.96 / 1.84
PR-A2c, PR-A2d & D-basin #2		
Discharge (in/out D-basin #3)	1.78	2.22 / 2.20
PR-A2a	22.26	3.64
PR-A3 (in/out WQ swale)	0.52	0.20 / 0.17
TOTAL	54.71	8.59
25 Yr Storm (6.10 in/24 hr)		
PR-A1a (in/out D-basin #1)	15.48	4.22 / 3.56
PR-A1b	3.78	0.97
PR-A1c & PR-A2b		
(in/out D-basin #2)	10.89	2.82 / 2.70
PR-A2c, PR-A2d & D-basin #2		
Discharge (in/out D-basin #3)	1.78	3.23 / 3.21
PR-A2a	22.26	5.35
PR-A3 (in/out WQ swale)	0.52	0.25 / 0.22
TOTAL	54.71	12.91
50 Yr Storm (7.3 in/24 hr)		
PR-A1a (in/out D-basin #1)	15.48	5.55 / 4.88
PR-A1b	3.78	1.29
PR-A1c & PR-A2b	5.70	1.27
(in/out D-basin #2)	10.89	3.73 / 3.61
PR-A2c, PR-A2d & D-basin #2	10.07	3,73 7 3.01
Discharge (in/out D-basin #3)	1.78	4.18 / 4.16
PR-A2a	22.26	7.18
PR-A3 (in/out WQ swale)	0.52	0.31 / 0.27
TOTAL	54.71	17.50
A O ATAL	011/1	1,,00
100 Yr Storm (8.5 in/24 hr)		
PR-A1a (in/out D-basin #1)	15.48	6.93 / 6.26
PR-A1b	3.78	1.62
PR-A1c & PR-A2b		
(in/out D-basin #2)	10.89	4.68 / 4.56
PR-A2c, PR-A2d & D-basin #2		
Discharge (in/out D-basin #3)	1.78	5.11 / 5.09
PR-A2a	22.26	9.08
PR-A3 (in/out WQ swale)	0.52	0.36 / 0.33
TOTAL	54.71	22.26

APPENDIX A: Hydrology Calculations

APPENDIX B: Construction and Post Construction Stormwater Maintenance Plan

Ał	PENDIX B: Construction and Post Construction Stormwater Maintenance Plan
<u>Co</u>	nstruction Operation Maintenance Plan
Re	fer to plans, Notice of Intent and Order of Conditions.
<u>Po</u>	st Construction Maintenance Plan
sys me	e following items are intended as a guideline for continued maintenance of the storm drain stem. There may be other measures that should be applied to certain drainage appurtenances not not notioned herein. Therefore, the New Hopping Brook Trust should be updating this plan on an asteded basis.
1.)	All catch basin/sumps shall be inspected monthly and those basins that have debris within 2 ft. of the pipe invert shall be cleaned.
2.)	The culverts, swales, and pipe ends shall be inspected after large storms and/or on a yearly basis for evidence of scour. Degraded areas shall be lined with rip-rap or with other appropriately engineered solutions.
3.)	Similarly, the detention basin outlets shall be inspected for scour holes in high velocity areas. Any sign of erosion shall be remedied as in item 2.
4.)	Significant erosion along slopes shall be protected with engineered soil reinforcement, jute mesh and/or erosion control, as approved.
5.)	Forebay filters shall be inspected monthly and cleaned of sediment and other debris retained on the filter media a minimum of four times per year. Removal shall be by hand rake or other appropriate means. Filter media shall be replaced on an as needed basis.
cov be i	e above recommendations are applicable to project completion with 100% established vegetative er, and are not intended for construction progress measures. Construction stage measures shall n accordance with the Construction Sequencing Plans, the Notice of Intent and the Holliston asservation Commission Order of Conditions.

APPENDIX C: DEP Stormwater Management Calculations

APPENDIX C: DEP Stormwater Management Calculations

Standard #1 - Untreated Stormwater

The project was designed to not discharge untreated contaminated stormwater into, or cause erosion to wetlands or water bodies.

Standard #2 - Post -Development Peak Discharge Rates

All performance standards for this standard have been met. Refer to Section 4 in report where runoff volumes & flows for both existing and proposed conditions are given.

Standard #3 - Recharge to Groundwater

The soil types were groundwater recharge is proposed (forebay in D-Basin #3) are assumed to be hydrologic soil group "C". Total onsite impervious area over hydrologic group "C" soils tributary to recharge area (areas following the forebay filter in DB #2 & DB #3, and inside the forebay filter for the Water Quality Swale) follows:

Ic1(to Water Quality Swale)=0.52 acre Ic2(to Dbasin #2)=0.35 acre Ic3(to Dbasin #3)=0.56 acre

Required recharge volume for hydrologic group C soils, ReVc=Ic * 0.10

ReVc1 = ((0.52 acres) * (0.10 in))/(12 in/ft) = 0.004 ac-ftReVc2 = ((0.35 acres) * (0.10 in))/(12 in/ft) = 0.003 ac-ftReVc3 = ((0.56 acres) * (0.10 in))/(12 in/ft) = 0.005 ac-ftTotal ReVc = ReVc1 + ReVc2 + ReVc3 = **0.012 ac-ft**

Recharge Volume Provided

Forebay to	the Water Quali	ity Swale	D-Basin#	1	
<u>Elev</u>	Area (sf)	Volume (ac-ft)	Elev	Area (sf)	Volume (ac-ft)
272	477	0.000	290	36,996	0.000
273	718	0.014	290.5	40,575	0.445
274	960	0.033		•	

D-Basin #2

Elev	Area (sf)	Volume (ac-ft)
286	3,840	0.000
287	7,587	0.131

D-Basin #3

<u>Elev</u>	Area (sf)	Volume (ac-ft)
272	1,326	0.000
273	2,963	0.049

Total Recharge Volume Provided = $0.033 + 0.445 + 0.131 + 0.049 = \underline{0.658 \text{ Ac-ft}}$

BSA

113

576 Boston Post Road

(508) 485-1662

email: civil@salukassoc.com

Name: Hopping Brook - Phase II

Location: Holliston, MA

Date: 3/10/2003 Proj. No.: 2044

Computed by: R. McNeil

Checked by: B. Saluk

TSS SUMMARY SHEET

Weighted Average TSS Removal $\% = [(15.48 \text{ ac}) \times (0.78) + (12.67 \text{ ac}) \times (0.85) + (0.52 \text{ ac}) \times (0.85)]$

(28.67 ac)

81%

Ħ

Bruce Saluk & Associates, Inc.

Civil Engineers & Land Surveyors Marlborough, MA 01752 576 Boston Post Road

(508) 485-1662

email: civil@salukassoc.com

Name: Hopping Brook - Phase II

Date: 3/10/2003 Proj. No.: 2044

R. McNeil Computed by:

Checked by: B. Saluk

Location: Holliston, MA

Remaining

Ш

Subarea A1 (15.48 ac)

BMP

TSS Removal Rate

Starting TSS Load*

Removed (BxC) Amount

Load (C-D)

0.25

1.00

25

Forebay

Filter

0.75

0.23

0.53

0.75

20

Extended Detention

Basin

Total TSS Removal=

78%

Notes:

*Starting TSS Load for first BMP= 1.00. TSS load for subsequent BMP's is equal to the Remaining Load (E) from the previous BMP.

Remaining Load (E) from the previous BMP.

*Starting TSS Load for first BMP= 1.00. TSS load for subsequent BMP's is equal to the

DOG

Civil Engineers & Land Surveyors 576 Boston Post Road

Marlborough, MA 01752

(508) 485-1662

Name: Hopping Brook - Phase II

R. McNeil

Checked by: B. Saluk

Date: 3/10/2003 Proj. No.: 2044 Computed by:

> TSS Removal Ω email: civil@salukassoc.com BMP 4 Subarea A3 (0.52 ac)

Location: Holliston, MA

ш

Remaining Load (C-D)

Removed (BxC) Amount

Ω

Starting TSS Load*

Rate

0.1

1.00

9

Parking Lot Sweeping

0.90

0.68

0.23

0.90

25

Deep Sump

Catch

Basins

0.51

0.17

0.68

25

Forebay

Filter

0.15

0.35

0.51

70

Quality

Swale

Water

85%

Total TSS Removal=

*Starting TSS Load for first BMP= 1.00. TSS load for subsequent BMP's is

Notes:

equal to the Remaining Load (E) from the previous BMP.

41

BRUCE SALUK & ASSOCIATES, INC. CIVIL ENGINEERS & LAND SURVEYORS MARLBOROUGH, MASSACHUSETTS TEL. 508-485-1662 • FAX 508-481-9929 E-MAIL beamarlbor@aol.com SUBJECT HOPPING BROOK
JOB NO. 2044

SHEET NO. OF OF OF OTHER OF OF OTHER OF OTHER OF OTHER OF OTHER OF OTHER OTHER

STORMWATER RUNOFF VOLUME TO BE TREATED FOR QUALITY

TOTAL PROPOSED IMPERVIOUS AREA = 1.43 AC

FROM IC1(0.52 AC) + Ic2(0.35 AC) + Ic3(0.56 AC) =1.43:

REGO. WATER QUALITY DEPTH = 1.0 INCHES OF RUNOFF

*(CRITICAL AREA IS CVP 2808. THE ONLY DISCHARGE TO THIS

AREA IS FROM DBASIN #1 THAT COLLECTS RUNOFF FROM

UNDISTURBED UPLAND ONLY. All other PROPOSED STORMWATER

OISCHARGES ARE TO NON-CRITICAL AREAS.)

WQ Volume = 11N x 1.43 AC = 0.119 AC-FT

FROM STANDARD # 3 - RECHARGE VOLUME

Re Vc = 0.658 AC-FT > 0.119 AC-FT /

120.00

4.

APPENDIX D: Drainage Collection System Design

Table 10.7

RECOMMENDED RUNOFF COEFFICIENTS (C)

FOR RATIONAL METHOD

(For Surface Type)

Character of Surface	Runoff Coefficients	
Pavement		0.90, —— used
Asphaltic and Concrete	0.70 to 0.95	used
Brick	0.70 to 0.85	
Roofs	0.75 to 0.95	
Lawns, Sandy Soil		
Flat, 2 Percent	0.05 to 0.10	
Average, 2 to 7 Percent	0.10 to 0.15	0.20
Steep, 7 Percent	0.15 to 0.20	used
Lawns, Heavy Soil		
Flat, 2 Percent	0.13 to 0.17	
Average, 2 to 7 Percent	0.18 to 0.22	
Steep, 7 Percent	0.25 to 0.35	

Table 10.8

RECOMMENDED Ca VALUES (Rational Method)
(Greater than 10-Year Design Runoff)

Recurrence Interval (Years)	Ca
2 to 10	1.0
25	1.1
50	1.2
100	1.25

Note: The product of C \times C_a should not exceed 1.

Reference: WPCF Manual of Practice No. 9, Design and Construction of Sanitary and Storm Sewers.

-

Bruce Saluk & Associates, Inc.

Civil Engineers and Land Surveyors 576 Boston Post Road Marlborough, MA 01752 (508) 485-1662 fax (508) 481-9929

Subject:
Job No.
Computed By:
Checked By:
Date:

Hopping Brook
2044
RDM3
BS
01/21/2003

Table #1

Drainage Subareas & Runoff Coefficients

SUBAREA (system component)	Pervious Area, As (C=0.20)	Impervious Area, Ap (C=0.90)	(Asx0.20)+ (Apx0.90)	Total Tributary Area (acres)	WEIGHTED "C"
CB#1	0.04	0.08	0.08	0.12	0.67
CB#2	0.05	0.05	0.06	0.10	0.55
CB#3	0.19	0.13	0.16	0.32	0.48
CB#4	0.03	0.09	0.09	0.12	0.73
CB#5	0.15	0.18	0.19	0.33	0.58
CB#6	0.04	0.10	0.10	0.14	0.70
CB#7	0.02	0.17	0.16	0.19	0.83
CB#8	0.04	0.10	0.10	0.14	0.70
CB#9	0.00	0.15	0.14	0.15	0.90
CB#10	0.00	0.11	0.10	0.11	0.90
CB#11	0.23	0.10	0.14	0.33	0.41
CB#12	0.05	0.16	0.15	0.21	0.73
EXCB#1	0.23	0.25	0.27	0.48	0.56
EXCB#2	0.00	0.05	0.04	0.05	0.90
EXCB#3	0.00	0.18	0.16	0.18	0.90
EXCB#4	0.25	0.11	0.15	0.36	0.41
EXCB#5	0.34	0.09	0.15	0.44	0.35
EXCB#6	0.08	0.16	0.16	0.24	0.67
EXCB#7	1.03	0.44	0.60	1.47	0.41
EXCB#8	0.04	0.20	0.19	0.24	0.78

Printed: 03/10/2003

Inc.	
Associates,	
రం	
Saluk	
3ruce	

Storm Drainage Computations

Marlborough, Massachusetts 01752 Civil Engineers & Land Surveyors 576 Boston Post Road ph (508) 485-1662 fax (508) 481-9929

email civil@salukassoc.com

Hopping Brook Phase II Location: Holliston, MA Name:

Computed by: Proj. No.: Date:

Checked by:

03/10/2003 RDM3 BS

2044

Year Storm* Design Parameters: 25 Year Storm 0.013 11

email civil@salukassoc.com	salukassoc	Com												2	DECICAL				
				KUNOFF									SET. 450 CO.	SINCE N					
LOCATION	TION	AREA	O	C×A	SUM	FLOW TII	TIME (MIN)	-		HIB.	PIPE DESIGN		CAPACITY	ACITY	ĺ		PROFILE		
FROM	TO	(AC.)			C×A	PIPE	CONC		ă	PIPE	PIPE	SLOPE Q full	III O	T.	LENGTH	FALL	RIM	>N	<u>2</u>
		=-					TIME		cts	TYPE	SIZE	(ft/ft)	cfs	6 ft/s			UPPER	UPPER	LOWER
CB 1	DMH 1	0.12	79.0	0.08	0.08	0.00	5.00	6.1	5.0	RCP	12 (0.0400		* 16	6	0.36	297.70	293.70	293.34
CB 2	DMH 1	0.10	0.55	90.0	90.0	0.00	5.00	6.1	, 0,3,4	RCP	12 (0.0400		16	17	0.68	297.70	293.70	293.02
DMH 1	DMH 2	00.00	00.00	0.00	0.14	0.00	5.00	6.1	0.8	RCP	12 (0.0240	5.5	1.02	262	6.29	297.65	293.02	286.73
CB 3	DMH 2	0.32	0.48	0.16	0.16	0.00	5.00	6.1	\$60°	RCP	12	0.0200	5.0	6.4	6	0.18	290.91	286.91	286.73
CB 4	DMH 2	0.12	0.73	60.0	0.09	0.00	5.00	6.1	9.0	RCP	12	0.0115	3.8	4.8	16	0.18	290.91	286.91	286.73
DMH 2	FES 1	0.00	0.00	0.00	0.38	0.00	5.00	6.1	23.	RCP	12 (0.0065		87.5	112	0.73	290.73	286.73	286.00
CB 7	DMH 4	0.19	0.83	0.16	0.16	0.00	5.00	6.1	1.0	RCP	12	0.000.0	138	3.5	6	0.05	282.00	278.00	277.96
CB 8	DMH 4	0.14	0.70	0.10	0.10	0.00	5.00	6.1	0.61	RCP	12	0.0050	2.6	3.2	17	60.0	282.00	278.00	277.92
DMH 4	DMH 3a	00.00	0.00	0.00	0.26	00.00	5.00	6.1	9	RCP	12	0.0028	1.98	24	298	0.83	282.45	277.92	277.09
CB 5	DMH 3a	0.33	0.58	0.19	0.63	0.00	5.00	6.1	3.9	RCP	12	0.0150	4.4	9.9	17	0.26	287.00	283.00	282.75
CB 6	DMH 3a	0.14	0.70	0.10	0.10	0.00	5.00	6.1	0,6	RCP	12	0.0000	2.5	3.2	16	0.08	286.60	282.60	282.52
DMH 3a	DMH 3	0.00	0.00	0.00	0.99	0.00	5.00	6.1	6.0	RCP	18	0.0050	18. P. L.	4.2	94	0.47	287.25	276.59	276.12
DB 2	DMH 3	0.00	00.00	00.00	1.90	0.00	5.00	6.1	11.6	RCP	30	0.0140	48.5	6.6	75	1.05	290.00	276.17	275.12
DMH 3	BYPASS DMH	00.00	00.00	00.00	2.89	0.00	5.00	6.1	17.6	RCP	30	9600.0	40.1	8.2	222	2.12	288.35	275.12	273.00
BYPASS DMH	FES 4	0.00	00.00	00.00	2.89	0.00	5.00	6.1	17.6	RCP	30	0.0140	48.5	9.9	38	0.53	278.50	267.03	266.50
DMH 3	FES 2	0.00	00.00	00:00	2.89	0.00	5.00	6.1	17.6	RCP	30	0.0020	18.3	3,7	58	0.12	288.35	275.12	275.00
DB 3	FES 3	0.00	00.00	00.00	1.92	0.00	5.00	6.1	1917	RCP	30	0.0050	29.0	F 1619	90	0:30	275.50	266.80	266.50
CB 9	DMH 5	0.15	06.0	0.14	0.14	00.00	5.00	6.1	8.0	RCP	12	0.0050	2.5	3.2	21	0.11	278.97	274.97	274.87
CB 10	DMH 5	0.11	06:0	0.10	0.10	0.00	5.00	6.1	9.0	RCP	12	0.0050	2.5	3.2	24	0.12	278.97	274.97	274.85
DMH 5	DMH 7	00.00	00.00	0.00	0.23	0.00	5.00	6.1	4.4	RCP	12	0.0149	4.3	9.9	134	2.00	278.99	274.85	272.85
CB 11	DMH 7	0.33	0.41	0.14	0.14	00.00	5.00	6.1	0.8	RCP	12	0.0050	2.5	3.2	13	0.07	277.00	273.00	272.94
CB 12	DMH 7	0.21	0.73	0.15	0.15	00.00	5.00	6.1	0.9	RCP	12	0.0050	2.5	3.2	30	0.15	277.00	273.00	272.85
DMH 7	HW 1	00.00	0.00	0.00	0.52	00.00	5.00	6.1	3.2	RCP	15	0.0056	4.8	3.9	6	0.05	277.55	272.60	272.55
DMH 4E	DMH 6	00.00	0.00	00.0	1.73	00:00	5.00	6.1	40.6	RCP	30	0.0068	33.7	6.9	06	0.61	280.80	274.10	273.49
DMH 6	HW 2	0.00	0.00	0.00	1.73	00.00	5.00	6.1	10.6	RCP	30	0.0020	18,3	3.7	80	0.16	277.90	272.40	272.24
Rainfall I	Rainfall Intensity provided in the Town of Holliston BOH Stormwat	vided in th	nwo] er	of Hallist	on BOH		er and Runoff Regulations, Revised August 17, 2000	egulatio	ons, Rev	ised Aŭg	ust 17, 2	000	CANA				THE STATE OF		4.0040000

Inc.
ssociates,
& A
Saluk
3ruce

Storm Drainage Computations

Marlborough, Massachusetts 01752 Civil Engineers & Land Surveyors 576 Boston Post Road

fax (508) 481-9929 ph (508) 485-1662

email civil@salukassoc.com

Hopping Brook Phase II Location: Holliston, MA Name:

Proj. No.: Date:

Computed by:

2044

03/10/2003

RDM3

Year Storm* Design Parameters: 25 Year Storm 0.013

BS Checked by:

			œ		_													
		<u>N</u>	LOWER	278.00	271.00	288.00	303.50	303.50	302.10	296.10	292.90	291.40	289.50	289.80	287.90	276.50	276.40	273.49
		INV	UPPER	281.12	272.10	290.00	303.60	303.60	303.30	296.40	293.10	294.80	290.00	290.00	290.00	277.00	277.00	274.10
	PROFILE	RIM	UPPER	295.00	283.00	N/A	306.90	306.90	306.30	299.40	296.10	297.80	293.20	293.20	293.40	280.60	280.60	280.80
		FALL		3.12	1.10	2.00	0.10	0.10	1.20	0.30	0.20	3.40	05.0	0.20	2.10	0.50	09:0	0.61
DESIGN		LENGTH		164	58	48	18.25	56	225	70	50	146	15	22	400	13	22	06
	CAPACITY	Wfulls	a figure	11.5	116	14.7	3.4	218 11	3,3	3.0	2.9	14.0	10.9	4.3	62	8.9	176	6.9
	CA	Q full	cfs	56.6	56.57	46.2	2.6	2.20	2.6	2.3	2.3	345	19.2		16.45	7.0	5.9	33.7
	NO.	SLOPE	(ff/ff)	0.0190	0.0190	0.0417	0.005	0.004	0.005	0.004	0.004	0.023	0.033	600.0	0.005	0.038	0.027	0.007
	E DESI	PIPE	SIZE	8	30	24	12	12	12	12	12	24	138	12	24	12	12	30
	** PIPE DESIGN	PIPE	TYPE	RCP	ACP P	RCP												
		Ö,	cis	2.6	2.6	2.6	11.6	0.3	1.9	1.0	6,0	3.8	6.0	1.0	5.7	3.7	1,2	10.6
		A TANK	X M	6.1	6.1	6.1	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10	6.10
	TIME (MIN)	CONC	TIME	5.00	9.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
	FLOW TIN	PIPE		0.00	0.00	0.00	00:00	00:00	00:00	00.00	00:00	00:00	00:00	00:00	00:00	00:00	0.00	00.0
OFF	SUM	C×A		0.43	0.43	0.43	0.27	0.04	0.31	0.16	0.15	0.62	0.15	0.16	0.94	09:0	0.19	1.73
RUNOFF	C×A			0.00	0.00	0.00	0.27	0.04	0.00	0.16	0.15	0.00	0.15	0.16	0.00	09.0	0.19	0.00
	ပ			0.00	0.00	0.00	0.56	06.0	0.00	0.90	0.41	0.00	0.35	0.67	0.00	0.41	0.78	0.00
	AREA	(AC.)		00:00	00.0	0.00	0.48	0.05	0.00	0.18	0.36	00.0	0.44	0.24	0.00	1.47	0.24	00:00
	TION	07		DMH 8	FES 7	FES 6	DMH 1E	DMH 1E	DMH 2E	DMH 2E	DMH 2E	DMH 3E	DMH 3E	рмн зе	DMH 4E	DMH 4E	DMH 4E	DMH 6
	LOCATION	FROM		081	DMH 8	FES 5	EXCB 1	EXCB 2	DMH 1E	EXCB 3	EXCB 4	DMH 2E	EXCB 5	EXCB 6	омн зе	EXCB 7	EXCB 8	DMH 4E

APPENDIX E: Stormwater Cooling to Protect Hopping Brook

APPENDIX E: Stormwater Cooling to Protect Hopping Brook

OBJECTIVE

Although this portion of Hopping Brook is not listed as a Cold Water Fishery, it is the goal of the stormwater design plan is to meet the Massachusetts Department of Environmental Protection Class B Cold Water criteria (314 CMR 4.00), specifically the thermal and chemical requirements for cold water fisheries discussed in 314 CMR 4.05. In section 4.05 (3)(b), "these waters are designated as a habitat for fish, other aquatic life, and wildlife, and for primary and secondary contact recreation. Where designated, they shall be suitable as a source of public water supply with appropriate treatment, suitable for irrigation and other agricultural uses, suitable for compatible industrial cooling and process uses, and shall have consistently good aesthetic value. Dissolved oxygen levels shall not be less than 6.0 mg/l in cold water fisheries, unless background conditions are lower and shall not be below 75% of saturation in cold water fisheries due to discharge. Temperature shall not exceed 68° F (20° C) in cold water fisheries and the rise in temperature due to discharge shall not exceed 3° F (1.7° C) in rivers and streams designated as cold water fisheries.

BEST MANAGEMENT PRACTICES – STORMWATER DRAINAGE DESIGN

The stormwater drainage system for Hopping Brook Industrial Park's Phase II Access Road includes several structural Best Management Practices (BMP's) including three extended detention basins with forebays, and a water quality swale with a forebay. In each case the forebay has been designed with sufficient volume to store and filter the 1-inch rainfall event.

Three primary discharges are proposed. The first discharge is the combination of a small wooded upland and the outflow from Detention Basin #1 that collects stormwater from a large wooded upland. The design intent of this discharge is to bypass existing overland flow under the proposed access road to maintain flow to Certified Vernal Pool (CVP) # 2808. This outflow travels approximately 900 feet from CVP# 2808 through existing heavily canopied wetlands to Hopping Brook.

The second discharge is a combination of a large wooded upland and the majority of the proposed access road catch basin system. These combined flows are conveyed either directly to the forebay of Detention Basin #3 or first to Detention Basin #2 and then under the access road into the forebay of Detention Basin #3. This outflow travels approximately 500 feet overland from Detention Basin #3 to the south of CVP # 2808, then continues for another 700 feet through existing heavily canopied wetlands to Hopping Brook.

The third discharge includes two distinct systems. First, a portion of the Hopping Brook Road and Boynton Road stormwater collection system currently discharges via a 30" RCP near the entrance of the proposed access road. Under the proposed design this flow is redirected to a headwall discharge to a riprap channel North of the proposed access road. Second, the remainder of the proposed access road catch basin system is routed to a headwall discharge to a Water Quality Swale with a forebay South of the proposed access road. A proposed 4'x6' box culvert conveys this flow under the proposed access road, and then continues for another 1,700 feet through existing heavily canopied wetlands to Hopping Brook.

Although only Detention Basin #1's discharge is regulated by DEP as a discharge to a Critical Area (ie. CVP 2808), all proposed forebays are designed to hold and filter the 1-inch water quality volume.

The HydroCAD computer model for the 1-inch storm event reports a total of 0.02 cfs to be discharged from the proposed development site.

The stormwater discharge will thoroughly mix with water in the wetland. Shading will further reduce the temperature so the heated runoff will return to ambient temperature.

CONCLUSION

Although not required, the stormwater drainage system for the proposed access road will meet the Massachusetts DEP standards for cold water fisheries found in 314 CMR 4.05 (3)(b) and will not thermally impact Hopping Brook. Additionally, the proposed stormwater discharge to CVP 2808 will meet the DEP standards for discharge to Critical Areas.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Appendix C – Stormwater Management Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

7	A.	Property Info	rma	ation								
Important: When filling out forms on the	1.	1. The proposed project is: Hopping Brook Industrial Park – Phase II, Holliston, MA										
computer, use only the tab		New development	\boxtimes	Yes								
key to move your cursor - do not use the return key.				No								
120		Redevelopment		Yes								
X			\boxtimes	No								
return		Combination		Yes	(If yes, distinguish redevelopment components from new development components on plans).							
1			\boxtimes	No	development components on plans).							
Note: This February 2000 version of	2.	Stormwater runoff t	o be f	treated	d for water quality are based on which of the following calculations:							
the Stormwater Management Form supersede earlier versions			esou	rce Wa	ervious area of post-development site for discharge to critical areas aters, recharge areas of public water supplies, shellfish growing areas, vater fisheries).							
including those contained in		0.5 inches of ru	noff >	x total	impervious area of post-development site for other resource areas.							
DEP's Stormwater Handbooks.	3.	•		•	e.g. calculations and additional narratives) submitted with this form:							
		Stormwater Report	inclu	ding D	rainage Area Plans; DA-1, DA-2, DA-3							
1		Proposed Site Acce	ess R	oadwa	ay Plans							
3:												
		·										
1												
J	B.	Stormwater I	Vlan	agei	ment Standards							
			-		olicy (March 1997) includes nine standards that are listed on the							

additional information when applicable.

Standard #1: Untreated stormwater

☐ The project is designed so that new stormwater point discharges do not discharge untreated stormwater into, or cause erosion to, wetlands and waters.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Appendix C – Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B.	Sto	ormwater Mana	gement Standa	ards (cont.)	
Sta	ndar	d #2: Post-developm	ent peak discharges	rates	
	Not	applicable – project sit	e contains waters sub	ject to tidal action.	
Pos	st-de charg	velopment peak discha ge or downgradient pro	rge do not exceed preperty boundary for the	e-development rates on the s e 2-yr and 100-yr, 24-hr storr	site at the point of ns.
		without stormwater con	ntrols		
	\boxtimes	with stormwater contro	ls designed for the 24	-hr, 1-yr, 2-yr, 5-yr, 10-yr, 25	5-yr, 50-yr, 100-yr storms.
\boxtimes	The	project's stormwater de	esign will not increase	off-site flooding impacts from	the 100-yr, 24-hr storm.
		rd #3: Recharge to gr		62,300 sf	
Vol	ume	to be recharged is bas	sed on:		
	\boxtimes	The following Natural UA) or any combination	Resources Conservat n of groups: C	ion Service hydrologic soils (
		(% of impervious area)	(Hydrologic soil group)	(% of impervious area	(Hydrologic soil group)
		(% of impervious area)	(Hydrologic soil group)	(% of impervious area) (Hydrologic soil group)
		Site specific pre-deve	opment conditions:	Recharge rate	Volume
		scribe how there calcul			
	TR	-20 calculations using l	nydrologic soil group "	C" designation	
Lis	Foi	rebay filter followed by		eet Standard #3. (e.g. dry we in Dbasin 1, 2, & 3. Foreba	
Th ex	e an	rale. nual groundwater rech g site conditions.	arge for the post-deve	elopment site approximates t	he annual recharge from
	\boxtimes	Yes			
		No			

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Appendix C – Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Stormwater Management Standards (cont.)

9
Standard #4: 80% TSS Removal
☐ The proposed stormwater management system will remove 80% of the post-development site's average annual Total Suspended Solids (TSS) load.
Identify the BMP's proposed for the project and describe how the 80% TSS removal will be achieved.
Deep sump & hooded catch basins, Forebay filter, extended detention basin, water quality swale
(see attached calculations)
If the project is redevelopment, explain how much TSS will be removed and briefly explain why 80% removal cannot be achieved.
Standard #5: Higher potential pollutant loads
Does the project site contain land uses with higher potential pollutant loads (See Stormwater Policy Handbook – Vol. I, page I-23, for land uses of high pollutant loading).
Yes If yes, describe land uses:
⊠ No
Identify the BMPs selected to treat stormwater runoff. If infiltration measures are proposed, describe the pretreatment. (Note: If the area of higher potential pollutant loading is upgradient of a critical area, infiltration is not allowed.
Pretreatment includes deep sump & hooded catch basins & forebay filters.
Standard #6: Protection of critical areas
Will the project discharge to or affect a critical area? (See Stormwater Policy Handbook – Vol. I, page I - 25, for critical areas).
Yes If yes, describe areas: Dbasin #1 discharges to CVP 2808
□ No
Identify the BMPs selected for stormwater discharges in these areas and describe how BMPs meet restrictions listed on pages I-27 and I-28 of the Stormwater Policy Handbook – Vol. I:
Forebay filter, extended detention basin (Dbasin #1 conveys undisturbed upland flow only)

WPA Appendix C Rev. 02/00

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Appendix C – Stormwater Management Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Stormwater Management Standards (cont.)

Note:
components of
redevelopment
projects which
plan to develop
previously
undeveloped
areas do not fall
under the scope

٥.	Stormwater	i management Standa	ids (cont.)			
Staı	ndard #7: Redev	velopment projects				
s th	ne proposed activ	vity a redevelopment project?				
	Yes	If yes, the following stormwater	management standards have been met:			
The	☑ No following stormv	water standards have not been n	et for the following reasons:			
	The proposed prestormwater contractions	roject will reduce the annual polition.	utant load on the site with new or improved			
Sta	ndard #8: Erosi	ion/sediment control				
\boxtimes	Erosion and sec sediments, and	diment controls are incorporated stabilize exposed soils during co	nto the project design to prevent erosion, control nstruction or land disturbance.			
Sta	ındard #9: Oper	ation/maintenance plan				
	An operation and maintenance plan for the post-development stormwater controls have been developed. The plan includes ownership of the stormwater BMPs, parties responsible for operation and maintenance, schedule for inspection and maintenance, routine and long-term maintenance responsibilities, and provision for appropriate access and maintenance easements extending from a public right-of-way to the stormwater controls.					
	Stormwater Rep	port – Appendix B	March 2003 Date			
	Plan/Title		Date			

C. Submittal Requirements

DEP recommends that applicants submit this form, as well as, supporting documentation and plans, with the Notice of Intent to provide stormwater management information for Commission review consistent with the wetland regulations (310 CMR 10.05 (6)(b)) and DEP's Stormwater Management Policy (March 1997). If a particular stormwater management standard cannot be met, information should be provided to demonstrate how equivalent water quality and water quantity protection will be provided. DEP encourages engineers to use this form to certify that the project meets the stormwater management standards as well as acceptable engineering standards. For more information, consult the Stormwater Management Policy.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Appendix C – Stormwater Management Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

D. Signatures

March 21, 2003 New Hopping Brook Trust Date Signature

March 21, 2003 Bruce Saluk & Associates, Inc. Date Representative

> D. McNEIL III CIVIL No. 39831

Page 5 of 5

•			

APPENDIX E

Stormwater Water Pollution Prevention Plan

Storm Water Pollution Prevention Plan (SWPPP)

Road & Utility Extension for the Hopping Brook Business Park Holliston, MA

Prepared By: Bruce Saluk & Associates, Inc. 576 Boston Post Road Marlborough, MA 01752 (508) 485-1662

Prepared For: New Hopping Brook Trust 929 Boston Post Road Suite 2 Marlborough, MA 01752

March 21, 2003

Construction Pollution Prevention Plan

for the

Road & Utility Extension of Hopping Brook Business Park

Project Name and Location:

Hopping Brook Road & Utility Extension

Hopping Brook Business Park

Route 16

Holliston, MA 01746

Middlesex County Latitude:

Latitude: 421004 Longitude: -712743

Owner Name and Address:

New Hopping Brook Trust

929 Boston Post Road, Suite 2

Marlborough, MA 01752

(508) 481-6095

Description: (Purpose and Types of Soil Disturbing Activities)

This project will consist of a 1,500-If site access roadway. This is an extension of the existing Hopping Brook Road and will include drainage, water, electric & telephone, and sewer infrastructure.

Soil disturbing activities will include: clearing & grubbing; installing stabilized construction entrances, perimeter, and other erosion and sediment controls; grading; excavation for the detention basins, drainage system, utilities, wetland crossing, and wetland replacement area; construction of retaining walls, curb and gutter, roadway, and sidewalk areas, and preparation for final planting and seeding.

Runoff Coefficient:

The proposed roadway extension results in a net increase in impervious area of approximately 62,300 SF. The proposed roadway will incorporate a drainage collection system that will convey flow through a stormwater treatment system including deepsump catch basins, extended detention basins and a water quality swale as shown on the plan.

Site Area:

The site is approximately 205 Acres of which 13 acres will be disturbed by construction activities.

Sequence of Major Activities:

The order of activities will be as follows:

- 1. Mobilization to the site
- 2. Install stabilized construction entrances anti-tracking pads (Activity at North & South access areas)
- 3. Clear & grub wetland replacement area, incl. equipment & material storage area
- 4. Pile and stabilize topsoil
- 5. Construct and plant wetland replacement area & equipment and storage area
- 6. Construct rip-rap channel at HW #2 and DMH #6 for existing drain diversion
- 7. Clear & grub wetland crossing area
- 8. Pile and stabilize wetland spoils
- 9. Install temporary wetland crossing
- 10. Clear & grub roadway up to STA 52+50 incl. equipment & material storage areas
- 11. Clear & grub for earth dike and sedimentation basin (Dbasin #3)
- 12. Pile and stabilize topsoil
- 13. Install earth dike with borrow from roadway and equipment & material storage areas
- 14. Construct sedimentation basin (Dbasin #3)
- 15. Construct channel to sedimentation basin along NW side of roadway embankment
- 16. Install permanent wetland crossing including retaining walls and box culverts (Activity area from STA 41+00 to STA 49+00)
- 17. Construct Water Quality Swale with forebay
- 18. Clear & grub for haul road up to Wetland E location
- 19. Pile and stabilize topsoil
- 20. Install RAP haul road up to Wetland E location
- 21. Clear & grub for earth dike for haul road temporary sedimentation basin(Wetland E)
- 22. Pile and stabilize topsoil
- 23. Install earth dike
- 24. Construct sedimentation basin channel (leave existing vegetation)
- 25. Clear & grub for Temporary Diversion Channel A
- 26. Pile and stabilize topsoil
- 27. Construct Temporary Diversion Channel A
- 28. Continue clearing and grubbing haul road up to borrow pit location
- 29. Pile and stabilize topsoil
- 30. Install RAP haul road with cross culverts up to borrow pit location
- 31. Clear & grub for earth dike for borrow pit sedimentation basin
- 32. Pile and stabilize topsoil
- 33. Install earth dike
- 34. Construct sedimentation basin for borrow pit
- 35. Clear & grub borrow pit area
- 36. Pile and stabilize topsoil
- 37. Begin borrow pit operations
- 38. Begin filling roadway embankment at wetland crossing area (Activity area from STA 41+00 to STA 49+00)
- 39. Install drainage system in this activity area
- 40. Continue filling roadway embankment (Activity area from STA 49+00 to STA 52+50)
- 41. Install drainage system in this activity area including Dbasin #3 bypass

42. Bring Dbasin #3 bypass online 43. Remove accumulated sediment from sedimentation basin (Dbasin #3) 44. Construct final Dbasin #3 configuration including forebay and outlet control structure 45. Clear & grub for earth dike and emergency spillway for Detention Basin #2 46. Pile and stabilize topsoil 47. Fill to adjust haul road embankment and equipment & material storage areas 48. Construct Detention Basin #2 49. Bring Dbasin #3 bypass offline, bring Dbasin #3 online 50. Clear & grub for Temporary Diversion Channel B 51. Pile and stabilize topsoil 52. Construct Temporary Diversion Channel B 53. Clear & grub roadway to end STA 56+50 incl. equipment & material storage areas. 54. Pile and stabilize topsoil 55. Continue filling roadway embankment (Activity from STA 52+50 to STA 56+50) 56. Install drainage & sewer system in activity area 57. Clear & grub for earth dike and emergency spillway for Detention Basin #1 58. Pile and stabilize topsoil 59. Fill to adjust haul road embankment and equipment & material storage areas 60. Construct Detention Basin #1 61. Clear & grub for utility corridor/maintenance road and Dbasin #1 outfall (Activity from intersection with roadway down to limit of grading) 62. Pile and stabilize topsoil 63. Fill maintenance road embankment - ALL FILLING COMPLETE 64. Stabilize borrow pit 65. Complete grading and install permanent seeding and plantings 66. Remove anti-tracking pad at the South Entrance 67. Complete final paving 68. Install utilities in activity area from intersection down to limit of grading 69. Construct Dbasin #1 outfall with level spreader 70. Remove accumulated sediment from Dbasin #2 71. Bring Temporary diversion channel A offline, bring Dbasin #2 online 72. Remove accumulated sediment from Dbasin #1 73. Bring Temporary diversion channel B offline, bring Dbasin #1 online 74. Begin utility corridor work at North Entrance 75. Clear & grub jacking & receiving pit area 76. Pile and stabilize topsoil 77. Construct jacking & receiving pits 78. Install utilities in activity area 79. Clear & grub utility corridor (Activity from receiving pit up to the limit of grading) 80. Install utilities in activity area 81. Construct gravel maintenance road 82. Clear & grub for recharge / nesting area 83. Install recharge system including emergency outfall 84. Construct nesting area 85. Remove anti-tracking pad at the North Entrance 86. Restore gravel access at the North Entrance 87. Demobilization

Name of Receiving Waters:

The entire construction activity zone will drain into Hopping Brook that varies in distance from proposed discharge locations from 700 to 1,700 lf.

Controls

Erosion and Sedimentation Controls:

Structural Practices

Haybale / Siltation Fencing — Siltation fencing with double-staked haybales shall be installed to protect the adjacent resources prior to the commencement of each work activity and maintained throughout the course of construction until vegetation is fully established. In the area of the wetland crossing, one or more temporary or permanent culverts will be in place. The erosion control perimeter will be maintained as a continuous barrier in these areas. The contractor shall have additional haybales and siltation fencing available to address washouts and other emergencies.

Exposed Slopes – On exposed slopes, mechanical cultivation of soils shall include grooves created by dozer treads set perpendicular to the slope direction. On long slopes, runoff shall be directed via swales to temporary sedimentation traps where directed by the construction manager.

Clearing and grubbing – soil stripping shall be done in stages in order to minimize the amount of exposed soil for the project. Soil stabilization measures shall be implemented immediately after finish grading. Loam and seed shall be applied as soon as reasonably possible as work progresses.

Earth Dike – will be constructed along the Eastern side of the wetlands. A portion of the dike will divert runoff around the construction site. The remaining portion of the dike will collect runoff from the disturbed areas and direct the runoff to the sedimentation basin.

Sedimentation Basin – will be constructed at the location of Dbasin #3. Constructing an embankment and excavating a storage pond with a volume of 0.39 acre-feet will form the basin. The basin will drain though a temporary standpipe and outlet pipe to a rip-rap outlet and channel. Once construction activities are nearly complete, the accumulated sediment will be removed from the basin.

Temporary Sedimentation Traps – will be constructed as needed. These traps are small basins intended for short-term use (overnight to several weeks). Typical dimensions might be 5ft x 10ft and 3-5 ft in height. Many temporary sedimentation traps might be used at various locations to control erosion and sediment. It can remain in place until it obstructs construction operations or fills up with deposit, when it can be replaced with another trap. Temporary sedimentation traps can be produced by a natural depression, excavation, or with an impoundment berm. Typical locations in natural drainageways include the bottoms of embankments, the lower end of waste or borrow areas, or at the downgrade area of a cut section. Temporary sediment traps

may include a standpipe filter to provide additional removal of excess sediment where applicable.

Drainage swales – will be constructed at various locations throughout the site during construction to route runoff to sedimentation traps or basins.

Stabilization Practices

Temporary Stabilization – Topsoil stockpiles and disturbed portions of the site where construction activity temporarily ceases for at least 21 days will be stabilized with temporary seed and mulch no later than 7 days from the last construction activity in that area. The temporary seed shall be as follows:

New England Erosion Control / Restoration Mix

Application Rate: 35 lbs/acre 1,245 sq. ft./lb

The New England Erosion Control/Restoration Mix contains a selection of native grasses and wildflowers designed to colonize generally moist, recently disturbed sites where quick growth of vegetation is desired to stabilize the soil surface. This mix is particularly appropriate for detention basins that do not normally hold standing water. The plants in this mix can tolerate infrequent inundation, but no constant flooding. In New England, the best results are obtained with a spring or early fall seeding. Summer and fall seeding can be successful with a light mulching of weed-free straw to conserved moisture. Late fall and winter dormant seeding require a slight increase in the seeding rate. Fertilization is not required unless the soils are particularly infertile. Species include: Swithgrass (Panicum virgatum), Creeping Red Fescue (Festuca rubra), Virginia Wild Rye (Elymus vierinicus), Fox Sedge (Carex vulpinoidea), Creeping Bentgrass (Agrostis stolonifera), Silky Wild Rye (Elymus villosus), Nodding Bur-marigold (Bidens cernua), Soft Rush (Juncus effuses), Grass-leaved Goldenrod (Solidago graminifolia), Sensitive fern (Onoclea sensibilis), Joe-Pye Weed (Eupatorium maculatum), boneset (Eupatorium perfoliatum), Flat-top Aster (Aster umbellatus), New York Aster (Aster novi-belgii), and Blue Vervain (Verbena hastate).

Areas of the site that are to be paved will be temporarily stabilized by applying geotextile and stone sub-base until bituminous pavement can be applied.

Permanent Stabilization – Disturbed portions of the site where construction activities permanently ceases shall be stabilized with permanent seed no later than 14 days after the last construction activity. A specific permanent stabilization schedule follows:

Wetland Replication Area - Place imported clean topsoil or topsoil compost mix to 6-12 inches deep. Place logs within the replication area (one dozen logs, 4-10 feet in length, 8 inches or greater in diameter. Plant shrub and tree specimens (1-gallon pots or larger stock for shrubs). Seed entire replication area with native herbaceous seed mix at two times the recommended planting rate. Monitor annually and report for two growing seasons with photo-documentation.

Estimated Number of Plantings	Estimated Spacing	Size of Specimens	Notes
40	Approx. 7 ft.	18"-24"	To be planted in a ring near the 253 foot contour line
12	Approx. 7 ft.	18"-24"	To be planted within the 253-255 foot contour lines
12	Approx. 7 ft.	18"-24"	To be planted within the 253-255 foot contour lines
12	Approx. 7 ft.	18"-24"	To be planted within the 253-255 foot contour lines
12	Approx. 7 ft.	18"-24"	To be planted within the 253-255 foot contour lines
12	Approx. 7 ft.	18"-24"	To be planted within the 253-259 foot contour lines
25 total plantings	25 ft.	1" caliper	To be planted near the upland wetland interface
1 lb/10,890 sq. ft. (2x the Recomme	nd Rate)		The entire basin will be seeded in the first year.
	of Plantings 40 12 12 12 12 12 12 11 12 11 12 11	of Plantings 40 Approx. 7 ft. 12 Approx. 7 ft. 25 total plantings 25 ft.	of Plantings 40 Approx. 7 ft. 12 Approx. 7 ft. 13"-24" 12 Approx. 7 ft. 18"-24" 11b/10,890 sq. ft.

^{*} Shrub and tree species will be planted after at least one season of observed water levels in the wetland replication area.

Wetland Replication Area (Adjacent Equipment & Material Staging Area) - Upon conclusion of work in the wetland replication area, the adjacent staging area will be planted with saplings of northern red oak (*Quercus rubra*), black birch (*Betula lenta*), and white pine (*Pinus strobus*). Plantings will be approximately twenty feet on center individually, or in clumps of up to two. This will require approximately 25 saplings/shrubs (approx. 5,000 sq. ft. staging area) and will include specimens 2'-3' or 3'-5' in height. Finally the area will be mulched with native material and allowed to succeed to forest. The Holliston Conservation Commission shall approve any necessary deviations from this planting scheme (including size and species).

Wetland Replication Area - Adjacent Staging Area Planting Scheme

Tree Species	Estimated Number of Plantings	Estimated Spacing	Size of Specimens	Notes
Northern red oak (Quercus rubra)	8	25 ft.	2' - 5'	Various sizes
Black birch (Betula lenta)	10	25 ft.	2' - 5'	Various sizes
White pine (Pinus strobes)	7	25 ft.	2' - 5'	Various sizes

^{*}Southern Tier Consulting Northeast Wetland Shrub and Herb Mix includes species such as: highbush blueberry (Vaccinum corymbosum), northern arrowwood (Viburnum recognitum), silky dogwood (Cornus amomum), blue vervain (Verbena hastata), Joe pye weed (Eupatroium maculatum), many leaved bulrush (Scirpus polyphyllus), fringed sedge (Carex crinita), nodding bur-marigold (Bidens cernua), swamp milkweed (Ascelpias incarnata), blue iris (Iris versicolor), flat-topped white aster (Aster umbellatus), and bladder sedge

Wetland Crossing Area - Temporary disturbance to BVW is proposed in the following locations; Area adjacent to Flag BB237.5, Area F1, Area, F2, and Area. Temporary disturbance is associated with the installation of bases and footings for proposed retaining walls and associated erosion control (haybale/siltfence line). Once construction is complete, these areas will be restored to grade and seeded with Northeast Wetland Shrub and Herb Mix from Southern Tier Consulting or an equivalent mix approved by the Commission. This seed mix shall be applied at two times the recommended application rate to ensure a dense establishment of non-invasive and desirable shrubs.

Bank Replication - The proposed rip-rap channel from HW#2 will be approximately 130 linear feet and will contain at least 24 inches of rip-rap (slope of 1:2). The top of the channel bank will extend at least 18" above the top of the rip-rap. Annual rye grass or other means will be used to stabilize exposed bank soils in the rip-rap channel as needed. The proposed water quality swale with forebay from HW#1 will be approximately 140 linear feet and at least 48 inches wide at a slope of 1:3. At least 4 inches of sandy loam consisting of 10-20% organic matter and less than 20% silt will comprise the base of the swale. The swale will be planted will a native perennial upland grass mix such as Northeast Upland Native/Naturalized Wildflower mix from Southern Tier Consulting or other mix approved by the Commission. This mix includes upland and wetland species such as annual ryegrass (Lolium multiflorum), wild rye (Elymus canadensis), sheep fescue (Festuca ovina), switchgrass (Panicum virgatum), common yarrow (Achillea millefolium), black eyed susan (rudbeckia hirta), ox-eye daisy (Chrysanthemum leucanthem), blue vervain (Verbena hastate), and chicory (Cichorium intybus). This mix will be applied at the recommended rate of 100 lbs/acre. Staked haybale check dams will be installed at a minimum of 50-foot intervals during construction and will be removed once the bank has become fully stabilized.

Detention Basin Seeding – Recommend seeding of the Detention Basins includes a Southern Tier Consulting Northeast Wetland Hummock Mix or New England Erosion Control/Restoration Mix from New England Wetland Plants, Inc. or another mix approved by the Holliston Conservation Commission.

Southern Tier Consulting Northeast Wetland Hummock Mix

1 pound will cover 13,400 sq. ft @ 200 seeds per sq. ft.

This mix is to seed drawdown areas, the edges of wetlands, and adjacent uplands in constructed and restored wetlands. The mix is produced from hand collected seed and only limited quantities are available. The seeds in this mix will not generally germinate under water. We recommend a seeding rate of 3.25 pounds per acre and interplanting with bare root transplants on a three or four foot interval. Species include: Green Bulrush (Scirpus atrovirens), Soft Rush (Juncus effuses), Fox Sedge (Carex vulpinoidea), Rice Cut Grass (Leersia oryzoides), Bearded Sedge (Carex comosa), Fringed Sedge (Carex crinita), Shallow Sedge (Carex lurida), and Hop Sedge (Carex lupulina)

New England Erosion Control / Restoration Mix

Application Rate: 35 lbs/acre 1,245 sq. ft./lb

The New England Erosion Control/Restoration Mix contains a selection of native grasses and wildflowers designed to colonize generally moist, recently disturbed sites where quick growth of vegetation is desired to stabilize the soil surface. This mix is particularly appropriate for detention basins that do not normally hold standing water. The plants in this mix can tolerate infrequent inundation, but no constant flooding. In New England, the best results are obtained with a spring or early fall seeding. Summer and fall seeding can be successful with a light mulching of weed-free straw to conserved moisture. Late fall and winter dormant seeding require a slight increase in the seeding rate. Fertilization is not required unless the soils are particularly infertile. Species include: Swithgrass (Panicum virgatum), Creeping Red Fescue (Festuca rubra), Virginia Wild Rye (Elymus vierinicus), Fox Sedge (Carex vulpinoidea), Creeping Bentgrass (Agrostis stolonifera), Silky Wild Rye (Elymus villosus), Nodding Bur-marigold (Bidens cernua), Soft Rush (Juncus effuses), Grass-leaved Goldenrod (Solidago graminifolia), Sensitive fern (Onoclea sensibilis), Joe-Pye Weed (Eupatorium maculatum), boneset (Eupatorium perfoliatum), Flat-top Aster (Aster umbellatus), New York Aster (Aster novi-belgii), and Blue Vervain (Verbena hastate).

Groundwater Recharge / Nesting Area – Following the installation of the subsurface recharge system, suitable inorganic soil (high sand, low silt content) will be placed over the system. Once the final grades have been established, the area will be planted with native bunch grass (*Schizachrium scopaius* or another native species). These plantings will be on roughly thirty-foot centers. Exposed side slopes will be loamed and seeded as necessary for stabilization. See the Notice of Intent narrative, Proposed Mitigation Section for further clarification.

Utility Corridor Turnout Areas - Two 20' x 30' turnouts for construction vehicles are proposed along the proposed utility corridor. These two areas total approximately 1,200 sq. ft. and will be cleared during construction. Upon conclusion of work in this area these two areas will be planted with saplings of northern red oak (*Quercus rubra*), black birch (*Betula lenta*), and white pine (*Pinus strobus*) and/or any other tree species salvaged from the construction site. Plantings will be approximately twenty feet on center individually, or in clumps of up to two. This will require a total of at least 12 saplings (6 per turnout) and will include specimens 2'-3' or 3'-5' in height. Finally these areas will be mulched with native material and allowed to succeed to forest. Any necessary deviations from this planting scheme (including size and species) shall be approved by the HCC.

Turnout Areas Adjacent to the Utility Installation Planting Scheme

Tree Species	Estimated Number of Plantings	Estimated Spacing	Size of Specimens *	Notes
Northern red oak (Ouercus rubra)	2	20 ft.	2'-5'	Various sizes
Black birch (Betula lenta)	2	20 ft.	2' - 5'	Various sizes
White pine (Pinus strobes)	2	20 ft.	2'-5'	Various sizes

^{*} Mature trees may be salvaged from the construction site if possible and planted in these areas.

Stormwater Management

Stormwater drainage will be provide by a curb and gutter storm drain system, utilizing deep-sump and hooded catch basins, forebay filters, and extended detention basins as well as a water quality swale. Approximately 192 acres of the site will remain undisturbed and in its natural state. When construction is complete all stabilized areas will drain through the stormwater management system mentioned above. When upslope areas are stabilized, the accumulated sediment from the detention basins will be removed, and the basins will be planted with permanent vegetation. All detention basins are designed to slowly drain dry. It is expected that this stormwater management system will result in more than 80% removal of total suspended solids from the site's runoff. The stormwater system has been designed by a professional engineer to keep peak flow rates and volumes from the 1, 2, 5, 10, 25, 50, and 100-year 24-hour storms at their pre-development rates and volumes. All discharge outlets from the stormwater management system will be stabilized by rip-rap aprons and/or channels

Other Controls

Wildlife Movement

Critter Gaps

Haybale/siltfencing with critter gaps, to allow wildlife movement, will provide effective erosion and sedimentation control when placed in reasonable locations. Gaps will not be placed in areas that are prone to accumulation of sediment (i.e. Low spots at the base of steep slopes). Critter gaps will be placed approximately 50-75 feet apart.

Waste Disposal

Waste Materials

All waste materials will be collected and stored in metal dumpsters rented from a licensed solid waste management company. The dumpsters will meet all local Holliston and state solid waste management regulations. All trash and construction debris from the site will be deposited in the dumpsters. All dumpsters will be emptied a minimum of twice per week or more often in necessary. No construction waste will be buried or burned onsite. All personnel will be instructed regarding the correct procedure for waste

disposal. Notices stating these practices will be posted in the office trailer and the construction site superintendent will be responsible for seeing that these procedures are followed.

Hazardous Waste

All hazardous waste materials will be disposed of in the manner specified by local and state regulation or by the manufacturer. Site personnel will be instructed in these practices and the construction site superintendent will be responsible for seeing that these procedures are followed.

Sanitary Waste

All sanitary waste will be collected from the portable units a minimum of three times per week by a licensed sanitary waste management company, as required by local and state regulation.

Offsite Vehicle Tracking

A stabilized construction entrance (anti-tracking pad) has been provided at both North and South construction access points to help reduce vehicle tracking of sediments.

Roadway Sweeping

The existing Hopping Brook road will be swept using a mechanical street sweeper on an as needed basis. Additionally, after the roadway extension is paved, it too will be swept using a mechanical street sweeper on an as needed basis.

Timing of Controls / Measures

General

As indicated in the Sequence of Major Activities, the stabilized construction entrances and the Wetland Replication Area will be constructed prior to the clearing or grading of any other portion of the site. Areas where construction activity temporarily ceases for more than 21 days will be stabilized with a temporary seed and mulch within 7 days of the last disturbance. Once construction activity cease permanently in an area, that area will be permanently stabilized as stated in section Controls – Stabilization Practices, above.

Construction Timing (Time-Frame Limitations):

Construction time-frame limitations, installation of critter gaps, and on-site construction monitoring are proposed for the construction of the turtle nesting area / groundwater infiltration system and installation of the utilities only. In order to avoid temporal overlap with nesting, incubation or emergence, work associated with the aforementioned activities should proceed between October 1 through March 15 without the need for a qualified field biologist on site. If work is to be performed with air temperatures greater than 60 F° or outside of this time-frame, a qualified field biologist is required to be onsite to inspect the critter gaps, monitor the work area, and inform the construction crew how to minimize the possibility of any turtles entering the work area and/or how to relocate animals outside of the work area. Furthermore, any nests located in or near the work area will be marked or relocated by a qualified field biologist.

No construction time-frame limits or use of critter gaps are proposed at any other locations on the site including the southern access vicinity. These areas do not have a demonstrated migratory value for rare and endangered species. The Massachusetts Natural Heritage & Endangered Species Program (NHESP) has not suggested or required special construction measures for any other areas onsite besides the limitations mentioned above. In the area of the wetland crossing, one or more temporary or permanent culverts will be in place. The erosion control perimeter will be maintained as a continuous barrier in these areas.

Certification of Compliance with Federal, State, and Local Regulations

This Stormwater Pollution Prevention Plan (SWPPP) reflects Holliston requirements for stormwater management and erosion & sediment control, as established in the local bylaws. To ensure compliance, this plan was prepared in accordance with the United States Environmental Protection Agency NPDES Stormwater Program, Massachusetts Department of Environmental Protection (DEP) Stormwater Management Policy and Guidelines, and Holliston Town By-Laws. No other applicable State or Federal requirements for sediment and erosion site plans (or permits), or stormwater management site plans (or permits) exist.

Maintenance / Inspection Procedures

Erosion and Sediment Control Inspection and Maintenance Practices

- All control measures will be inspected at least once each week and following any storm event of 0.5 inches or greater
- All measures will be maintained in good working order; if a repair is necessary, it will be initiated within 24 hours of report
- Accumulated sediment will be removed from silt fence when it has reached one-third the height of the fence.
- Silt fence will be inspected for depth of sediment, tears, too see if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground.
- All sedimentation basins will be inspected for depth of sediment, and accumulated sediment will be removed when it reaches 10% of the design capacity or at the end of the job. Temporary sediment traps can be allowed to fill with sediment, and either excavated and re-used or stabilized and abandoned.
- All diversion dikes and channels will be inspected and any breaches promptly repaired.
- Temporary and permanent seeding and plantings will be inspected for bare spots, washouts, and healthy growth.
- A Construction Stormwater Maintenance Inspection Report will be submitted after each inspection. A copy of the report form to be completed by the inspector is attached.
- The site superintendent will select three individuals who will be responsible for inspections, maintenance and repair activities, and filling out the inspection and maintenance report.
- Personnel selected for inspection and maintenance responsibilities will receive training from the site superintendent. They will be trained in all the inspection and maintenance practices necessary for keeping the erosion and sediment controls used onsite in good working order.

Non-Storm Water Discharges

It is expected that the following non-stormwater discharges will occur from the site during the construction period:

Water from water line flushings

- Pavement wash waters (where no spills or leaks of toxic or hazardous materials have occurred).
- Uncontaminated groundwater (from dewatering excavation)

All non-stormwater discharges will be directed to the sedimentation basin (Dbasin #3) prior to discharge. All uncontaminated groundwater from dewatering operations related to the utility corridor and jacking and receiving pit area will be directed to a temporary sedimentation basin.

Spill Prevention

Material Management Practices

The following are the material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

Good Housekeeping – The following good housekeeping practices will be followed onsite during the construction project:

- An effort will be made to store only enough product required to do the job
- All materials stored onsite will be stored in a neat, orderly manner in their appropriate containers and if possible under a roof or other enclosure
- Products will be kept in their original containers with the manufacturer's label affixed
- Substances will not be mixed with one another unless recommended by the manufacturer
- Whenever possible, all of a product will be used up before disposing of the container
- Manufacturer's recommendations for proper use and disposal will be followed
- The site superintendent will inspect daily to ensure proper use and disposal of materials

Hazardous Products – These practices are used to reduce the risks associated with hazardous materials.

- Products will be kept in original containers unless they are not resealable
- Original labels and material safety data will be retained; they contain important product information
- If surplus product must be disposed of, manufacturers' or local and state recommended methods for proper disposal will be followed.

Product Specific Practices

Petroleum Products

All onsite vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers that are clearly labeled. Any asphalt substances used onsite will be applied according to the manufacturer's recommendations.

Fertilizers

Fertilizers used will be applied only in the minimum amounts recommended by the manufacturer. Once applied, fertilizer will be worked into the soil to limit exposure to stormwater. Storage will be in a covered shed. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

Paints

All containers will be tightly sealed and stored when not required for use. Excess paint will not be discharged to the stormwater system but will be properly disposed of according to manufacturer's instructions or State and local regulations.

Concrete Trucks

Concrete trucks will not be allowed to wash out or discharge surplus concrete or drum wash water on the site.

Spill Control Practices

In addition to the good housekeeping and material management practices discussed in the previous sections of this plan, the following practices will be followed for spill prevention and cleanup:

- Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be made aware of the procedures and the location of the information and cleanup supplies.
- Materials and equipment necessary for spill cleanup will be kept in the material storage area onsite. Equipment and materials will include but not be limited to brooms, dust pans, mops, rags, gloves, goggles, kitty litter, sand, sawdust, and plastic and metal trash containers specifically for this purpose.
- All spills will be cleaned up immediately after discovery.
- The spill area will be kept well ventilated and personnel will wear appropriate protective clothing to prevent injury from contact with a hazardous substance.
- Spills of toxic or hazardous material will be reported to the appropriate State or local government agency, regardless of the size.
- The spill prevention plan will be adjusted to include measures to prevent this type of spill from reoccurring and how to clean up the spill if there is another one. A description of the spill, what caused it, and the cleanup measures will also be included.

• The site superintendent will be the spill prevention and cleanup coordinator. This individual will designate at least three other site personnel who will receive spill prevention and cleanup training. These individuals will each become responsible for a particular phase of prevention and cleanup. The names of responsible spill a personnel will be posted in the material storage areas and in the office trailer onsite.

Pollution Prevention Plan Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine or imprisonment for knowing violations.

Signed:	
John Q. Quality President Environmental Site Monitor	
Date:	

Contractor's Certification

I certify under penalty of law that I understand the terms and conditions of the general National Pollutant Discharge Elimination System (NPDES) permit that authorizes the stormwater discharges associated with industrial activity from the construction site identified as part of this certification.

Signature	For	Responsible for
Joe Contractor, Presider	Address Line 2	General Contractor
Joe Planter, President Date:	Erosion Control Company Address Line 1 Address Line 2 Telephone number	Temporary and Permanent Stabilization
Jane Digger, President	_ Dirt Movers Address Line 1 Address Line 2 Telephone number	Stabilized entrances, Earth Dikes, Sedimentation Basins

INSPECTION AND MAINTENANCE REPORT FORM

Road & Utility Extension of Hopping Brook Business Park

TO BE COMPLETED EVERY 7 DAYS AND WITHIN 24-HOURS OF A RAINFALL EVENT OF 0.5 INCHES OR MORE.

INSPECTO QUALIFIC	OR'S :ATIONS:				
DAYS SIN	ICE LAST RAINFALL:	AMOUNT		inch	HES
		STABILIZATION	MEASURES		
AREA	DATE SINCE LAST DISTURBED	DATE OF NEXT DISTURBANCE	STABILIZED? (Y/N)	STABILIZED WITH	CONDITION
North tracking					
pad South tracking pad				,	
Wetland				/	
replication Wetland crossing		-			
Sed.Basin - DB3					
Haul Road				.,	
Sed.Basin - DB2					
Div.channel A					
Borrow Pit					
Div.channel B				`	
Roadway Ext.					
Sed.Basin - DB1					
Maint. Road					
Jacking Pits					
Utility Corridor					
Recharge/Nestin					
STABILI REQUIR	ZATION ED:				
TO BE P	PERFORMED BY:		ON OR BEFORE	i: 	

INSPECTION AND MAINTENANCE REPORT FORM

for

Road & Utility Extension of Hopping Brook Business Park

STRUCTURAL CONTROLS

		IS LINE	WASHOUT OR
FROM	ТО	STABILIZED?	OVERTOPPING*
	V		
	*		
			,
			• /
,1	l I		
		-	
MAINTENANCE REQU	IIRED FOR HAYBALE/SILTE	FENCE	
TO BE PERFORMED I	BY:	ON OR BEFORE:	

EARTH DIKES

	TO.	IS DIKE STABILIZED?	WASHOUT OR OVERTOPPING
FROM	ТО	STABIEIZED:	
			-
			1
			/
		1	
· · · · · · · · · · · · · · · · · · ·			

SEDIMENTATION BASINS / TRAPS

LOCATION	DEPTH OF SEDIMENT	IS BASIN/TRAP STABILIZED?	FILLED OR OVERTOPPING ?	CONDITION OF OUTFALL/OUTLET DEVICE
·				
		1		
				/
	1	:		
			-	

MAINTENANCE REQUIRED FOR SEDIMENTATION BASINS/TRAPS:	
TO BE PERFORMED BY:	ON OR BEFORE:

ANTI-TRACKING PADS

LOCATION	SEDIMENT ON ROAD?	IS THE GRAVEL FOULED?	DOES ALL TRAFFIC USE THE PAD?	CONDITION OF DRAINAGE DIVERTS
NORTH SOUTH				

MAINTENANCE REQUIRED FOR ANTI-	FRACKING	-		
	Ĺ			-
TO BE PERFORMED BY:		ON OR BEFORE:_		
			1	
			•	3/
₩	٠,		<i>,</i> ,	.,
r ^r				<i>jı</i>
ଖଳା	i			
			-	`

INSPECTION AND MAINTENANCE REPORT FORM

Road & Utility Extension of Hopping Brook Business Park

CHANGES REQUIRED TO	THE POLLUTION PREVENTION PLAN:
REASONS FOR CHANGE	S:
·	
	, ,
	//
1,	,,
under my direction or super qualified personnel proper on my inquiry of the perso directly responsible for gat best of my knowledge and	we that this document and all attachments were prepared ervision in accordance with a system designed to assure that ly gathered and evaluated the information submitted. Based in or persons who manage the system, or those persons thering the information, the information submitted is, to the belief, true, accurate, and complete. I am aware that there is submitting false information, including the possibility of fineing violations.
Signed:	Date:

*				
	2.			

Commonwealth of Massachusetts

Division of Fisheries & Wildlife

Wayne F. MacCallum, Director

July 29, 2002

Garrett M. Tunision
Fisheries Biologist
Sanford Ecological Services, Inc.
30 Turnpike Road
Southborough, MA 01772

Re: Hopping Brook Park Project in Holliston, MA, EOEA # 4411

Dear Mr. Tunision:

Thank you for contacting the Fisheries Section of MassWildlife relative to the above-mentioned project. Hopping Brook, Holliston, is considered a cold water resource due to its ability to holdover trout through the warmer months. As a result, any discharge into the brook must not exceed the thresholds established under the Massachusetts Department of Environmental Protection's Class B Cold Water criteria (314 CMR 4.00). Specifically, 4.05: Classes and Criteria. For dissolved oxygen and temperature: dissolved oxygen shall not be less than 6.0mg/L in cold water fisheries, unless background conditions are lower...levels shall not be lowered below 75% of saturation due to a discharge. Temperature shall not exceed 68°F (20°C) in coldwater fisheries...and the rise in temperature due to a discharge shall not exceed 3°F (1.7°C) in rivers and streams designated as cold water fisheries. A qualified engineer will be able to design a stormwater drainage system, which will be capable of handling summer storm events so as to meet the above temperature, and dissolved oxygen requirements. At that time, we will be happy to review the plans.

In the meantime, if you should have any questions or require further information relative to the resource, please do not hesitate to contact me directly at (508) 792-7270 ext. 132.

Sincerely,

Richard A. Hartley Aquatic Biologist

Cc. Chuck Bell, Northeast District Supervisor

www.masswildlife.org

Division of Fisheries & Wildlife

Wayne F. MacCallum, Director

Garrett M. Tunison
Sanford Ecological Services, Inc.
30 Turnpike Road
Southborough, MA 01772

October 2, 2002

Re:

Stormwater Management Plan for Hopping Brook Park, Holliston, Massachusetts

Dear Mr. Tunison:

I have reviewed your Stormwater Management Plan for the proposed Hopping Brook Park in Holliston. Avoiding direct discharge into Hopping Brook and the use of extended detention basins will help minimize potential impacts to the fisheries resource. We feel that the Stormwater Management Plan, as proposed, does not constitute a significant risk to the fisheries resources associated with Hopping Brook.

Thank you for allowing us to comment on this proposal. Should you have any questions or require further information, please do not hesitate to contact me directly at (508) 792-7270 ext. 132.

Sincerely

Richard A. Hartley

Aquatic Biologist

Cc. Charles Bell, MDFW Northeast District Supervisor

APPENDIX G

Approval of Amendment to the Town of Holliston Zoning By-law

TOM REILLY
ATTORNEY GENERAL

THE COMMONWEALTH OF MASSACHUSETTS OFFICE OF THE ATTORNEY GENERAL

WESTERN MASSACHUSETTS DIVISION
1350 MAIN STREET
SPRINGFIELD, MASSACHUSETTS 01103-1629

(413) 784-1240 www.ago.state.ma.us

February 3, 2003

Jacqueline S. Dellicker, Town Clerk 100 Linden Street Holliston, MA 01746

RE: Holliston Special Town Meeting of December 17, 2002 — Case # 2372

Warrant Article # 2 (Zoning)

Dear Ms. Dellicker:

Article 2 - I return with the approval of this Office the amendments to the town by-laws adopted under this Article on the warrant for the Holliston town meeting that convened on December 17, 2002.

Very truly yours,

THOMAS F. REILLY ATTORNEY GENERAL

by: Kelli E. Lawrence, Assistant Attorney General

By-law Coordinator, Municipal Law Unit

1350 Main Street, 4th Floor Springfield, MA 01103-1629

(413) 784-1240, x 117

enc.

pc:

Town Counsel

F:\USERS\RITCHIE\WP61\DOCS\TOWNS\HOLLISTO\#2372S.APP.wpd

TOWN OF HOLLISTON

OFFICE OF THE TOWN CLERK

100 Linden Street Holliston, MA 01746

TELEPHONE (508) 429-0601 FAX (508) 429-0684 OFFICE HOURS; MONDAY - FRIDAY 8:30 AM - 4:30 PM

Jacqueline S. Dellicker Town Clerk

Board of Selectmen Town Offices 100 Linden Street Holliston, MA 01746

This is to certify that at the Special Town Meeting of December 17, 2002, Article 2 received favorable voting action as follows:

To see if the Town will vote to amend the Town of Holliston Zoning By-law by ARTICLE 2. adding the following new sub-paragraph f to Section I-D PROHIBITED USES, subsection 3:

Private sewage disposal systems or treatment plants shall be allowed in Industrial Districts in conjunction with commercial or industrial development and further pursuant to the requirements of a Special Permit issued by the Permit Granting Authority, and provided, however, no discharge or leaching areas shall be located in a Zone I or Zone II as determined by the Massachusetts Department of Environmental Protection Aquifer Protection Areas.; or take any action relative thereto. (Board of Selectmen)

MOTION: Moved that the Zoning By-law of the Town of Holliston be amended as stated in the Article.

VOTE: Unanimously passed by two-thirds (2/3) hand vote to accept Article 2 as stated in the motion. The vote was Yes -320, No -63.

true record, Attest: Delluker

Jacqueline S. Dellicker

Town Clerk

cc: Planning Board, Zoning Board of Appeals, Michael Healy

A true copy of record Attest: Jacqueline S. Dellicker

Town Clerk

Holliston, MA 01746 Jefferlin & Dellecher